CS 188: Artificial Intelligence

Review

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

Course Topics

- Part I: Search and Planning
- Basic Search Algorithms
- CSPs
- Adversarial Search (Games)
- Uncertain Search (MDPs)
- Part II: Reasoning with Uncertainty
- Bayes Nets
- Markov Models
- Decision theory
- Part III: Learning

- Machine Learning
- Reinforcement Learning

A Rational Agent...

- Maximizes expected utility
- Maximizes sums of rewards
- Minimizes expected loss
- Minimizes sums of costs

- Loss is just negative utility, and costs are just negative rewards

Agent design

The environment type largely determines the agent design

Partially observable => agent requires memory (internal state)
Stochastic => agent may have to prepare for contingencies
Multi-agent => agent may need to behave randomly
Static => agent has time to compute a rational decision
Continuous time => continuously operating controller
Unknown physics => need for exploration
Unknown perf. measure => observe/interact with human principal

Environment types

	Crossword	Backgammon	Diagnosis	Taxi
Fully or partially observable	Fully	Fully	Partially	Partially
Single-agent or multiagent	Single	Multi	Single	Multi
Deterministic or stochastic	Deterministic	Stochastic	Stochastic	Stochastic
Static or dynamic	Static	Static	Dynamic	Dynamic
Discrete or continuous	Discrete	Discrete	Continuous	Continuous
Known physics?	Yes	Yes	No	No

Preferences

- An agent must have preferences among:

A Prize

A Lottery

- Notation:

$$
L=[p, A ;(1-p), B]
$$

- Preference: $A \succ B$
- Indifference: $A \sim B$
- Maximum expected utility (MEU) principle:
- Choose the action that maximizes expected utility

Problem Types

Search Problems

- A search problem consists of:
- A state space

- A successor function (with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

- Problem: Pathing
- States: (x,y) location
- Actions: NSEW
- Successor: update location only
- Goal test: is (x, y) =END
- Problem: Eat-All-Dots
- States: $\{(\mathrm{x}, \mathrm{y})$, dot booleans $\}$
- Actions: NSEW
- Successor: update location and possibly a dot boolean
- Goal test: dots all false

State Space Sizes?

- World state:
- Agent positions: 120
- Food count: 30
- Ghost positions: 12
- Agent facing: NSEW
- How many
- World states?
$120 \times\left(2^{30}\right) \times\left(12^{2}\right) \times 4$
- States for pathing?

120

- States for eat-all-dots?

$120 \times\left(2^{30}\right)$

State Space Graphs

- State space graph: A mathematical representation of a search problem
- Nodes are (abstracted) world configurations
- Arcs represent successors (action results)
- The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!

Tiny state space graph for a tiny search problem

Search Trees

- A search tree:
- A "what if" tree of plans and their outcomes
- The start state is the root node
- Children correspond to successors
- Nodes show states, but correspond to PLANS that achieve those states

Tree Search

function TREE-SEARCH (problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do
if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end

- Important ideas:
- Fringe
- Expansion
- Exploration strategy
- Main question: which fringe nodes to explore?

The One Queue

- Many search algorithms are the same except for fringe strategies
- Depth-First Search: expand the deepest node first
- Breadth-First Search: expand the shallowest node first
- Uniform Cost Search: expand the cheapest node first
- Greedy Search: expand the node with lowest heuristic value first
- A* Search: expand the node with lowest sum of path cost and heuristic value

Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?
- Cartoon of search tree:
- b is the branching factor
- m is the maximum depth
- d is depth of shallowest solution
- Number of nodes in entire tree?

- $1+b+b^{2}+\ldots . b^{m}=O\left(b^{m}\right)$

Depth-First Search (DFS) Properties

- What nodes DFS expand?
- Some left prefix of the tree.
- Could process the whole tree!
- If m is finite, takes time $O\left(b^{m}\right)$
- How much space does the fringe take?
- Only has siblings on path to root, so O(bm)
- Is it complete?

- m could be infinite, so only if we prevent cycles (more later)
- Is it optimal?
- No, it finds the "leftmost" solution, regardless of depth or cost

Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
- Processes all nodes above shallowest solution
- Let depth of shallowest solution be s
- Search takes time $O\left(b^{s}\right)$
- How much space does the fringe take?
- Has roughly the last tier, so $O\left(b^{s}\right)$
- Is it complete?
- s must be finite if a solution exists, so yes!
- Is it optimal?
- Only if costs are all 1 (more on costs later)

Iterative Deepening

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
- Run a DFS with depth limit 1. If no solution...
- Run a DFS with depth limit 2. If no solution...
- Run a DFS with depth limit 3.
- Isn't that wastefully redundant?
- Generally most work happens in the lowest level searched, so not so bad!

Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
- Processes all nodes with cost less than cheapest solution!
- If that solution costs C^{*} and arcs cost at least ε, then the "effective depth" is roughly C^{*} / ε
- Takes time $\mathrm{O}\left(\mathrm{b}^{C^{*} / \varepsilon}\right)$ (exponential in effective depth)
- How much space does the fringe take?
- Has roughly the last tier, so $\mathrm{O}\left(\mathrm{b}^{C^{* / \varepsilon}}\right)$

- Is it complete?
- Assuming best solution has a finite cost and minimum arc cost is positive, yes!
- Is it optimal?
- Yes!

Search Algorithms

	DFS	BFS	Iterative Deepen	UCS
Complete?	No	Yes *	Yes *	Yes ***
Optimal?	No	Yes ***	Yes ***	Yes
Time	$\mathrm{O}\left(\mathrm{b}^{\wedge} \mathrm{m}\right)$	$\mathrm{O}\left(\mathrm{b}^{\wedge} \mathrm{d}\right)$	$\mathrm{O}\left(\mathrm{b}^{\wedge} \mathrm{d}\right)$	$\mathrm{O}\left(\mathrm{b}^{\left.l+C^{*} / \varepsilon\right)}\right.$
Space	$\mathrm{O}(\mathrm{bm})$	$\mathrm{O}\left(\mathrm{b}^{\wedge} \mathrm{d}\right)$	$\mathrm{O}(\mathrm{bd})$	$\mathrm{O}\left(\mathrm{b}^{\left.l+C^{\star} / \varepsilon\right)}\right.$

- *: if b is finite, and state space either has a solution or is finite
- **: if all costs are $\geq \varepsilon>0$.
- ${ }^{* * *}$: if all costs are identical.

Search Heuristics

- A heuristic is:
- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
- Heuristic: estimate of distance to nearest goal for each state

- A common case:
- Best-first takes you straight to the (wrong) goal
- Worst-case: like a badly-guided DFS

Graph Search

- Idea: never expand a state twice
- How to implement:
- Tree search + set of expanded states ("closed set")
- Expand the search tree node-by-node, but...
- Before expanding a node, check to make sure its state has never been expanded before
- If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

- A* Search orders by the sum: $f(n)=g(n)+h(n)$

A^{*}

- A* uses both backward costs and (estimates of) forward costs
- A* tree search is optimal with an admissible heuristic
- A* graph search is optimal with a consistent heuristic

Admissible Heuristics

- A heuristic h is admissible (optimistic) if:

$$
0 \leq h(n) \leq h^{*}(n)
$$

where $h^{*}(n)$ is the true cost to a nearest goal

- Examples:

- Coming up with admissible heuristics is most of what's involved in using A^{*} in practice.

Idea: Consistency

- Main idea: estimated heuristic costs \leq actual costs

- Admissibility: heuristic cost \leq actual cost to goal

$$
h(A) \leq \text { actual cost from } A \text { to } G
$$

- Consistency: heuristic "arc" cost \leq actual cost for each arc

$$
h(A)-h(C) \leq \operatorname{cost}(A \text { to } C)
$$

- Consequences of consistency:
- The f value along a path never decreases

$$
h(A) \leq \operatorname{cost}(A \text { to } C)+h(C)
$$

- A* graph search is optimal

Games

Deterministic Games

- Many possible formalizations, one is:
- States: S (start at s_{0})
- Players: $P=\{1$...N $\}$ (usually take turns)
- Actions: A (may depend on player / state)
- Transition Function: SxA \rightarrow S
- Terminal Test: $\mathrm{S} \rightarrow\{\mathrm{t}, \mathrm{f}\}$
- Terminal Utilities: SxP $\rightarrow \mathrm{R}$
- Solution for a player is a policy: $\mathrm{S} \rightarrow \mathrm{A}$

Single-Agent Trees

Value of a State

Zero-Sum Games

- Zero-Sum Games
- Agents have opposite utilities (values on outcomes)
- Let us think of a single value that one maximizes and the other minimizes
- Adversarial, pure competition

Minimax Values

States Under Agent's Control:

$$
V(s)=\max _{s^{\prime} \in \operatorname{successors}(s)} V\left(s^{\prime}\right)
$$

States Under Opponent's Control:

$$
V\left(s^{\prime}\right)=\min _{s \in \operatorname{successors}\left(s^{\prime}\right)} V(s)
$$

Terminal States:

$$
V(s)=\text { known }
$$

Adversarial Search (Minimax)

- Minimax search:
- A state-space search tree
- Players alternate turns
- Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

Alpha-Beta Pruning

- General configuration (MIN version, MAX is symmetric)
- We're computing the MIN-VALUE at some node n

MAX

- We're looping over n's children
- n's estimate of the childrens' min is dropping
- Who cares about n 's value? MAX
- Let a be the best value that MAX can get at any choice point along the current path from the root
- If n becomes worse than a, MAX will avoid it, so we can stop considering n 's other children (it's already bad enough that it won't be played)
- This pruning has no effect on minimax value computed for the root, but values of intermediate nodes might be wrong

Alpha-Beta Implementation

α : MAX's best option on path to root β : MIN's best option on path to root

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:
$v=\max (v$, value(successor, $\alpha, \beta)$)
if $v \geq \beta$ return v
$\alpha=\max (\alpha, v)$
return v
def min-value(state, α, β):
initialize $v=+\infty$
for each successor of state:

$$
\begin{aligned}
& v=\min (v, \text { value }(\text { successor, } \alpha, \beta)) \\
& \text { if } v \leq \alpha \text { return } v \\
& \beta=\min (\beta, v)
\end{aligned}
$$

return v

Depth-limited search

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
- Instead, search only to a limited depth in the tree
- Replace terminal utilities with an evaluation function for non-terminal positions
- Depth limit can be adjusted based on computation time budget
- Guarantee of optimal play is gone

Evaluation Functions

- Evaluation functions score non-terminals in depth-limited search

Black to move
White slightly better

White to move
Black winning

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

$$
\operatorname{Eval}(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s)
$$

- e.g. $f_{1}(s)=$ (num white queens - num black queens), etc.

Expectimax Search

- Chance nodes: Uncertain outcomes controlled by chance, not an adversary!
- Expectimax search: compute the average score under optimal play
- Pruning in Expectimax?

Markov Decision Processes

Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function T(s, a, s')
- Probability that a from s leads to s', i.e., P(s'|s, a)
- Also called the model or the dynamics
- A reward function $R\left(s, a, s^{\prime}\right)$
- Sometimes just R(s) or R(s')
- A start state
- Maybe a terminal state

- MDPs are non-deterministic search problems
- One way to solve them is with expectimax search
- But there are more efficient algorithms, too

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^{*}: S \rightarrow \mathrm{~A}$
- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent

Optimal policy when $R\left(s, a, s^{\prime}\right)=-0.03$ for all nonterminals s

Optimal Quantities

- The value (utility) of a state s:
$V^{*}(s)=$ expected utility starting in s and acting optimally
- The value (utility) of a q-state (s, a):
$Q^{*}(s, a)=$ expected utility starting out having taken action a from state s and (thereafter) acting optimally

- The optimal policy:
$\pi^{*}(\mathrm{~s})=$ optimal action from state s

The Bellman Equations

- Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$
\begin{aligned}
& V^{*}(s)=\max _{a} Q^{*}(s, a) \\
& Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \\
& V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Summary: MDP Algorithms

- So you want to....
- Compute optimal values: use value iteration or Q-value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
- They basically are - they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

Value Iteration

- Bellman equations characterize the optimal values:

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- Value iteration computes them:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- V_{k} are also interpretable as time-limited values

Q-Value Iteration

- Value iteration: find successive (depth-limited) values
- Start with $\mathrm{V}_{0}(\mathrm{~s})=0$, which we know is right
- Given V_{k}, calculate the depth $\mathrm{k}+1$ values for all states:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- But Q-values are more useful, so compute them instead
- Start with $\mathrm{Q}_{0}(\mathrm{~s}, \mathrm{a})=0$, which we know is right
- Given O_{k}, calculate the depth $\mathrm{k}+1 \mathrm{q}$-values for all q-states:

$$
Q_{k+1}(s, a) \leftarrow \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right]
$$

Computing Actions from Values

- Let's imagine we have the optimal values $\mathrm{V}^{*}(\mathrm{~s})$
- How should we act?
- It's not obvious!
- We need to do a mini-expectimax (one step)

$$
\pi^{*}(s)=\underset{a}{\arg \max } \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

- This is called policy extraction, since it gets the policy implied by the values

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$
\begin{aligned}
& V_{0}^{\pi}(s)=0 \\
& V_{k+1}^{\pi}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- Efficiency: $O\left(S^{2}\right)$ per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system

Policy Iteration

- Alternative approach for optimal policy:
- Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
- Repeat steps until policy converges
- This is policy iteration
- It's still optimal!
- The policy often converges long before the values

Policy Iteration

- Evaluation: For fixed current policy π, find values with policy evaluation:
- Iterate until values converge:

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi_{i}(s), s^{\prime}\right)\left[R\left(s, \pi_{i}(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

- Improvement: For fixed values, get a better policy using policy extraction
- One-step look-ahead:

$$
\pi_{i+1}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

Reinforcement Learning

Reinforcement Learning

- We still assume an MDP:
- A set of states $s \in S$
- A set of actions (per state) A
- A model T(s,a, s')
- A reward function $R\left(s, a, s^{\prime}\right)$

- Still looking for a policy $\pi(\mathrm{s})$
- New twist: don’t know T or R, so must try out actions
- Big idea: Compute all averages over T using sample outcomes

Model-Based Learning

- Model-Based Idea:
- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model

- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widehat{T}\left(s, a, s^{\prime}\right)$
- Discover each $\widehat{R}\left(s, a, s^{\prime}\right)$ when we experience ($\mathrm{s}, \mathrm{a}, \mathrm{s}^{\prime}$)
- Step 2: Solve the learned MDP

- For example, use value iteration, as before

Model-Free Learning

- Model-free learning
- Experience world through episodes

$$
\left(s, a, r, s^{\prime}, a^{\prime}, r^{\prime}, s^{\prime \prime}, a^{\prime \prime}, r^{\prime \prime}, s^{\prime \prime \prime \prime} \ldots\right)
$$

- Update estimates each transition $\left(s, a, r, s^{\prime}\right)$
- Over time, updates will mimic Bellman updates

Temporal Difference Learning

Sample of V(s):
sample $=R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)$

Update to V(s):
$V^{\pi}(s) \leftarrow(1-\alpha) V^{\pi}(s)+(\alpha)$ sample

Same update:

Q-Learning

- Learn $Q(s, a)$ values as you go
- Receive a sample (s, a, s^{\prime}, r)
- Consider your old estimate: $Q(s, a)$
- Consider your new sample estimate:

$$
\text { sample }=R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)
$$

- Incorporate the new estimate into a running average:

$$
Q(s, a) \leftarrow(1-\alpha) Q(s, a)+(\alpha)[\text { sample }]
$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting sub-optimally!
- This is called off-policy learning
- Caveats:
- You have to explore enough
- You have to eventually make the learning rate small enough

- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions (!)

Exploration vs. Exploitation

- Several schemes for forcing exploration
- Simplest: random actions (ε-greedy)
- Every time step, flip a coin
- With (small) probability ε, act randomly
- With (large) probability 1- ε, act on current policy
- Another approach: exploration functions
- Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. $f(u, n)=u+k / n$

Regular Q-Update: $\quad Q(s, a) \leftarrow \alpha R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)$

Modified Q-Update: $Q(s, a) \leftarrow \alpha R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} f\left(Q\left(s^{\prime}, a^{\prime}\right), N\left(s^{\prime}, a^{\prime}\right)\right)$

Feature-Based Value Functions

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
- Instead, we want to generalize to new, similar situations
- Solution: describe a state using a vector of features

$$
Q(s, a)=w_{1} f_{1}(s, a)+w_{2} f_{2}(s, a)+\ldots+w_{n} f_{n}(s, a)
$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!

Approximate Q-Learning

$$
Q(s, a)=w_{1} f_{1}(s, a)+w_{2} f_{2}(s, a)+\ldots+w_{n} f_{n}(s, a)
$$

- Q-learning with linear Q -functions:

$$
\begin{aligned}
\text { transition } & =\left(s, a, r, s^{\prime}\right) & \\
\text { difference } & =\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right]-Q(s, a) & \\
Q(s, a) & \leftarrow Q(s, a)+\alpha \text { [difference] } & \text { Exact Q's } \\
w_{i} & \leftarrow w_{i}+\alpha \text { [difference] } f_{i}(s, a) & \text { Approximate Q's }
\end{aligned}
$$

- Intuitive interpretation:
- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

Probability

- Basic laws: $0 \leq P(\omega) \leq 1, \quad \sum_{\omega \in \Omega} P(\omega)=1, \quad P(A)=\sum_{\omega \in A} P(\omega)$
- Summing out/marginalization: $P(X=x)=\sum_{y} P(X=x, Y=y)$
- Conditional probability: $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})=\mathrm{P}(\mathrm{X}, \mathrm{Y}) / \mathrm{P}(\mathrm{Y})$
- Chain rule: $P\left(X_{1}, . ., X_{n}\right)=\prod_{i} P\left(X_{i} \mid X_{1}, . ., X_{i-1}\right)$
- Bayes Rule: $P(X \mid Y)=P(Y \mid X) P(X) / P(Y)=P(Y \mid X) P(X) / \sum_{x} P(X=x, Y)$
- Independence: $P(X, Y)=P(X) P(Y)$ or $P(X \mid Y)=P(X)$ or $P(Y \mid X)=P(Y)$
- Conditional Independence: $P(X \mid Y, Z)=P(X \mid Z)$ or $P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)$

Decision Networks

- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
- Bayes nets with nodes for utility and actions
- Lets us calculate the expected utility for each action
- New node types:
- Chance nodes (just like BNs)
- Actions (rectangles, cannot have parents, act as observed evidence)

- Utility node (diamond, depends on action and chance nodes)

Decisions as Outcome Trees

Decisions as Outcome Trees

Decisions as Outcome Trees

$$
\operatorname{VPI}(F)=\operatorname{VPI}(F \mid\{ \})=\operatorname{MEU}(F)-\operatorname{MEU}(\{ \})
$$

It is rational to observe F when $\mathrm{VPI}(\mathrm{F})>$ cost of observing F

$$
\operatorname{VPI}\left(E^{\prime} \mid e\right)=\left(\sum_{e^{\prime}} P\left(e^{\prime} \mid e\right) \operatorname{MEU}\left(e, e^{\prime}\right)\right)-\operatorname{MEU}(e)
$$

VPI Properties

- Nonnegative

$$
\forall E^{\prime}, e: \operatorname{VPI}\left(E^{\prime} \mid e\right) \geq 0
$$

- Non-additive
(think of observing E_{j} twice)

$$
\operatorname{VPI}\left(E_{j}, E_{k} \mid e\right) \neq \operatorname{VPI}\left(E_{j} \mid e\right)+\operatorname{VPI}\left(E_{k} \mid e\right)
$$

- Order-independent

$$
\begin{aligned}
\operatorname{VPI}\left(E_{j}, E_{k} \mid e\right) & =\operatorname{VPI}\left(E_{j} \mid e\right)+\operatorname{VPI}\left(E_{k} \mid e, E_{j}\right) \\
& =\operatorname{VPI}\left(E_{k} \mid e\right)+\operatorname{VPI}\left(E_{j} \mid e, E_{k}\right)
\end{aligned}
$$

Bayes Nets: Big Picture

- Bayes nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- Bayes nets topics:
- Conditional Independences (D-Separation)
- Exact Inference (Inference by enumeration, variable elimination)
- Sampling (Prior, Rejection, Likelihood Weighting, Gibbs)

Bayes Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded

- The graph structure guarantees certain
(conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

```
{X\PerpY,X\PerpZ,Y # Z,
X\PerpZ|Y,X\PerpY|Z,Y\PerpZ|X}
(X) Z
\(\{X \Perp Y, X \Perp Z, Y \Perp Z\),
\(X \Perp Z|Y, X \Perp Y| Z, Y \Perp Z \mid X\}\)
```


D-Separation

- A condition / algorithm for answering independence queries
- Query: $\quad X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}$?
- Check all (undirected!) paths between X_{i} and X_{j}
- If one or more active, then independence not guaranteed

$$
X_{i} \mathbb{X} X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

- Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$
X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

Compute All the INDEPENDENCES!

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables $\{Z\}$?
- Yes, if X and Y "d-separated" by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain A-> $B->C$ where B is unobserved (either direction)
- Common cause $A<-B->C$ where B is unobserved
- Common effect (aka v-structure) $A->B<-C$ where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment

Active Triples

Inference by Enumeration

- General case
- Evidence variables:
- Query* variable:
- Hidden variables:

- We want: multiple query variables, too

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 1: Select the entries consistent with the evidence

- Step 2: Sum out H to get joint of Query and evidence

- Step 3: Normalize

Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
- Just like a database join
- Get all factors over the joining variable
- Build a new factor over the union of the variables
 involved
- Example: Join on R
$P(R) \times P(T \mid R)$$\quad \rightarrow \quad P(R, T)$
- Computation for each entry: pointwise products $\quad \forall r, t: \quad P(r, t)=P(r) \cdot P(t \mid r)$

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
- Shrinks a factor to a smaller one
- A projection operation
- Example:
$P(R, T)$

$+r$	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

sum R

\square | $P(T)$ | |
| :---: | :---: |
| t | 0.17 |
| -t | 0.83 |

Inference by Enumeration vs. Variable Elimination

- Variable Elimination

$$
=\sum_{t} P(L \mid t) \sum_{r} \underset{\text { Join on } r}{P(r) P(t \mid r)}
$$

Eliminate r

Eliminate t

Variable Elimination

- Interleave joining and marginalizing
- d^{k} entries computed for a factor over k variables with domain sizes d
- Ordering of elimination of hidden variables can affect size of factors generated

- Worst case: running time exponential in the size of the Bayes' net

Approximate Inference: Sampling

- Sampling is a lot like repeated simulation
- Predicting the weather, basketball games, ...
- Basic idea
- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P
- Why sample?
- Learning: get samples from a distribution you don't know
- Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

Sampling in Bayes Nets

- Prior Sampling $P(Q)$

- Likelihood Weighting $\mathrm{P}(\mathrm{Q} \mid \mathrm{e})$

- Rejection Sampling $P(Q \mid e)$

- Gibbs Sampling P(Q|e)

Prior Sampling

- For $\mathrm{i}=1,2, \ldots, \mathrm{n}$
- Sample x_{i} from $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid\right.$ Parents $\left.\left(\mathrm{X}_{\mathrm{i}}\right)\right)$
- Return $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Rejection Sampling

- Input: evidence instantiation
- For $\mathrm{i}=1,2, \ldots, \mathrm{n}$
- Sample x_{i} from $P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- If x_{i} not consistent with evidence
- Reject: return - no sample is generated in this cycle
- Return ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$)

Likelihood Weighting

Gibbs Sampling

- Step 1: Fix evidence
- $R=+r$

- Step 2: Initialize other variables
- Randomly

- Steps 3: Repeat
- Choose a non-evidence variable X
- Resample X from $P(X \mid$ all other variables)
- $P(X \mid$ all other variables) can be computed efficiently using only the CPTs that involve X

Sample from $P(S \mid+c,-w,+r) \quad$ Sample from $P(C \mid+s,-w,+r) \quad$ Sample from $P(W \mid+s,+c,+r)$

Markov Models

- Value of X at a given time is called the state

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationary assumption: transition probabilities the same at all times
- Markov property: Past and future independent given the present
- Same as MDP transition model, but no choice of action

Mini-Forward Algorithm

- Question: What's $\mathrm{P}(\mathrm{X})$ at some time t ?

$$
\begin{aligned}
P\left(x_{1}\right) & =\text { known } \\
P\left(x_{t}\right) & =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}\right) \\
& =\sum_{x_{t-1}} P(x_{t} \underbrace{\left.x_{t-1}\right) P\left(x_{t-1}\right)}_{\text {Forward simulation }}
\end{aligned}
$$

Stationary Distributions

- For most chains:
- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution
- Stationary distribution:
- The distribution we end up with is called the stationary distribution P_{∞} of the chain
- It satisfies

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

Hidden Markov Models

- Markov chains not so useful for most agents
- Need observations to update your beliefs
- Hidden Markov models (HMMs)
- Underlying Markov chain over states X
- You observe outputs (effects) at each time step

Conditional Independence

- HMMs have two important independence properties:
- Markov hidden process: future depends on past via the present
- Current observation independent of all else given current state

- Evidence variables are not guaranteed to be independent
- They tend to correlated by the hidden state

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_{t}(X)=P_{t}\left(X_{t} \mid e_{1}, \ldots, e_{t}\right)$ (the belief state) over time
- We start with $B_{1}(X)$ in an initial setting, usually uniform
- As time passes, or we get observations, we update $B(X)$

Passage of Time

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Or compactly:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)
$$

- Basic idea: beliefs get "pushed" through the transitions
- With the " B " notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Observation

- Assume we have current belief $P(X \mid$ previous evidence $)$:

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

- Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto_{X_{t+1}} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

- Or, compactly:

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Forward Algorithm

- Every time step, we start with current $P(X \mid$ evidence $)$

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- We update for time:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)
$$

- We update for evidence:

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

- Don't forget to normalize at the end!

Approximate Inference in HMMs: Particle Filtering

- Filtering: approximate solution
- Sometimes $|X|$ is too big to use exact inference
- Solution: approximate inference
- Track samples of X, not all values
- Particle is just new name for sample
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, N << |X|
- Storing map from X to counts would defeat the point
- $P(x)$ approximated by number of particles with value x
- So, many x may have $P(x)=0$!

- More particles, more accuracy

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- This is like prior sampling - samples' frequencies reflect the transition probabilities
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier:
- Similar to likelihood weighting, down-weight samples based on the evidence

$$
\begin{aligned}
& w(x)=P(e \mid x) \\
& B(X) \propto P(e \mid X) B^{\prime}(X)
\end{aligned}
$$

Particles:

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample (draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particle Filtering

- Particles: track samples of states rather than an explicit distribution

Elapse

Particles:
$(3,3)$
$(2,3)$
$(3,3)$
$(3,2)$
$(3,3)$
$(3,2)$
$(1,2)$
$(3,3)$
$(3,3)$
$(2,3)$

Particles
$(3,2)$
$(2,3)$
$(3,2)$
$(3,1)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(2,2)$

Weight

Particles: $(3,2) w=.9$ $(2,3) w=.2$ $(3,2) w=.9$ $(3,1) w=.4$ $(3,3) w=.4$ $(3,2) \quad w=.9$ $(1,3) \mathrm{w}=.1$ $(2,3) w=.2$
$(3,2) w=.9$
$(2,2) \quad w=.4$

Resample

(New) Particles:
$(3,2)$
$(2,2)$
$(3,2)$
$(2,3)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(3,2)$

Most Likely Explanation: Viterbi Algorithm

- State trellis: graph of states and transitions over time

- Each arc represents some transition $\quad x_{t-1} \rightarrow x_{t}$
- Each arc has weight $\quad P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

Viterbi algorithm contd.

$\mathbf{W}_{\mathrm{t}-1}$	$\mathbf{P}\left(\mathbf{W}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Time complexity? $\mathrm{O}\left(|\mathrm{X}|^{2} \mathrm{~T}\right)$

Space complexity?
O(|X| T)

Number of paths?
$\mathrm{O}\left(|\mathrm{X}|^{\top}\right)$

