
CS 188: Artificial Intelligence

Review

Instructors: Angela Liu and Yanlai Yang
University of California, Berkeley

(Slides adapted from Pieter Abbeel, Dan Klein, Anca Dragan, Stuart Russell and Dawn Song)

Course Topics

§ Part I: Search and Planning
§ Basic Search Algorithms
§ CSPs
§ Adversarial Search (Games)
§ Uncertain Search (MDPs)

§ Part II: Reasoning with Uncertainty
§ Bayes Nets
§ Markov Models
§ Decision theory

§ Part III: Learning
§ Machine Learning
§ Reinforcement Learning

A Rational Agent…

§ Maximizes expected utility
§ Maximizes sums of rewards

§ Minimizes expected loss
§ Minimizes sums of costs

§ Loss is just negative utility, and costs are just negative rewards

Agent design

The environment type largely determines the agent design
Partially observable => agent requires memory (internal state)
Stochastic => agent may have to prepare for contingencies
Multi-agent => agent may need to behave randomly
Static => agent has time to compute a rational decision
Continuous time => continuously operating controller
Unknown physics => need for exploration
Unknown perf. measure => observe/interact with human principal

Environment types

Crossword Backgammon Diagnosis Taxi

Fully or partially observable Fully Fully Partially Partially

Single-agent or multiagent Single Multi Single Multi

Deterministic or stochastic Deterministic Stochastic Stochastic Stochastic

Static or dynamic Static Static Dynamic Dynamic

Discrete or continuous Discrete Discrete Continuous Continuous

Known physics? Yes Yes No No

Preferences

§ An agent must have preferences among:
§ Prizes: A, B, etc.
§ Lotteries: situations with uncertain prizes

§ Notation:
§ Preference:
§ Indifference:

§ Maximum expected utility (MEU) principle:
§ Choose the action that maximizes expected utility

A B

p 1-p

A LotteryA Prize

A

Problem Types
Search Problems Deterministic Games

MDPs RL

Search Problems

§ A search problem consists of:

§ A state space

§ A successor function
(with actions, costs)

§ A start state and a goal test

§ A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

What’s in a State Space?

§ Problem: Pathing
§ States: (x,y) location
§ Actions: NSEW
§ Successor: update location

only
§ Goal test: is (x,y)=END

§ Problem: Eat-All-Dots
§ States: {(x,y), dot booleans}
§ Actions: NSEW
§ Successor: update location

and possibly a dot boolean
§ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

§ World state:
§ Agent positions: 120
§ Food count: 30
§ Ghost positions: 12
§ Agent facing: NSEW

§ How many
§ World states?

120x(230)x(122)x4
§ States for pathing?

120
§ States for eat-all-dots?

120x(230)

State Space Graphs

§ State space graph: A mathematical
representation of a search problem
§ Nodes are (abstracted) world configurations
§ Arcs represent successors (action results)
§ The goal test is a set of goal nodes (maybe only one)

§ In a state space graph, each state occurs only
once!

S

G

d

b

p q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

Search Trees

§ A search tree:
§ A “what if” tree of plans and their outcomes
§ The start state is the root node
§ Children correspond to successors
§ Nodes show states, but correspond to PLANS that achieve those states

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

Tree Search

§ Important ideas:
§ Fringe
§ Expansion
§ Exploration strategy

§ Main question: which fringe nodes to explore?

The One Queue

§ Many search algorithms are the
same except for fringe strategies
§ Depth-First Search: expand the deepest node first
§ Breadth-First Search: expand the shallowest node first
§ Uniform Cost Search: expand the cheapest node first
§ Greedy Search: expand the node with lowest heuristic value first
§ A* Search: expand the node with lowest sum of path cost and heuristic value

Search Algorithm Properties

§ Complete: Guaranteed to find a solution if one exists?
§ Optimal: Guaranteed to find the least cost path?
§ Time complexity?
§ Space complexity?

§ Cartoon of search tree:
§ b is the branching factor
§ m is the maximum depth
§ d is depth of shallowest solution

§ Number of nodes in entire tree?
§ 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

§ What nodes DFS expand?
§ Some left prefix of the tree.
§ Could process the whole tree!
§ If m is finite, takes time O(bm)

§ How much space does the fringe take?
§ Only has siblings on path to root, so O(bm)

§ Is it complete?
§ m could be infinite, so only if we prevent

cycles (more later)

§ Is it optimal?
§ No, it finds the “leftmost” solution,

regardless of depth or cost

Breadth-First Search (BFS) Properties

§ What nodes does BFS expand?
§ Processes all nodes above shallowest solution
§ Let depth of shallowest solution be s
§ Search takes time O(bs)

§ How much space does the fringe take?
§ Has roughly the last tier, so O(bs)

§ Is it complete?
§ s must be finite if a solution exists, so yes!

§ Is it optimal?
§ Only if costs are all 1 (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Iterative Deepening

…
b

§ Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
§ Run a DFS with depth limit 1. If no solution…
§ Run a DFS with depth limit 2. If no solution…
§ Run a DFS with depth limit 3. …..

§ Isn’t that wastefully redundant?
§ Generally most work happens in the lowest

level searched, so not so bad!

…

Uniform Cost Search (UCS) Properties

§ What nodes does UCS expand?
§ Processes all nodes with cost less than cheapest solution!
§ If that solution costs C* and arcs cost at least e , then the

“effective depth” is roughly C*/e
§ Takes time O(bC*/e) (exponential in effective depth)

§ How much space does the fringe take?
§ Has roughly the last tier, so O(bC*/e)

§ Is it complete?
§ Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

§ Is it optimal?
§ Yes!

b

C*/e “tiers”
c £ 3

c £ 2
c £ 1

Search Algorithms

DFS BFS Iterative Deepen UCS

Complete? No Yes * Yes * Yes * **

Optimal? No Yes *** Yes *** Yes

Time O(b^m) O(b^d) O(b^d) O(b1+C*/e)

Space O(bm) O(b^d) O(bd) O(b1+C*/e)

§ *: if b is finite, and state space either has a solution or is finite
§ **: if all costs are ≥ e > 0.
§ ***: if all costs are identical.

Search Heuristics
§ A heuristic is:

§ A function that estimates how close a state is to a goal
§ Designed for a particular search problem
§ Examples: Manhattan distance, Euclidean distance for

pathing

10

5
11.2

Greedy Search

§ Strategy: expand a node that you think is
closest to a goal state
§ Heuristic: estimate of distance to nearest goal for

each state

§ A common case:
§ Best-first takes you straight to the (wrong) goal

§ Worst-case: like a badly-guided DFS

…
b

…
b

Graph Search

§ Idea: never expand a state twice

§ How to implement:
§ Tree search + set of expanded states (“closed set”)
§ Expand the search tree node-by-node, but…
§ Before expanding a node, check to make sure its state has never been

expanded before
§ If not new, skip it, if new add to closed set

§ Important: store the closed set as a set, not a list

Combining UCS and Greedy

§ Uniform-cost orders by path cost, or backward cost g(n)
§ Greedy orders by goal proximity, or forward cost h(n)

§ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

A*

§ A* uses both backward costs and (estimates of) forward costs
§ A* tree search is optimal with an admissible heuristic
§ A* graph search is optimal with a consistent heuristic

Admissible Heuristics

§ A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

§ Examples:

§ Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

4
15

Idea: Consistency

§ Main idea: estimated heuristic costs ≤ actual costs

§ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

§ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

§ Consequences of consistency:

§ The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

§ A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Games

Deterministic Games

§ Many possible formalizations, one is:
§ States: S (start at s0)
§ Players: P={1...N} (usually take turns)
§ Actions: A (may depend on player / state)
§ Transition Function: SxA ® S
§ Terminal Test: S ® {t,f}
§ Terminal Utilities: SxP ® R

§ Solution for a player is a policy: S ® A

Single-Agent Trees

8

2 0 2 6 4 6… …

Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state: The best
achievable outcome

(utility) from that state

Zero-Sum Games

§ Zero-Sum Games
§ Agents have opposite utilities (values on

outcomes)
§ Let us think of a single value that one

maximizes and the other minimizes
§ Adversarial, pure competition

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Adversarial Search (Minimax)

§ Minimax search:
§ A state-space search tree
§ Players alternate turns
§ Compute each node’s minimax value:

the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Alpha-Beta Pruning

§ General configuration (MIN version, MAX is symmetric)
§ We’re computing the MIN-VALUE at some node n
§ We’re looping over n’s children

§ n’s estimate of the childrens’ min is dropping
§ Who cares about n’s value? MAX
§ Let a be the best value that MAX can get at any choice point along

the current path from the root

§ If n becomes worse than a, MAX will avoid it, so we can stop
considering n’s other children (it’s already bad enough that it
won’t be played)

§ This pruning has no effect on minimax value computed for
the root, but values of intermediate nodes might be wrong

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Implementation

def min-value(state, α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Depth-limited search

§ Problem: In realistic games, cannot search to leaves!

§ Solution: Depth-limited search
§ Instead, search only to a limited depth in the tree
§ Replace terminal utilities with an evaluation function for

non-terminal positions

§ Depth limit can be adjusted based on computation
time budget

§ Guarantee of optimal play is gone

? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Evaluation Functions
§ Evaluation functions score non-terminals in depth-limited search

§ Ideal function: returns the actual minimax value of the position
§ In practice: typically weighted linear sum of features:

§ e.g. f1(s) = (num white queens – num black queens), etc.

Expectimax Search

§ Chance nodes: Uncertain outcomes controlled by
chance, not an adversary!

§ Expectimax search: compute the average score under
optimal play

§ Pruning in Expectimax?
10 4 5 7

max

chance

10 10 9 100

Markov Decision Processes

Markov Decision Processes

§ An MDP is defined by:
§ A set of states s Î S
§ A set of actions a Î A
§ A transition function T(s, a, s’)

§ Probability that a from s leads to s’, i.e., P(s’| s, a)
§ Also called the model or the dynamics

§ A reward function R(s, a, s’)
§ Sometimes just R(s) or R(s’)

§ A start state
§ Maybe a terminal state

§ MDPs are non-deterministic search problems
§ One way to solve them is with expectimax search
§ But there are more efficient algorithms, too

Policies

Optimal policy when R(s, a, s’) = -0.03 for all non-
terminals s

§ In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

§ For MDPs, we want an optimal policy p*: S → A
§ A policy p gives an action for each state
§ An optimal policy is one that maximizes

expected utility if followed
§ An explicit policy defines a reflex agent

Optimal Quantities

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

The Bellman Equations

§ Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

§ These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,s’

s’

Summary: MDP Algorithms

§ So you want to….
§ Compute optimal values: use value iteration or Q-value iteration or policy iteration
§ Compute values for a particular policy: use policy evaluation
§ Turn your values into a policy: use policy extraction (one-step lookahead)

§ These all look the same!
§ They basically are – they are all variations of Bellman updates
§ They all use one-step lookahead expectimax fragments
§ They differ only in whether we plug in a fixed policy or max over actions

Value Iteration

§ Bellman equations characterize the optimal values:

§ Value iteration computes them:

§ Vk are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)

Q-Value Iteration

§ Value iteration: find successive (depth-limited) values
§ Start with V0(s) = 0, which we know is right
§ Given Vk, calculate the depth k+1 values for all states:

§ But Q-values are more useful, so compute them instead
§ Start with Q0(s,a) = 0, which we know is right
§ Given Qk, calculate the depth k+1 q-values for all q-states:

Computing Actions from Values

§ Let’s imagine we have the optimal values V*(s)

§ How should we act?
§ It’s not obvious!

§ We need to do a mini-expectimax (one step)

§ This is called policy extraction, since it gets the policy implied by the values

Policy Evaluation

§ How do we calculate the V’s for a fixed policy p?

§ Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

§ Efficiency: O(S2) per iteration

§ Idea 2: Without the maxes, the Bellman equations are just a linear system

p(s)

s

s, p(s)

s, p(s),s’

s’

Policy Iteration

§ Alternative approach for optimal policy:
§ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
§ Step 2: Policy improvement: update policy using one-step look-ahead with resulting

converged (but not optimal!) utilities as future values
§ Repeat steps until policy converges

§ This is policy iteration
§ It’s still optimal!
§ The policy often converges long before the values

Policy Iteration

§ Evaluation: For fixed current policy p, find values with policy evaluation:
§ Iterate until values converge:

§ Improvement: For fixed values, get a better policy using policy extraction
§ One-step look-ahead:

Reinforcement Learning

Reinforcement Learning

§ We still assume an MDP:
§ A set of states s Î S
§ A set of actions (per state) A
§ A model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy p(s)

§ New twist: don’t know T or R, so must try out actions

§ Big idea: Compute all averages over T using sample outcomes

Model-Based Learning

§ Model-Based Idea:
§ Learn an approximate model based on experiences
§ Solve for values as if the learned model were correct

§ Step 1: Learn empirical MDP model
§ Count outcomes s’ for each s, a
§ Normalize to give an estimate of
§ Discover each when we experience (s, a, s’)

§ Step 2: Solve the learned MDP
§ For example, use value iteration, as before

Model-Free Learning

§ Model-free learning
§ Experience world through episodes

§ Update estimates each transition

§ Over time, updates will mimic Bellman updates

r

a
s

s, a

s’
a’

s’, a’

s’’

Temporal Difference Learning

p(s)

s

s, p(s)

s, p(s),s’
s’

p(s)

s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Q-Learning
§ Learn Q(s,a) values as you go

§ Receive a sample (s,a,s’,r)
§ Consider your old estimate:
§ Consider your new sample estimate:

§ Incorporate the new estimate into a running average:

Q-Learning Properties

§ Amazing result: Q-learning converges to optimal policy -- even
if you’re acting sub-optimally!

§ This is called off-policy learning

§ Caveats:
§ You have to explore enough
§ You have to eventually make the learning rate

small enough
§ … but not decrease it too quickly
§ Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

§ Several schemes for forcing exploration
§ Simplest: random actions (e-greedy)

§ Every time step, flip a coin
§ With (small) probability e, act randomly
§ With (large) probability 1-e, act on current policy

§ Another approach: exploration functions
§ Takes a value estimate u and a visit count n, and returns an

optimistic utility, e.g.

Regular Q-Update:

Modified Q-Update:

Feature-Based Value Functions

§ Basic Q-Learning keeps a table of all q-values

§ In realistic situations, we cannot possibly learn about every single state!

§ Instead, we want to generalize to new, similar situations

§ Solution: describe a state using a vector of features

§ Advantage: our experience is summed up in a few powerful numbers

§ Disadvantage: states may share features but be very different in value!

Approximate Q-Learning

§ Q-learning with linear Q-functions:

§ Intuitive interpretation:
§ Adjust weights of active features
§ E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

§ Formal justification: online least squares

Exact Q’s

Approximate Q’s

§ Basic laws: 0 £ P(w) £ 1, åw ÎW P(w) = 1, P(A) = åw Î A P(w)

§ Summing out/marginalization: P(X=x) = åy P(X=x,Y=y)

§ Conditional probability: P(X|Y) = P(X,Y)/P(Y)

§ Chain rule: P(X1,..,Xn) = Õi P(Xi | X1,..,Xi-1)

§ Bayes Rule: P(X|Y) = P(Y|X)P(X)/P(Y) = P(Y|X)P(X) / åx P(X=x, Y)

§ Independence: P(X,Y) = P(X) P(Y) or P(X|Y) = P(X) or P(Y|X) = P(Y)

§ Conditional Independence: P(X|Y,Z) = P(X|Z) or P(X,Y|Z) = P(X|Z) P(Y| Z)

Probability

Decision Networks
§ MEU: choose the action which maximizes the expected utility given the evidence

Weather

Forecast

Umbrella

U

§ Can directly operationalize this with
decision networks
§ Bayes nets with nodes for utility and

actions

§ Lets us calculate the expected utility for
each action

§ New node types:

§ Chance nodes (just like BNs)

§ Actions (rectangles, cannot have parents,
act as observed evidence)

§ Utility node (diamond, depends on action
and chance nodes)

Decisions as Outcome Trees

U(t,s)

W | {b} W | {b}

take leave

sun

U(t,r)

rain

U(l,s) U(l,r)

rainsun

{b}

Weather

Forecast
=bad

Umbrella

U
EU(take|F=bad)

EU(leave|F=bad)

MEU({F=bad})

Decisions as Outcome Trees

U(t,s)

W | {b} W | {b}

take leave

sun

U(t,r)

rain

U(l,s) U(l,r)

rainsun

{b}

EU(take|F=bad)

EU(leave|F=bad)

MEU({F=bad})

U(t,s)

W | {b} W | {b}

take leave

sun

U(t,r)

rain

U(l,s) U(l,r)

rainsun

{b}

EU(take|F=good) EU(leave|F=good)

MEU({F=good})

good bad

MEU(F)

Decisions as Outcome Trees

U(t,s
)

W | {b} W | {b}

take leave

sun

U(t,r
)

rain

U(l,s) U(l,r)

rain
sun

{b}

EU(take|F=bad)

EU(leave|F=bad)

MEU({F=bad})

U(t,s
)

W | {b} W | {b}

take leave

sun

U(t,r
)

rain

U(l,s) U(l,r)

rain
sun

{b}

EU(take|F=good) EU(leave|F=good)

MEU({F=good})

good
bad

MEU(F)

U(t,s)

Weather | {} Weather | {}

take leave

{}

sun

U(t,r)

rain

U(l,s) U(l,r)

rainsun

EU(take) EU(leave)

MEU({})

VPI(F) = VPI(F|{}) = MEU(F) – MEU({})

It is rational to observe F when VPI(F) > cost of observing F

VPI Properties

§ Nonnegative

§ Non-additive
(think of observing Ej twice)

§ Order-independent

Bayes Nets: Big Picture

§ Bayes nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)
§ We describe how variables locally interact
§ Local interactions chain together to give global, indirect interactions

§ Bayes nets topics:
§ Conditional Independences (D-Separation)
§ Exact Inference (Inference by enumeration, variable elimination)
§ Sampling (Prior, Rejection, Likelihood Weighting, Gibbs)

Bayes Net Representation

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination
of parents’ values

§ Bayes nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

X
Y

Z

{X �� Y,X �� Z, Y �� Z,

X �� Z | Y,X �� Y | Z, Y �� Z | X}

Topology Limits Distributions

§ Given some graph topology
G, only certain joint
distributions can be
encoded

§ The graph structure
guarantees certain
(conditional) independences

§ (There might be more
independence)

§ Adding arcs increases the
set of distributions, but has
several costs

§ Full conditioning can encode
any distribution

X

Y

Z

X

Y

Z

X

Y

Z

{X �� Z | Y }

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

{}

§ A condition / algorithm for answering independence queries

§ Query:

§ Check all (undirected!) paths between and
§ If one or more active, then independence not guaranteed

§ Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

Xi �� Xj |{Xk1 , ..., Xkn}

Xi �� Xj |{Xk1 , ..., Xkn}

?

Xi �� Xj |{Xk1 , ..., Xkn}

D-Separation

Active / Inactive Paths

§ Question: Are X and Y conditionally independent given
evidence variables {Z}?
§ Yes, if X and Y “d-separated” by Z
§ Consider all (undirected) paths from X to Y
§ No active paths = independence!

§ A path is active if each triple is active:
§ Causal chain A -> B -> C where B is unobserved (either direction)
§ Common cause A <- B -> C where B is unobserved
§ Common effect (aka v-structure)

A -> B <- C where B or one of its descendants is observed

§ All it takes to block a path is a single inactive segment

Active Triples Inactive Triples

Inference by Enumeration
§ General case:

§ Evidence variables:
§ Query* variable:
§ Hidden variables: All variables

* Works fine with
multiple query
variables, too

§ We want:

§ Step 1: Select the
entries consistent
with the evidence

§ Step 2: Sum out H to get joint
of Query and evidence

§ Step 3: Normalize

⇥ 1

Z

Variable Elimination

§ Query:

§ Start with initial factors:
§ Local CPTs (but instantiated by evidence)

§ While there are still hidden variables
(not Q or evidence):
§ Pick a hidden variable H
§ Join all factors mentioning H
§ Eliminate (sum out) H

§ Join all remaining factors and normalize

Operation 1: Join Factors

§ First basic operation: joining factors
§ Combining factors:

§ Just like a database join
§ Get all factors over the joining variable
§ Build a new factor over the union of the variables

involved

§ Example: Join on R

§ Computation for each entry: pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T

Operation 2: Eliminate

§ Second basic operation: marginalization

§ Take a factor and sum out a variable
§ Shrinks a factor to a smaller one

§ A projection operation

§ Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83

Inference by Enumeration vs. Variable Elimination

§ Inference by EnumerationT

L

R P (L) = ?

§ Variable Elimination

=
X

t

P (L|t)
X

r

P (r)P (t|r)

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

=
X

t

X

r

P (L|t)P (r)P (t|r)

Eliminate t

Variable Elimination

§ Interleave joining and marginalizing

§ dk entries computed for a factor over k
variables with domain sizes d

§ Ordering of elimination of hidden variables
can affect size of factors generated

§ Worst case: running time exponential in the
size of the Bayes’ net

…

…

Approximate Inference: Sampling
§ Sampling is a lot like repeated simulation

§ Predicting the weather, basketball games, …

§ Basic idea
§ Draw N samples from a sampling distribution S

§ Compute an approximate posterior probability

§ Show this converges to the true probability P

§ Why sample?
§ Learning: get samples from a distribution

you don’t know

§ Inference: getting a sample is faster than
computing the right answer (e.g. with
variable elimination)

Sampling in Bayes Nets
§ Prior Sampling P(Q)

§ Likelihood Weighting P(Q | e)

§ Rejection Sampling P(Q | e)

§ Gibbs Sampling P(Q | e)

Prior Sampling

§ For i = 1, 2, …, n

§ Sample xi from P(Xi | Parents(Xi))

§ Return (x1, x2, …, xn)

Rejection Sampling
§ Input: evidence instantiation
§ For i = 1, 2, …, n

§ Sample xi from P(Xi | Parents(Xi))

§ If xi not consistent with evidence
§ Reject: return – no sample is generated in this cycle

§ Return (x1, x2, …, xn)

Likelihood Weighting
§ Input: evidence instantiation
§ w = 1.0
§ for i = 1, 2, …, n

§ if Xi is an evidence variable
§ Xi = observation xi for Xi

§ Set w = w * P(xi | Parents(Xi))

§ else
§ Sample xi from P(Xi | Parents(Xi))

§ return (x1, x2, …, xn), w

§ Step 2: Initialize other variables
§ Randomly

Gibbs Sampling

§ Step 1: Fix evidence
§ R = +r

§ Steps 3: Repeat
§ Choose a non-evidence variable X
§ Resample X from P(X | all other variables)

§ P(X | all other variables) can be computed efficiently using
only the CPTs that involve X

S +r

W

C

S +r

W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

Markov Models

§ Value of X at a given time is called the state

§ Parameters: called transition probabilities or dynamics, specify how the state
evolves over time (also, initial state probabilities)

§ Stationary assumption: transition probabilities the same at all times
§ Markov property: Past and future independent given the present
§ Same as MDP transition model, but no choice of action

X2X1 X3 X4

Mini-Forward Algorithm

§ Question: What’s P(X) at some time t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (xt�1, xt)

=
X

xt�1

P (xt | xt�1)P (xt�1)

§ Stationary distribution:
§ The distribution we end up with is called

the stationary distribution of the
chain

§ It satisfies

Stationary Distributions

§ For most chains:
§ Influence of the initial distribution

gets less and less over time.
§ The distribution we end up in is

independent of the initial distribution

P1(X) = P1+1(X) =
X

x

P (X|x)P1(x)

P1

Hidden Markov Models

§ Markov chains not so useful for most agents
§ Need observations to update your beliefs

§ Hidden Markov models (HMMs)
§ Underlying Markov chain over states X
§ You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

Conditional Independence

§ HMMs have two important independence properties:

§ Markov hidden process: future depends on past via the present

§ Current observation independent of all else given current state

§ Evidence variables are not guaranteed to be independent

§ They tend to correlated by the hidden state

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

Filtering / Monitoring

§ Filtering, or monitoring, is the task of tracking the distribution
Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time

§ We start with B1(X) in an initial setting, usually uniform

§ As time passes, or we get observations, we update B(X)

X2X1

Passage of Time

§ Assume we have current belief P(X | evidence to date)

§ Then, after one time step passes:

§ Basic idea: beliefs get “pushed” through the transitions
§ With the “B” notation, we have to be careful about what time step t the belief is about, and what

evidence it includes

=
X

xt

P (Xt+1, xt|e1:t)

=
X

xt

P (Xt+1|xt, e1:t)P (xt|e1:t)

=
X

xt

P (Xt+1|xt)P (xt|e1:t)

§ Or compactly:

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

P (Xt+1|e1:t)

Observation
§ Assume we have current belief P(X | previous evidence):

§ Then, after evidence comes in:

§ Or, compactly:

E1

X1

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

§ Basic idea: beliefs “reweighted”
by likelihood of evidence

§ Unlike passage of time, we have
to renormalize

Forward Algorithm

§ Every time step, we start with current P(X | evidence)

§ We update for time:

§ We update for evidence:

§ Don’t forget to normalize at the end!

X2X1

X2

E2

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

Approximate Inference in HMMs: Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

§ Filtering: approximate solution

§ Sometimes |X| is too big to use exact inference

§ Solution: approximate inference
§ Track samples of X, not all values
§ Particle is just new name for sample
§ Time per step is linear in the number of samples
§ But: number needed may be large
§ In memory: list of particles, not states

Representation: Particles

§ Our representation of P(X) is now a list of N particles (samples)
§ Generally, N << |X|
§ Storing map from X to counts would defeat the point

§ P(x) approximated by number of particles with value x
§ So, many x may have P(x) = 0!
§ More particles, more accuracy

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Elapse Time

§ Each particle is moved by sampling its next
position from the transition model

§ This is like prior sampling – samples’ frequencies
reflect the transition probabilities

§ This captures the passage of time
§ If enough samples, close to exact values before and

after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

§ Slightly trickier:
§ Similar to likelihood weighting, down-weight

samples based on the evidence

Particle Filtering: Observe

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particle Filtering: Resample

§ Rather than tracking weighted samples, we
resample (draw with replacement)

§ This is equivalent to renormalizing the
distribution

§ Now the update is complete for this time step,
continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

Particle Filtering
§ Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

Most Likely Explanation: Viterbi Algorithm

§ State trellis: graph of states and transitions over time

§ Each arc represents some transition
§ Each arc has weight
§ Each path is a sequence of states
§ The product of weights on a path is that sequence’s probability along with the evidence
§ Forward algorithm computes sums of paths, Viterbi computes best paths

sun

rain

sun

rain

sun

rain

sun

rain

Viterbi algorithm contd.

Time complexity?
O(|X|2 T)

X0 X1 X2 XT

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1
U1=true U2=false U3=true

0.5

0.5

0.72

0.07

0.01

0.24

0.18

0.63

0.09

0.06

Space complexity?
O(|X| T)

0.5

0.5

0.09

0.315

0.076

0.022

0.0136080

0.0138495

Number of paths?
O(|X|T)

0.18

0.63

0.09

0.06

