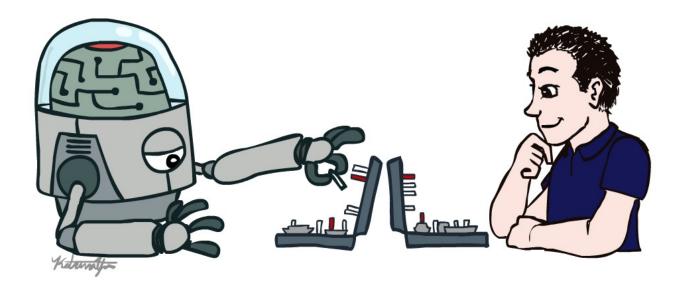
### CS 188: Artificial Intelligence

Review



Instructors: Angela Liu and Yanlai Yang University of California, Berkeley

(Slides adapted from Pieter Abbeel, Dan Klein, Anca Dragan, Stuart Russell and Dawn Song)

## **Course Topics**

- Part I: Search and Planning
  - Basic Search Algorithms
  - CSPs
  - Adversarial Search (Games)
  - Uncertain Search (MDPs)
- Part II: Reasoning with Uncertainty
  - Bayes Nets
  - Markov Models
  - Decision theory
- Part III: Learning
  - Machine Learning
  - Reinforcement Learning

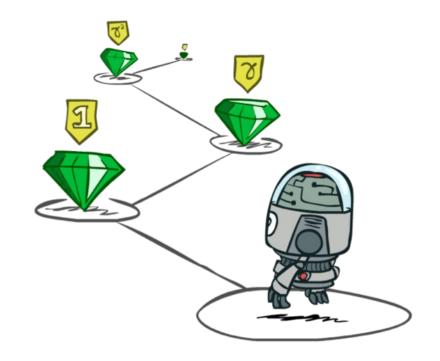


### A Rational Agent...

- Maximizes expected <u>utility</u>
- Maximizes sums of <u>rewards</u>

- Minimizes expected <u>loss</u>
- Minimizes sums of <u>costs</u>





## Agent design

The environment type largely determines the agent design **Partially observable** => agent requires **memory** (internal state) **Stochastic** => agent may have to prepare for **contingencies** *Multi-agent* => agent may need to behave *randomly* **Static** => agent has time to compute a rational decision **Continuous time** => continuously operating **controller Unknown physics** => need for **exploration Unknown perf. measure** => observe/interact with **human principal** 

# Environment types

|                               | Crossword     | Backgammon | Diagnosis  | Taxi       |
|-------------------------------|---------------|------------|------------|------------|
| Fully or partially observable | Fully         | Fully      | Partially  | Partially  |
| Single-agent or multiagent    | Single        | Multi      | Single     | Multi      |
| Deterministic or stochastic   | Deterministic | Stochastic | Stochastic | Stochastic |
| Static or dynamic             | Static        | Static     | Dynamic    | Dynamic    |
| Discrete or continuous        | Discrete      | Discrete   | Continuous | Continuous |
| Known physics?                | Yes           | Yes        | No         | No         |

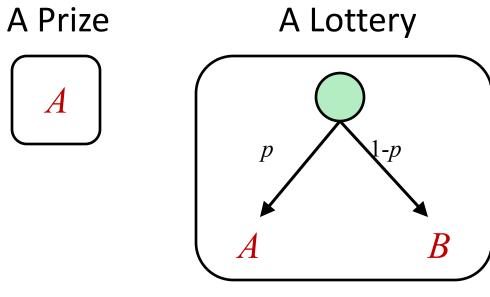
## Preferences

 $\boldsymbol{A}$ 

- An agent must have preferences among:
  - Prizes: *A*, *B*, etc.
  - Lotteries: situations with uncertain prizes

L = [p, A; (1 - p), B]

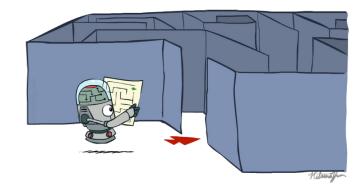
- Notation:
  - Preference:  $A \succ B$
  - Indifference:  $A \sim B$
- Maximum expected utility (MEU) principle:
  - Choose the action that maximizes expected utility





## **Problem Types**

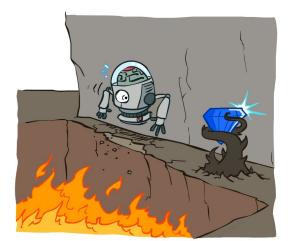
#### Search Problems

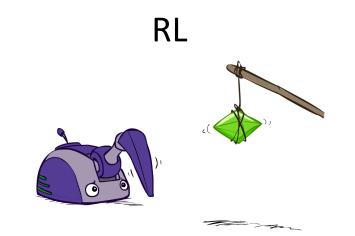


#### **Deterministic Games**



MDPs

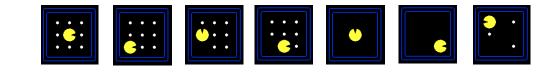




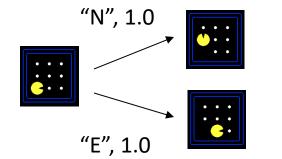
#### Search Problems

#### A search problem consists of:

A state space

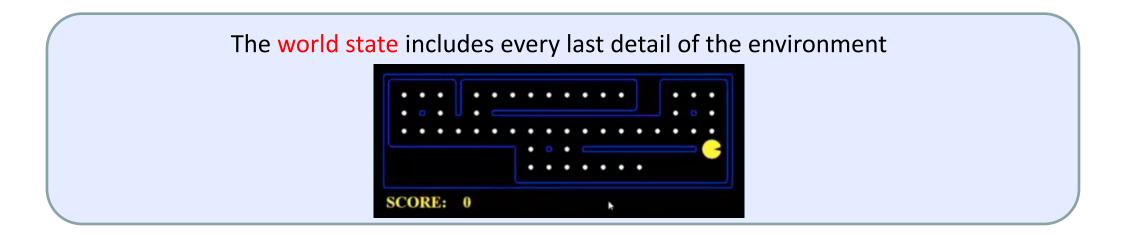


 A successor function (with actions, costs)



- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

## What's in a State Space?



A search state keeps only the details needed for planning (abstraction)

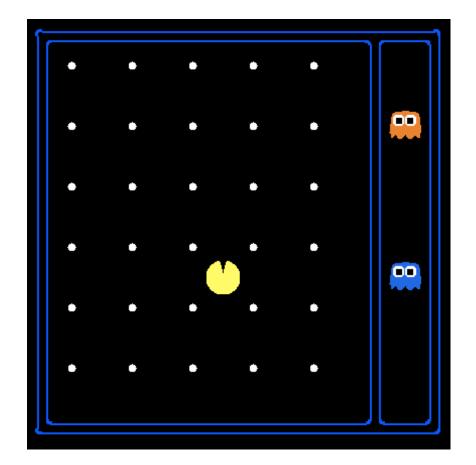
- Problem: Pathing
  - States: (x,y) location
  - Actions: NSEW
  - Successor: update location only
  - Goal test: is (x,y)=END

- Problem: Eat-All-Dots
  - States: {(x,y), dot booleans}
  - Actions: NSEW
  - Successor: update location and possibly a dot boolean
  - Goal test: dots all false

#### State Space Sizes?

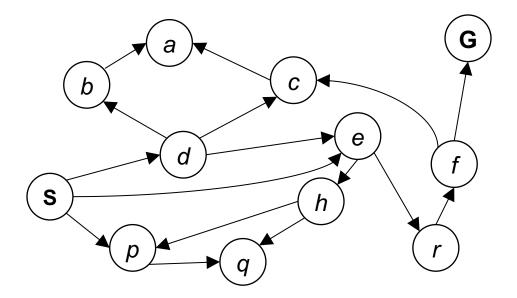
#### World state:

- Agent positions: 120
- Food count: 30
- Ghost positions: 12
- Agent facing: NSEW
- How many
  - World states?
    120x(2<sup>30</sup>)x(12<sup>2</sup>)x4
  - States for pathing?120
  - States for eat-all-dots?
    120x(2<sup>30</sup>)



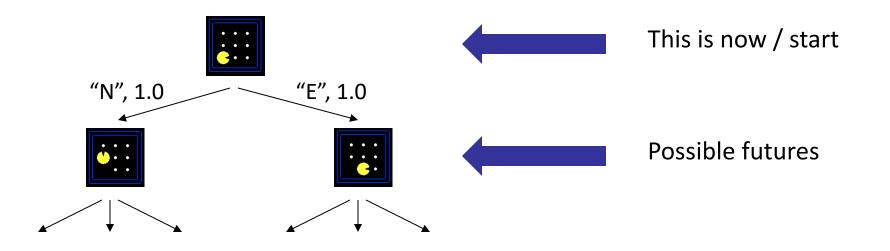
#### State Space Graphs

- State space graph: A mathematical representation of a search problem
  - Nodes are (abstracted) world configurations
  - Arcs represent successors (action results)
  - The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!



*Tiny state space graph for a tiny search problem* 

#### **Search Trees**



#### • A search tree:

- A "what if" tree of plans and their outcomes
- The start state is the root node
- Children correspond to successors
- Nodes show states, but correspond to PLANS that achieve those states

## Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to *strategy* if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end

#### Important ideas:

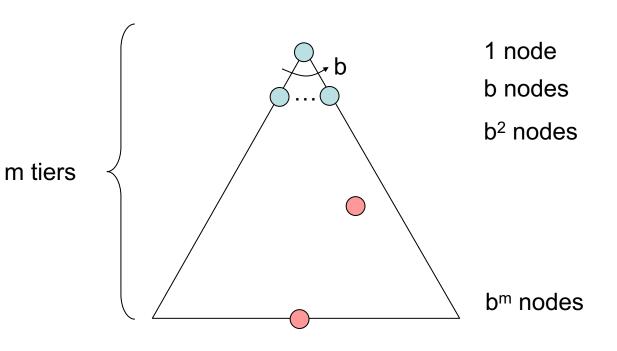
- Fringe
- Expansion
- Exploration strategy
- Main question: which fringe nodes to explore?

## The One Queue

- Many search algorithms are the same except for fringe strategies
  - Depth-First Search: expand the deepest node first
  - Breadth-First Search: expand the shallowest node first
  - Uniform Cost Search: expand the cheapest node first
  - Greedy Search: expand the node with lowest heuristic value first
  - A\* Search: expand the node with lowest sum of path cost and heuristic value

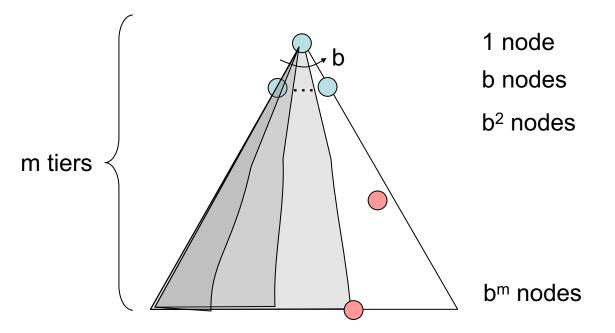
#### Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?
- Cartoon of search tree:
  - b is the branching factor
  - m is the maximum depth
  - d is depth of shallowest solution
- Number of nodes in entire tree?
  - 1 + b + b<sup>2</sup> + .... b<sup>m</sup> = O(b<sup>m</sup>)



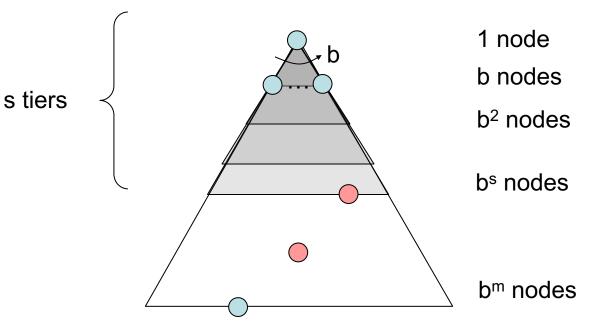
# Depth-First Search (DFS) Properties

- What nodes DFS expand?
  - Some left prefix of the tree.
  - Could process the whole tree!
  - If m is finite, takes time O(b<sup>m</sup>)
- How much space does the fringe take?
  - Only has siblings on path to root, so O(bm)
- Is it complete?
  - m could be infinite, so only if we prevent cycles (more later)
- Is it optimal?
  - No, it finds the "leftmost" solution, regardless of depth or cost



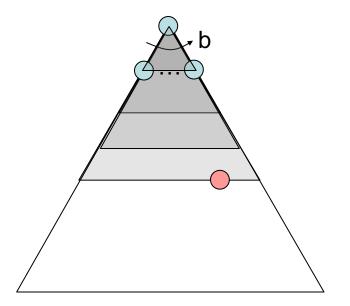
## Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
  - Processes all nodes above shallowest solution
  - Let depth of shallowest solution be s
  - Search takes time O(b<sup>s</sup>)
- How much space does the fringe take?
  - Has roughly the last tier, so O(b<sup>s</sup>)
- Is it complete?
  - s must be finite if a solution exists, so yes!
- Is it optimal?
  - Only if costs are all 1 (more on costs later)



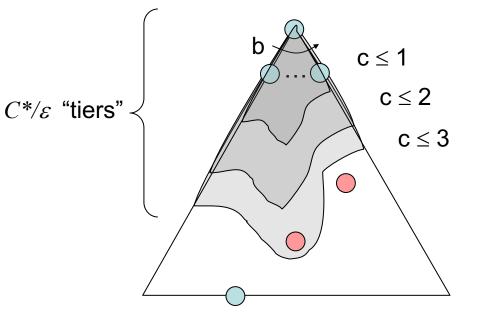
## **Iterative Deepening**

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
  - Run a DFS with depth limit 1. If no solution...
  - Run a DFS with depth limit 2. If no solution...
  - Run a DFS with depth limit 3. ....
- Isn't that wastefully redundant?
  - Generally most work happens in the lowest level searched, so not so bad!



# Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
  - Processes all nodes with cost less than cheapest solution!
  - If that solution costs  $C^*$  and arcs cost at least  $\varepsilon$ , then the "effective depth" is roughly  $C^*/\varepsilon$
  - Takes time O(b<sup>C\*/ε</sup>) (exponential in effective depth)
- How much space does the fringe take?
  - Has roughly the last tier, so O(b<sup>C\*/ε</sup>)
- Is it complete?
  - Assuming best solution has a finite cost and minimum arc cost is positive, yes!
- Is it optimal?
  - Yes!



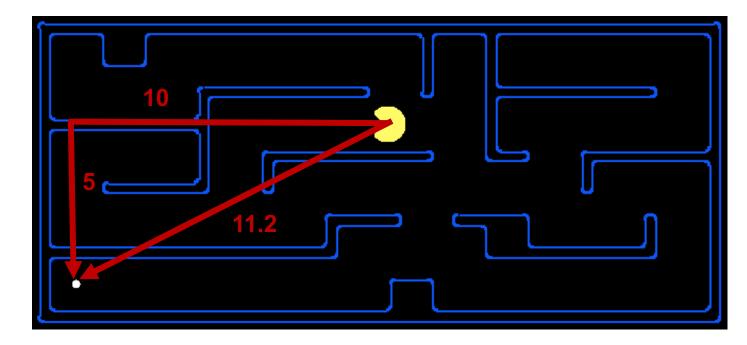
## Search Algorithms

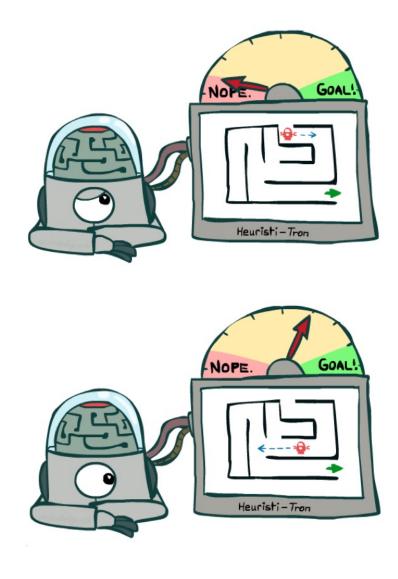
|           | DFS    | BFS     | Iterative Deepen | UCS                          |
|-----------|--------|---------|------------------|------------------------------|
| Complete? | No     | Yes *   | Yes *            | Yes * **                     |
| Optimal?  | No     | Yes *** | Yes ***          | Yes                          |
| Time      | O(b^m) | O(b^d)  | O(b^d)           | $O(b^{1+C^{*}/\varepsilon})$ |
| Space     | O(bm)  | O(b^d)  | O(bd)            | $O(b^{1+C^{*/\varepsilon}})$ |

- \*: if b is finite, and state space either has a solution or is finite
- \*\*: if all costs are  $\geq \varepsilon > 0$ .
- \*\*\*: if all costs are identical.

#### **Search Heuristics**

- A heuristic is:
  - A function that *estimates* how close a state is to a goal
  - Designed for a particular search problem
  - Examples: Manhattan distance, Euclidean distance for pathing

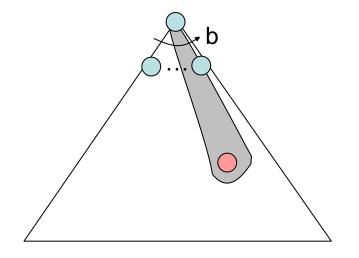


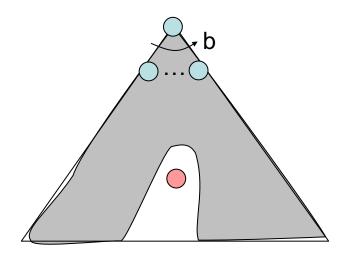


## **Greedy Search**

- Strategy: expand a node that you think is closest to a goal state
  - Heuristic: estimate of distance to nearest goal for each state
- A common case:
  - Best-first takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS



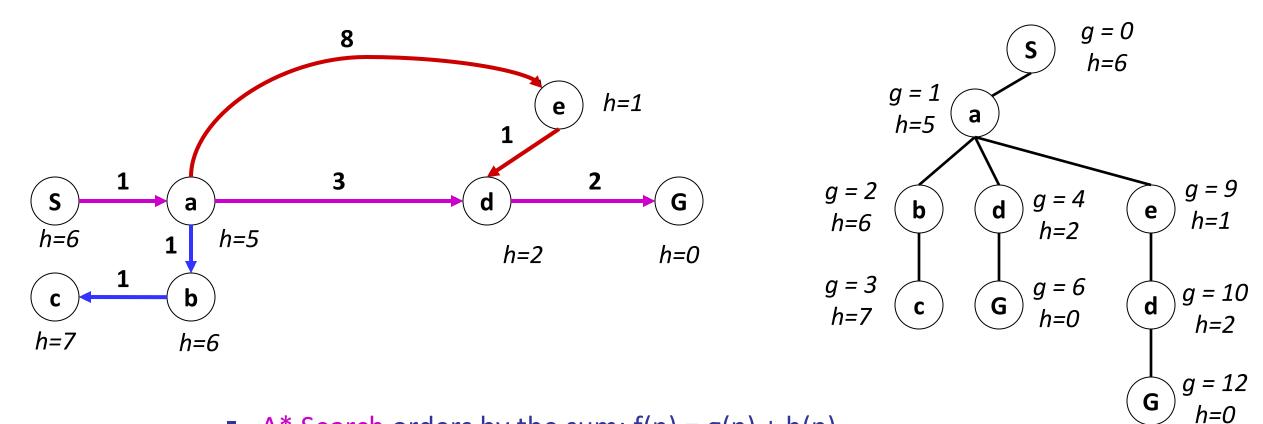


## **Graph Search**

- Idea: never expand a state twice
- How to implement:
  - Tree search + set of expanded states ("closed set")
  - Expand the search tree node-by-node, but...
  - Before expanding a node, check to make sure its state has never been expanded before
  - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list

## Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or *forward cost* h(n)



A\* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

- A\* uses both backward costs and (estimates of) forward costs
- A\* tree search is optimal with an admissible heuristic
- A\* graph search is optimal with a consistent heuristic

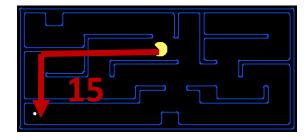


### **Admissible Heuristics**

• A heuristic *h* is *admissible* (optimistic) if:

 $0 \le h(n) \le h^*(n)$ 

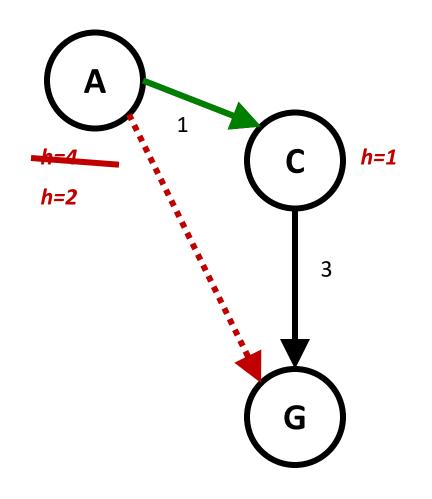
- where  $h^*(n)$  is the true cost to a nearest goal
- Examples:





 Coming up with admissible heuristics is most of what's involved in using A\* in practice.

## Idea: Consistency



- Main idea: estimated heuristic costs ≤ actual costs
  - Admissibility: heuristic cost ≤ actual cost to goal

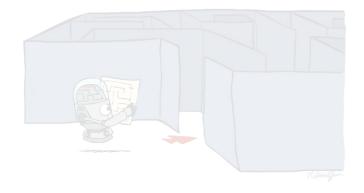
#### $h(A) \leq actual cost from A to G$

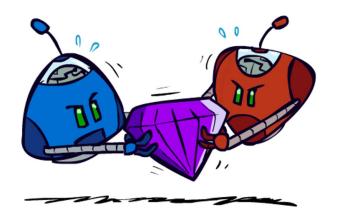
- Consistency: heuristic "arc" cost ≤ actual cost for each arc
  h(A) h(C) ≤ cost(A to C)
- Consequences of consistency:
  - The f value along a path never decreases

 $h(A) \leq cost(A to C) + h(C)$ 

A\* graph search is optimal

#### Games







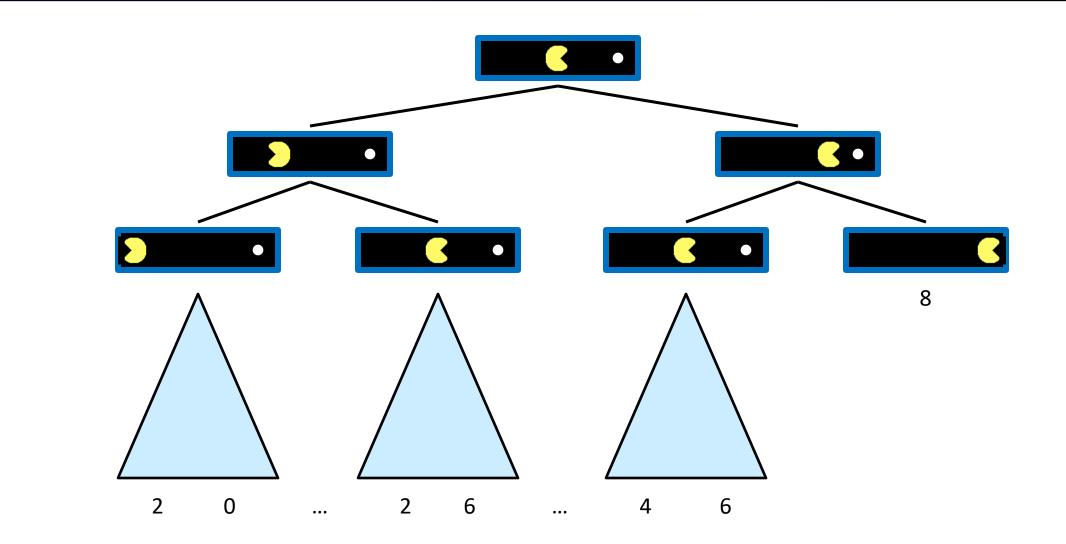


### **Deterministic Games**

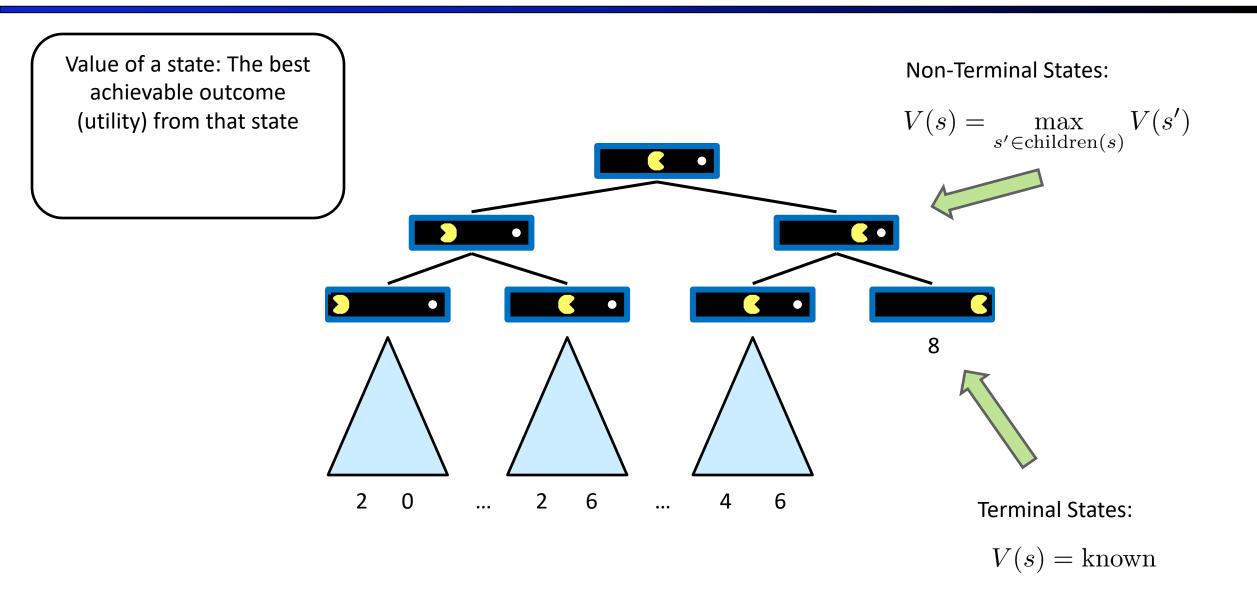
- Many possible formalizations, one is:
  - States: S (start at s<sub>0</sub>)
  - Players: P={1...N} (usually take turns)
  - Actions: A (may depend on player / state)
  - Transition Function:  $SxA \rightarrow S$
  - Terminal Test:  $S \rightarrow \{t, f\}$
  - Terminal Utilities:  $SxP \rightarrow R$
- Solution for a player is a policy:  $S \rightarrow A$



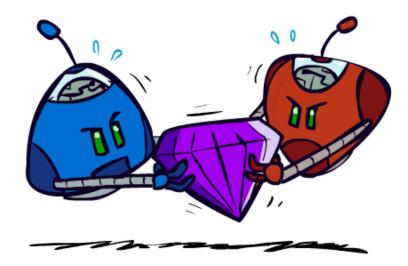
# Single-Agent Trees



### Value of a State

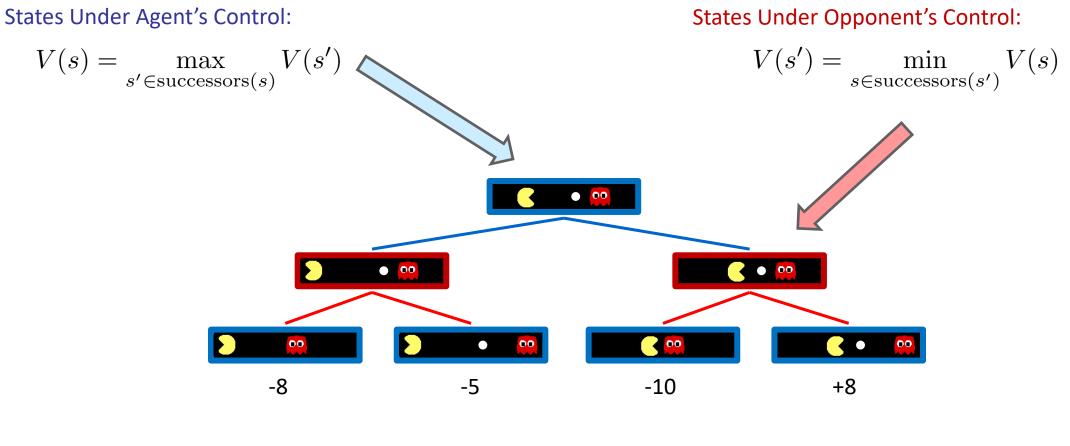


#### Zero-Sum Games



- Zero-Sum Games
  - Agents have opposite utilities (values on outcomes)
  - Let us think of a single value that one maximizes and the other minimizes
  - Adversarial, pure competition

#### **Minimax Values**

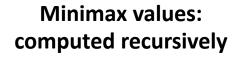


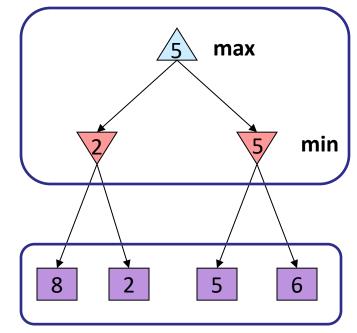
**Terminal States:** 

V(s) =known

## Adversarial Search (Minimax)

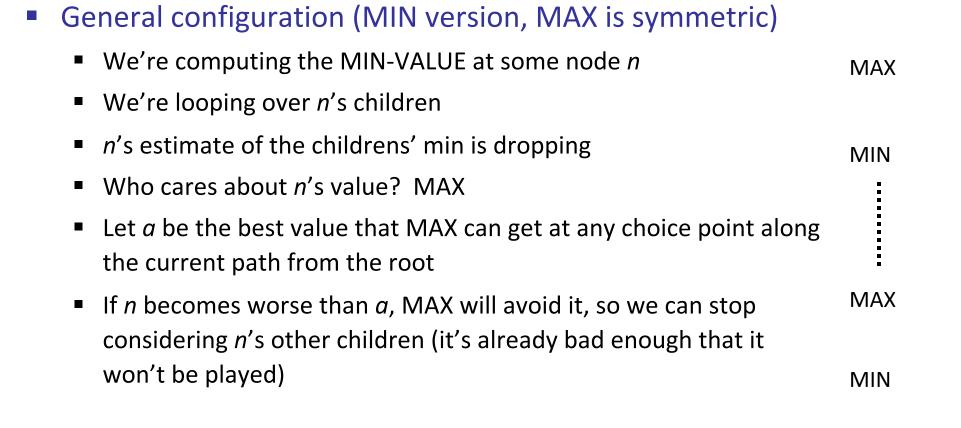
- Minimax search:
  - A state-space search tree
  - Players alternate turns
  - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary



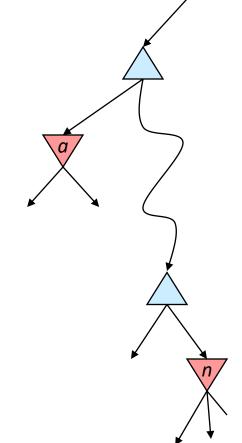


Terminal values: part of the game

## **Alpha-Beta Pruning**



This pruning has no effect on minimax value computed for the root, but values of intermediate nodes might be wrong



#### Alpha-Beta Implementation

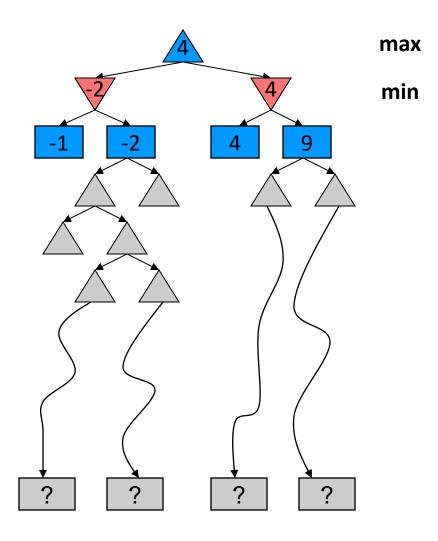
 $\alpha$ : MAX's best option on path to root  $\beta$ : MIN's best option on path to root

```
\begin{array}{l} \mbox{def max-value(state, $\alpha$, $\beta$):} \\ \mbox{initialize $v = -\infty$} \\ \mbox{for each successor of state:} \\ \mbox{$v = max(v, value(successor, $\alpha$, $\beta$))$} \\ \mbox{if $v \ge \beta$ return $v$} \\ \mbox{$\alpha = max(\alpha, v)$} \\ \mbox{return $v$} \end{array}
```

```
\begin{array}{l} \mbox{def min-value(state, $\alpha$, $\beta$):} \\ \mbox{initialize $v = +\infty$} \\ \mbox{for each successor of state:} \\ \mbox{$v = min(v, value(successor, $\alpha$, $\beta$))$} \\ \mbox{if $v \leq \alpha$ return $v$} \\ \mbox{$\beta = min(\beta, v)$} \\ \mbox{return $v$} \end{array}
```

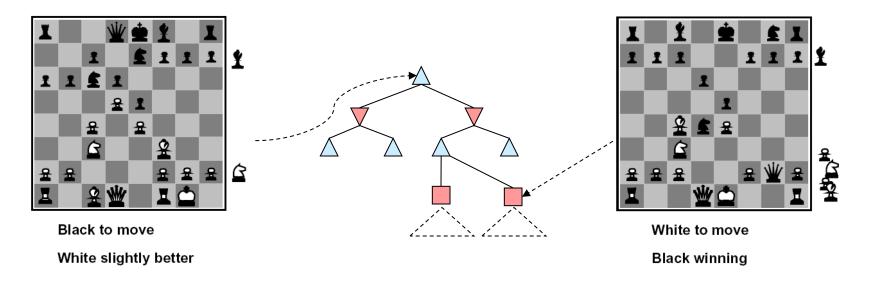
# **Depth-limited search**

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
  - Instead, search only to a limited depth in the tree
  - Replace terminal utilities with an evaluation function for non-terminal positions
- Depth limit can be adjusted based on computation time budget
- Guarantee of optimal play is gone



## **Evaluation Functions**

Evaluation functions score non-terminals in depth-limited search



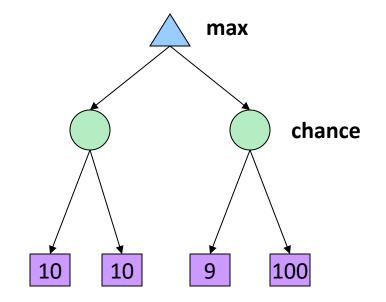
- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

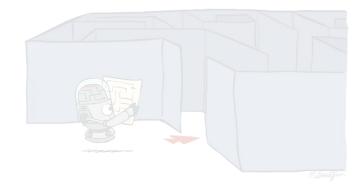
• e.g.  $f_1(s) = (num white queens - num black queens), etc.$ 

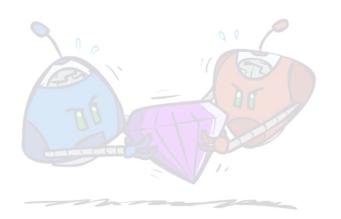
### **Expectimax Search**

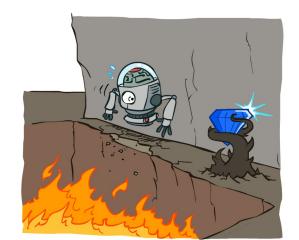
- Chance nodes: Uncertain outcomes controlled by chance, not an adversary!
- Expectimax search: compute the average score under optimal play
- Pruning in Expectimax?



### Markov Decision Processes







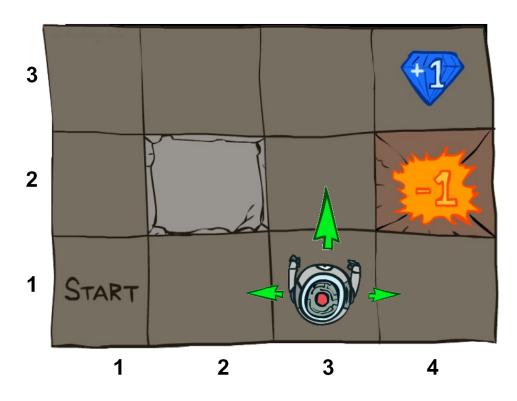


## **Markov Decision Processes**

- An MDP is defined by:
  - A set of states s ∈ S
  - A set of actions  $a \in A$
  - A transition function T(s, a, s')
    - Probability that a from s leads to s', i.e., P(s' | s, a)
    - Also called the model or the dynamics
  - A reward function R(s, a, s')
    - Sometimes just R(s) or R(s')
  - A start state
  - Maybe a terminal state

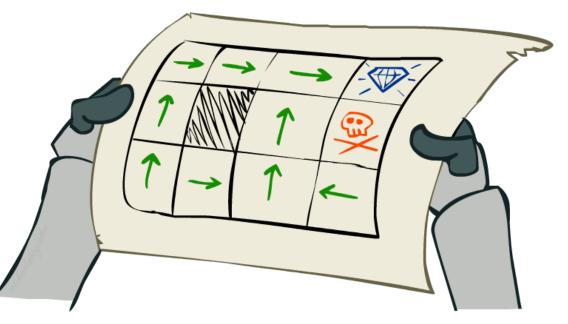
#### MDPs are non-deterministic search problems

- One way to solve them is with expectimax search
- But there are more efficient algorithms, too



# Policies

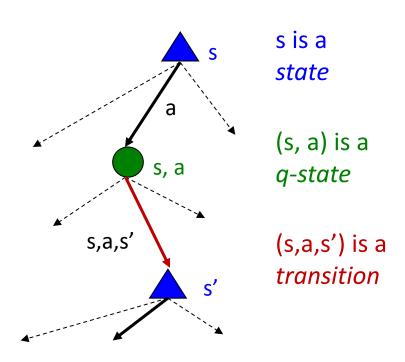
- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy  $\pi^*: S \rightarrow A$ 
  - A policy π gives an action for each state
  - An optimal policy is one that maximizes expected utility if followed
  - An explicit policy defines a reflex agent



Optimal policy when R(s, a, s') = -0.03 for all nonterminals s

## **Optimal Quantities**

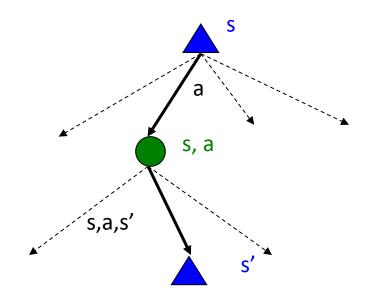
- The value (utility) of a state s:
  V\*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
  - Q<sup>\*</sup>(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
  π<sup>\*</sup>(s) = optimal action from state s



# The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$



These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

# Summary: MDP Algorithms

#### So you want to....

- Compute optimal values: use value iteration or Q-value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

#### These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

## Value Iteration

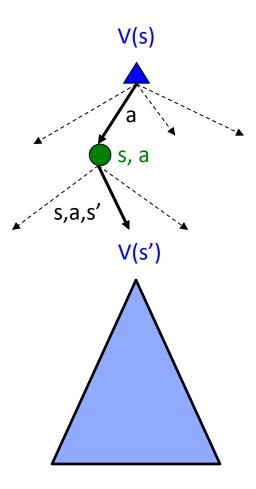
Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

V<sub>k</sub> are also interpretable as time-limited values



### **Q-Value Iteration**

- Value iteration: find successive (depth-limited) values
  - Start with V<sub>0</sub>(s) = 0, which we know is right
  - Given V<sub>k</sub>, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
  - Start with Q<sub>0</sub>(s,a) = 0, which we know is right
  - Given Q<sub>k</sub>, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[ R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

# **Computing Actions from Values**

- Let's imagine we have the optimal values V\*(s)
- How should we act?
  - It's not obvious!
- We need to do a mini-expectimax (one step)

| 0.95 )       | 0.96 ኑ | 0.98 ኑ | 1.00  |
|--------------|--------|--------|-------|
| ▲<br>0.94    |        | ∢ 0.89 | -1.00 |
| <b>0</b> .92 | ∢ 0.91 | ∢ 0.90 | 0.80  |

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

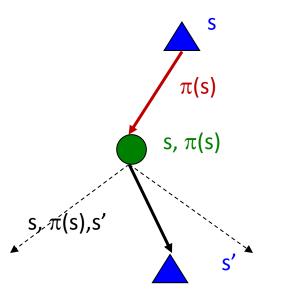
• This is called **policy extraction**, since it gets the policy implied by the values

# **Policy Evaluation**

- How do we calculate the V's for a fixed policy  $\pi$ ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$
  
$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$$

- Efficiency: O(S<sup>2</sup>) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system



# **Policy Iteration**

- Alternative approach for optimal policy:
  - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
  - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
  - Repeat steps until policy converges
- This is policy iteration
  - It's still optimal!
  - The policy often converges long before the values

### **Policy Iteration**

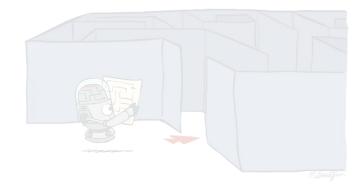
- Evaluation: For fixed current policy  $\pi$ , find values with policy evaluation:
  - Iterate until values converge:

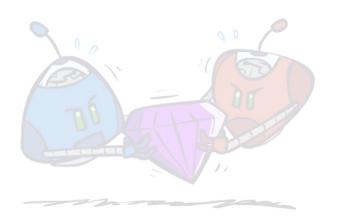
$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[ R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

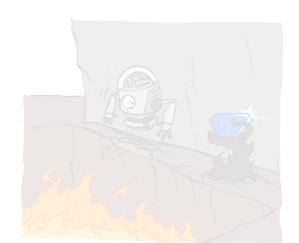
- Improvement: For fixed values, get a better policy using policy extraction
  - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

### **Reinforcement Learning**









## **Reinforcement Learning**

- We still assume an MDP:
  - A set of states s ∈ S
  - A set of actions (per state) A
  - A model T(s,a,s')
  - A reward function R(s,a,s')
- Still looking for a policy π(s)



- New twist: don't know T or R, so must try out actions
- Big idea: Compute all averages over T using sample outcomes

# **Model-Based Learning**

#### Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

#### Step 1: Learn empirical MDP model

- Count outcomes s' for each s, a
- Normalize to give an estimate of  $\widehat{T}(s, a, s')$
- Discover each  $\hat{R}(s, a, s')$  when we experience (s, a, s')
- Step 2: Solve the learned MDP
  - For example, use value iteration, as before



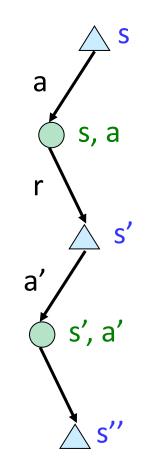


## **Model-Free Learning**

- Model-free learning
  - Experience world through episodes

 $(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$ 

- Update estimates each transition (s, a, r, s')
- Over time, updates will mimic Bellman updates



### **Temporal Difference Learning**

Sample of V(s): 
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):

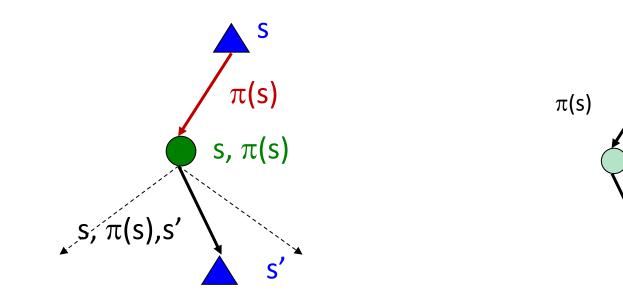
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

s, π(s)

s'



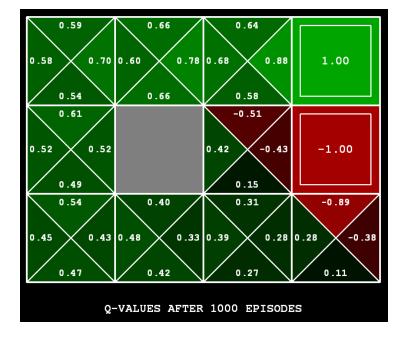
# Q-Learning

- Learn Q(s,a) values as you go
  - Receive a sample (s,a,s',r)
  - Consider your old estimate: Q(s, a)
  - Consider your new sample estimate:

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$ 

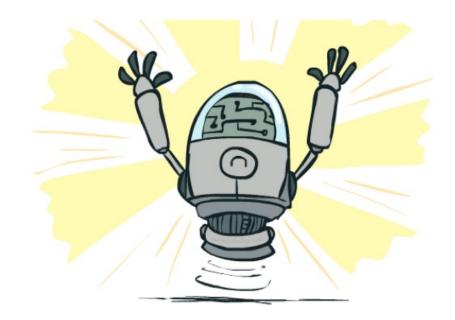
Incorporate the new estimate into a running average:

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$ 



# **Q-Learning Properties**

- Amazing result: Q-learning converges to optimal policy -- even if you're acting sub-optimally!
- This is called off-policy learning
- Caveats:
  - You have to explore enough
  - You have to eventually make the learning rate small enough
  - ... but not decrease it too quickly
  - Basically, in the limit, it doesn't matter how you select actions (!)



# **Exploration vs. Exploitation**

- Several schemes for forcing exploration
  - Simplest: random actions (ε-greedy)
    - Every time step, flip a coin
    - With (small) probability ε, act randomly
    - With (large) probability 1- $\varepsilon$ , act on current policy
  - Another approach: exploration functions
    - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u,n) = u + k/n



Regular Q-Update:  $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$ 

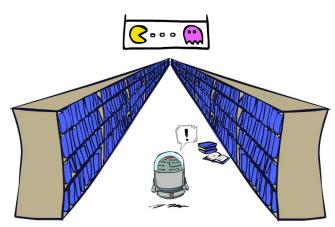
Modified Q-Update:  $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$ 

### Feature-Based Value Functions

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
- Instead, we want to generalize to new, similar situations
- Solution: describe a state using a vector of features

 $Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$ 

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!



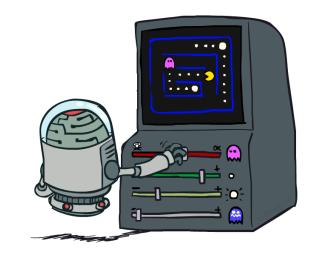
## **Approximate Q-Learning**

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

$$\begin{aligned} & \text{transition} = (s, a, r, s') \\ & \text{difference} = \left[ r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \qquad \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \end{aligned}$$

- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

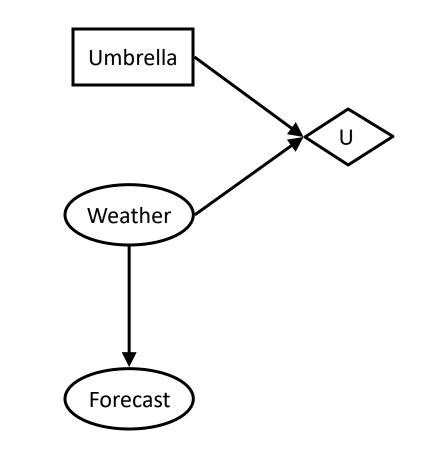


# Probability

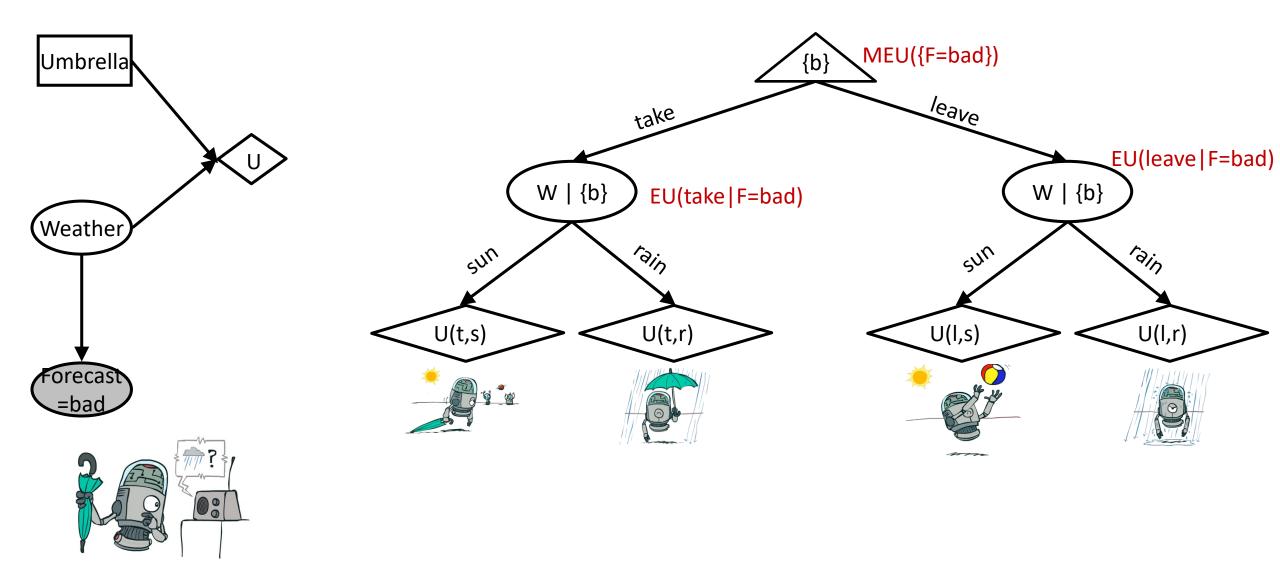
- Basic laws:  $0 \le P(\omega) \le 1$ ,  $\sum_{\omega \in \Omega} P(\omega) = 1$ ,  $P(A) = \sum_{\omega \in A} P(\omega)$
- Summing out/marginalization:  $P(X=x) = \sum_{y} P(X=x,Y=y)$
- Conditional probability: P(X | Y) = P(X,Y)/P(Y)
- Chain rule:  $P(X_1,...,X_n) = \prod_i P(X_i | X_1,...,X_{i-1})$
- Bayes Rule:  $P(X|Y) = P(Y|X)P(X)/P(Y) = P(Y|X)P(X) / \sum_{x} P(X=x, Y)$
- Independence: P(X,Y) = P(X) P(Y) or P(X|Y) = P(X) or P(Y|X) = P(Y)
- Conditional Independence: P(X|Y,Z) = P(X|Z) or P(X,Y|Z) = P(X|Z) P(Y|Z)

# **Decision Networks**

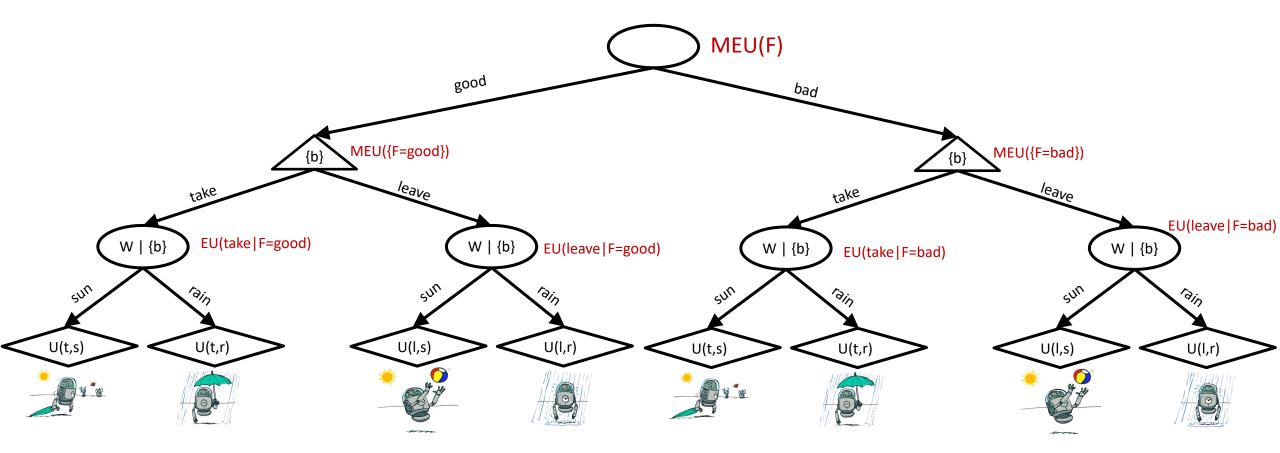
- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
  - Bayes nets with nodes for utility and actions
  - Lets us calculate the expected utility for each action
- New node types:
  - Chance nodes (just like BNs)
  - Actions (rectangles, cannot have parents, act as observed evidence)
  - Utility node (diamond, depends on action and chance nodes)



### **Decisions as Outcome Trees**



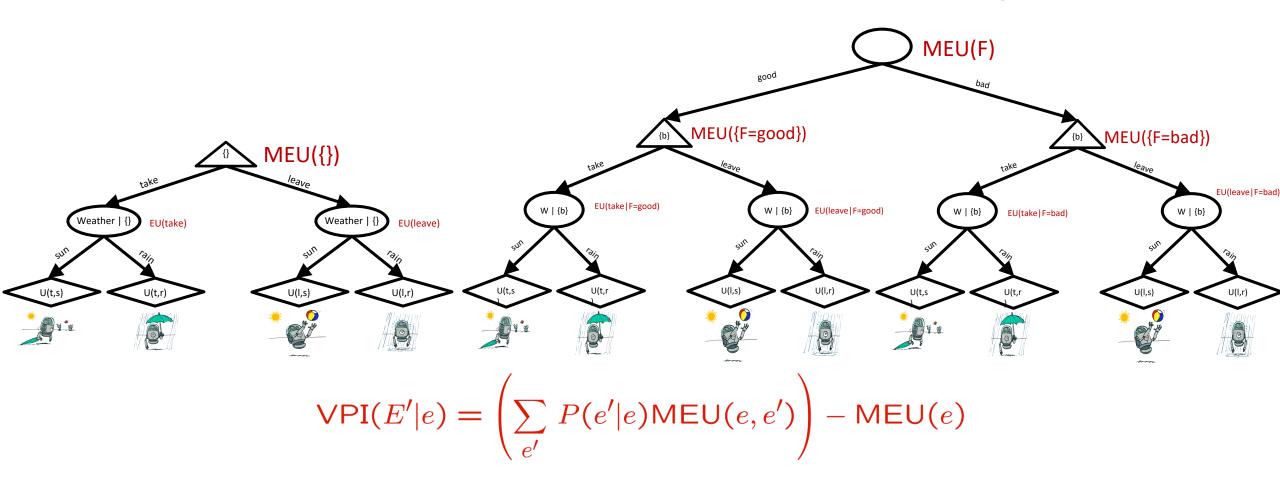
### **Decisions as Outcome Trees**



### **Decisions as Outcome Trees**

 $VPI(F) = VPI(F|{}) = MEU(F) - MEU({})$ 

It is rational to observe F when VPI(F) > cost of observing F



# **VPI** Properties

Nonnegative

 $\forall E', e : VPI(E'|e) \ge 0$ 

Non-additive

(think of observing E<sub>i</sub> twice)

 $\operatorname{VPI}(E_j, E_k|e) \neq \operatorname{VPI}(E_j|e) + \operatorname{VPI}(E_k|e)$ 

Order-independent

 $VPI(E_j, E_k|e) = VPI(E_j|e) + VPI(E_k|e, E_j)$  $= VPI(E_k|e) + VPI(E_j|e, E_k)$ 

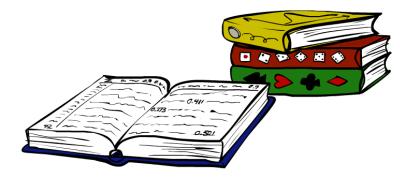


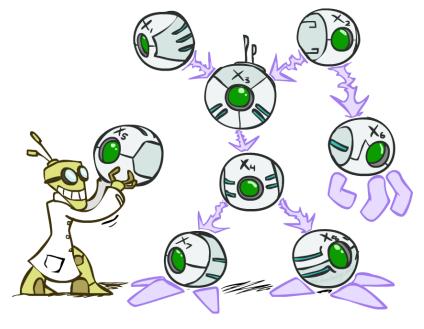




# **Bayes Nets: Big Picture**

- Bayes nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
  - We describe how variables locally interact
  - Local interactions chain together to give global, indirect interactions
- Bayes nets topics:
  - Conditional Independences (D-Separation)
  - Exact Inference (Inference by enumeration, variable elimination)
  - Sampling (Prior, Rejection, Likelihood Weighting, Gibbs)





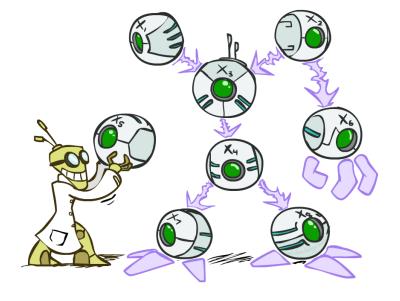
## **Bayes Net Representation**

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
  - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$ 

- Bayes nets implicitly encode joint distributions
  - As a product of local conditional distributions
  - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

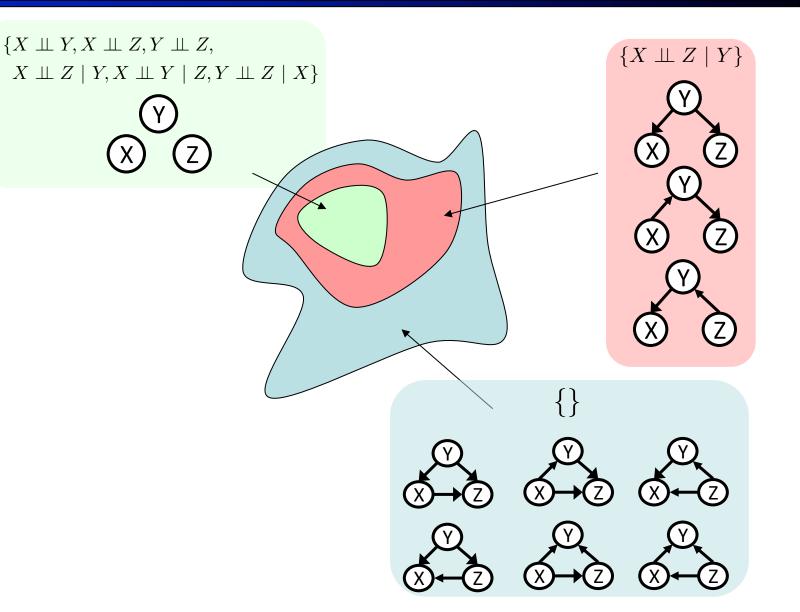
$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$





# **Topology Limits Distributions**

- Given some graph topology
  G, only certain joint
  distributions can be
  encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution



## **D-Separation**

- A condition / algorithm for answering independence queries
- Query:  $X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$  ?
- Check all (undirected!) paths between  $X_i$  and  $X_j$ 
  - If one or more active, then independence not guaranteed

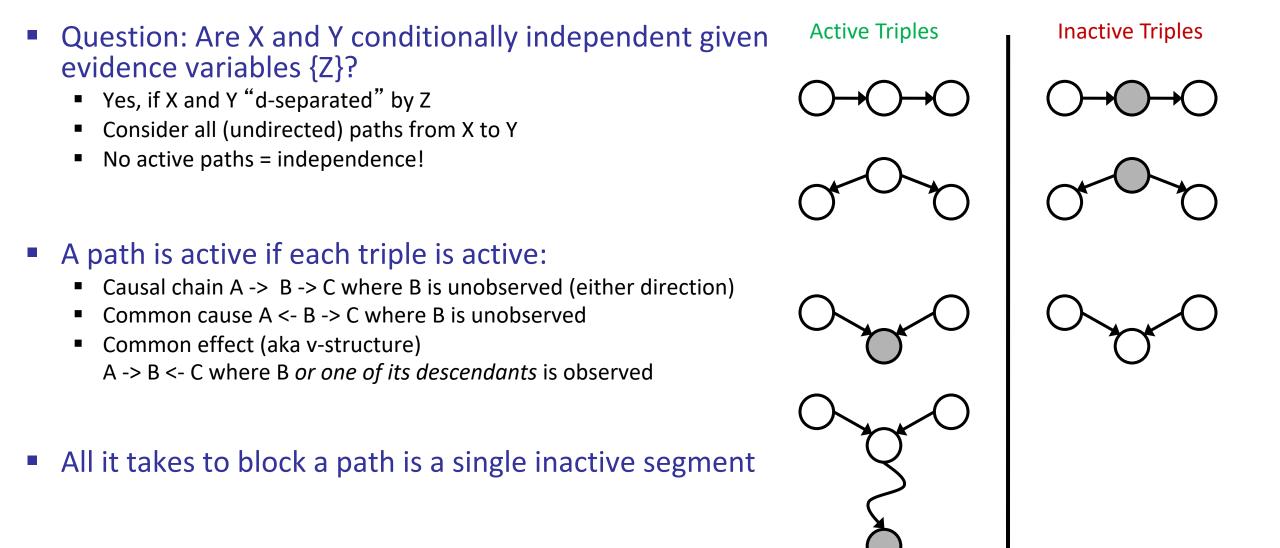
$$X_i \bowtie X_j | \{X_{k_1}, \dots, X_{k_n}\}$$

 Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp \perp X_j | \{X_{k_1}, \dots, X_{k_n}\}$$



# Active / Inactive Paths



# Inference by Enumeration

- General case:
  - Evidence variables:
  - Query\* variable:
  - Hidden variables:
- $E_{1} \dots E_{k} = e_{1} \dots e_{k}$  Q  $H_{1} \dots H_{r}$   $X_{1}, X_{2}, \dots X_{n}$ All variables
- We want:

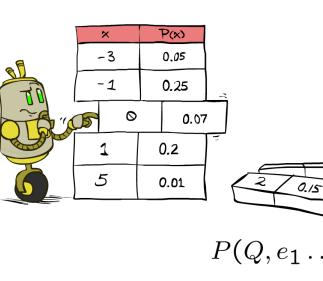
\* Works fine with multiple query variables, too

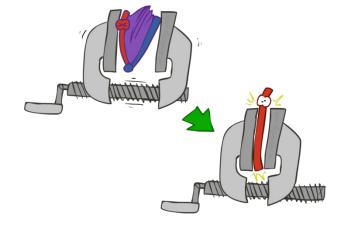
 $P(Q|e_1\ldots e_k)$ 

 Step 1: Select the entries consistent with the evidence  Step 2: Sum out H to get joint of Query and evidence Step 3: Normalize

 $\times \frac{}{Z}$ 

 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$  $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$ 

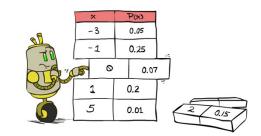


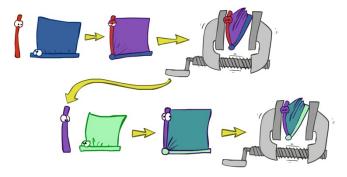




#### Variable Elimination

- Query:  $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
  - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
  - Pick a hidden variable H
  - Join all factors mentioning H
  - Eliminate (sum out) H
- Join all remaining factors and normalize

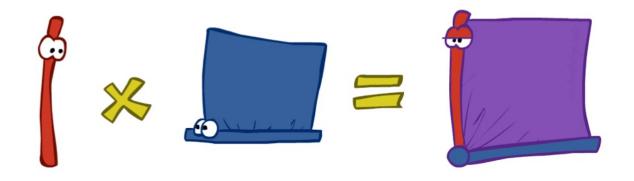




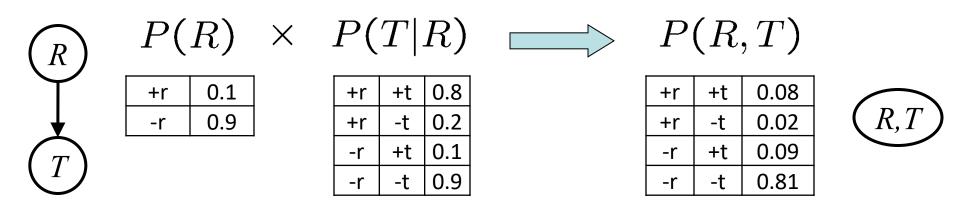


## **Operation 1: Join Factors**

- First basic operation: joining factors
- Combining factors:
  - Just like a database join
  - Get all factors over the joining variable
  - Build a new factor over the union of the variables involved



• Example: Join on R



Computation for each entry: pointwise products
  $orall r_i$ 

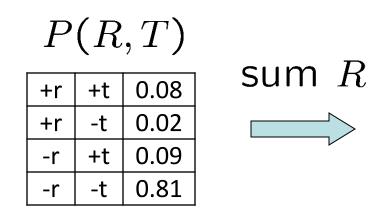
 $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$ 

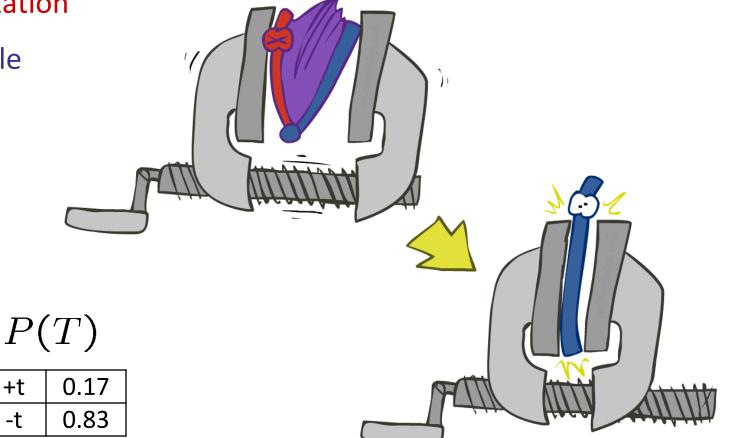
# **Operation 2: Eliminate**

+t

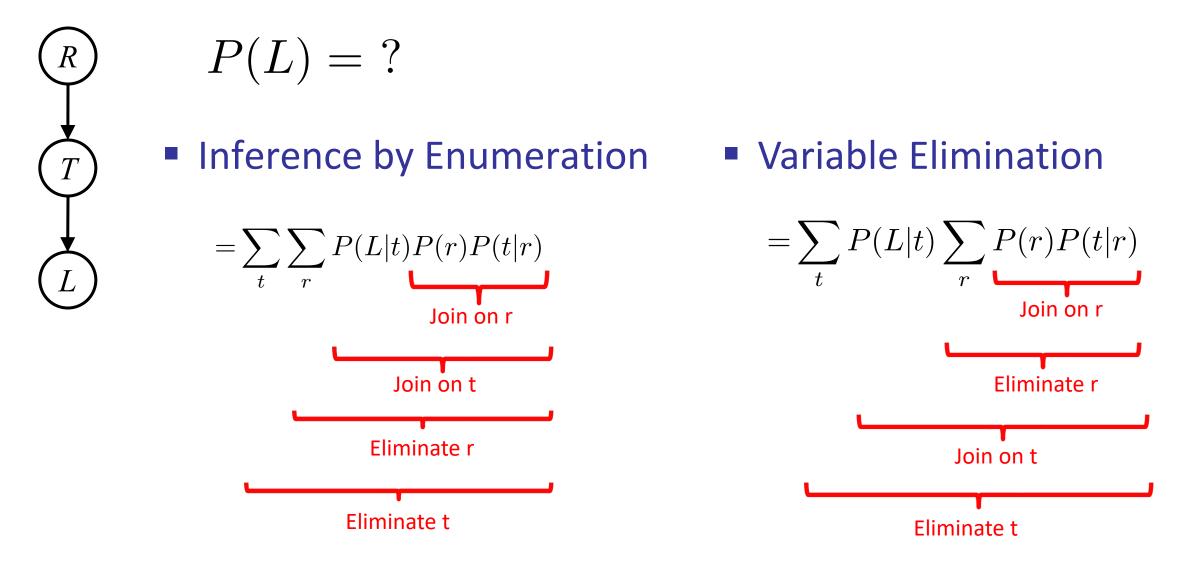
-t

- Second basic operation: marginalization
- Take a factor and sum out a variable
  - Shrinks a factor to a smaller one
  - A projection operation
- Example:



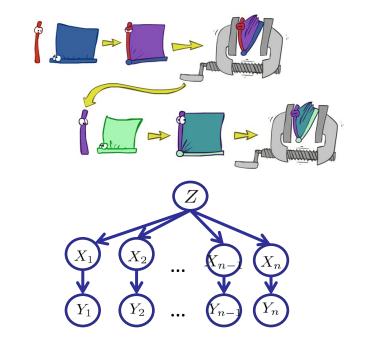


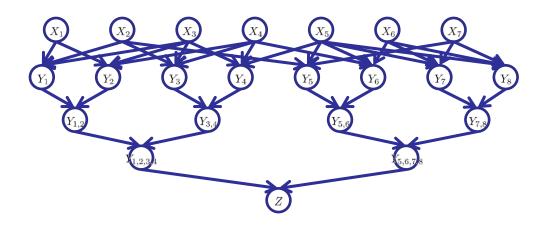
### Inference by Enumeration vs. Variable Elimination



## Variable Elimination

- Interleave joining and marginalizing
- d<sup>k</sup> entries computed for a factor over k variables with domain sizes d
- Ordering of elimination of hidden variables can affect size of factors generated
- Worst case: running time exponential in the size of the Bayes' net

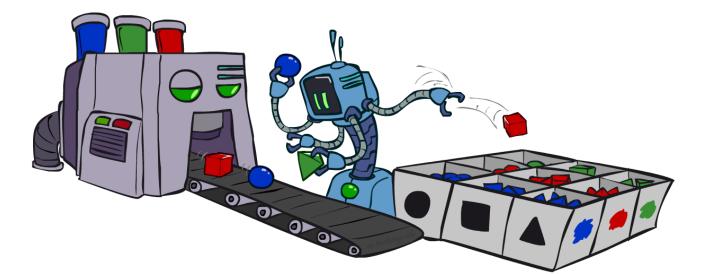




# **Approximate Inference: Sampling**

- Sampling is a lot like repeated simulation
  - Predicting the weather, basketball games, ...
- Basic idea
  - Draw N samples from a sampling distribution S
  - Compute an approximate posterior probability
  - Show this converges to the true probability P

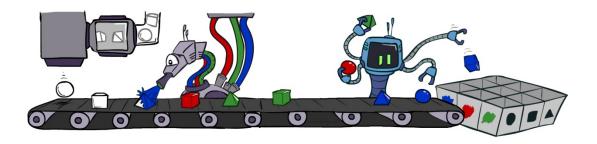
- Why sample?
  - Learning: get samples from a distribution you don't know
  - Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)



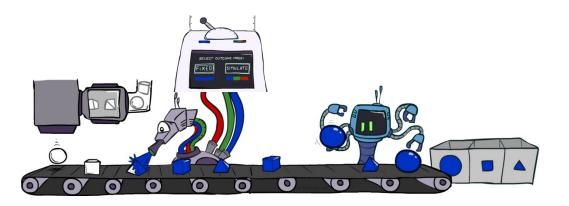
# Sampling in Bayes Nets

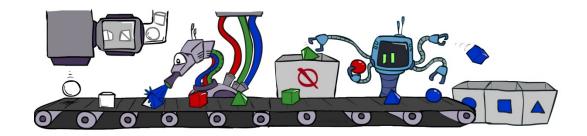
Prior Sampling P(Q)

Rejection Sampling P(Q | e)



Likelihood Weighting P(Q | e)

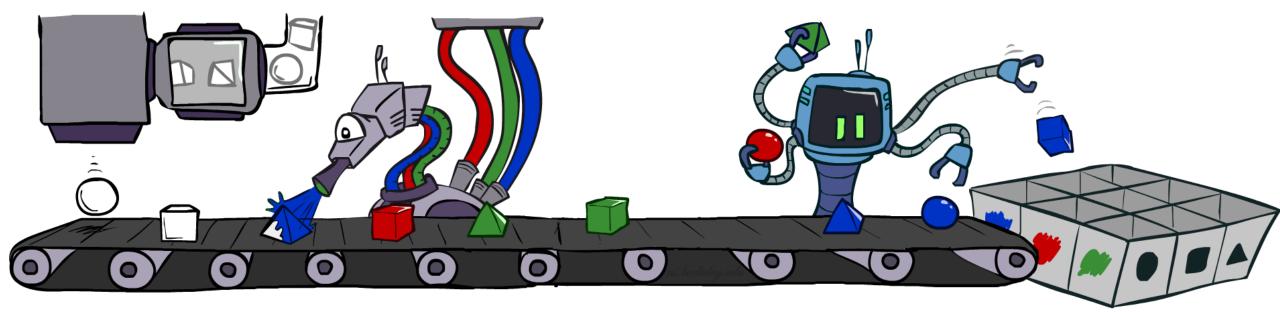




Gibbs Sampling P(Q | e)

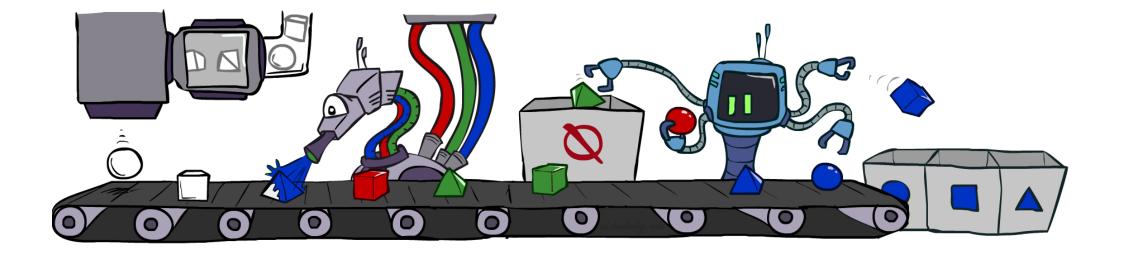
# **Prior Sampling**

- For i = 1, 2, ..., n
  - Sample x<sub>i</sub> from P(X<sub>i</sub> | Parents(X<sub>i</sub>))
- Return (x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>)



# **Rejection Sampling**

- Input: evidence instantiation
- For i = 1, 2, ..., n
  - Sample x<sub>i</sub> from P(X<sub>i</sub> | Parents(X<sub>i</sub>))
  - If x<sub>i</sub> not consistent with evidence
    - Reject: return no sample is generated in this cycle
- Return (x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>)



# Likelihood Weighting

- Input: evidence instantiation
- w = 1.0
- for i = 1, 2, ..., n
  - if X<sub>i</sub> is an evidence variable
    - X<sub>i</sub> = observation x<sub>i</sub> for X<sub>i</sub>
    - Set w = w \* P(x<sub>i</sub> | Parents(X<sub>i</sub>))
  - else

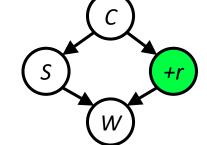
FIXED

- Sample x<sub>i</sub> from P(X<sub>i</sub> | Parents(X<sub>i</sub>))
- return (x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>), w

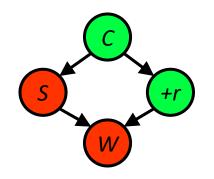
0

# **Gibbs Sampling**

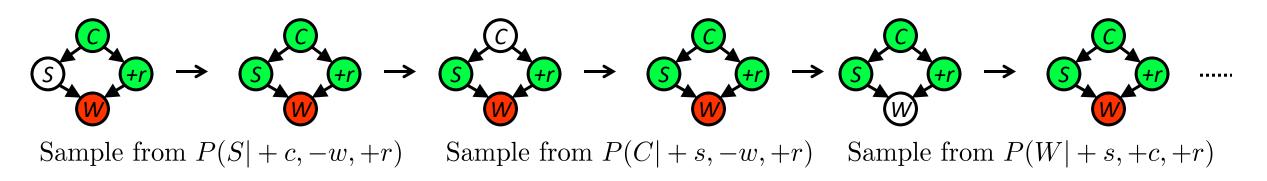
- Step 1: Fix evidence
  - R = +r



- Step 2: Initialize other variables
  - Randomly



- Steps 3: Repeat
  - Choose a non-evidence variable X
  - Resample X from P(X | all other variables)
    - P(X | all other variables) can be computed efficiently using only the CPTs that involve X



#### Markov Models

Value of X at a given time is called the state

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) - - - \rightarrow$$

$$P(X_1) \qquad P(X_t|X_{t-1})$$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationary assumption: transition probabilities the same at all times
- Markov property: Past and future independent given the present
- Same as MDP transition model, but no choice of action

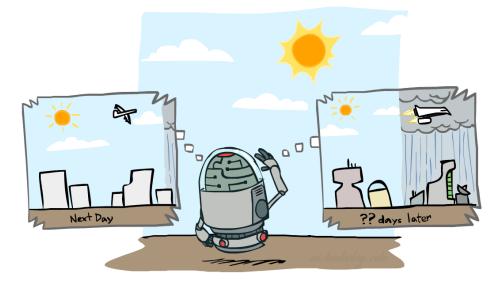
#### **Mini-Forward Algorithm**

Question: What's P(X) at some time t?

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) - - - \rightarrow$$

$$P(x_1) = known$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$
  
= 
$$\sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$
  
Forward simulation



# **Stationary Distributions**

#### • For most chains:

- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution

#### • Stationary distribution:

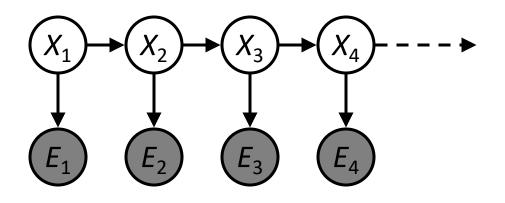
- The distribution we end up with is called the stationary distribution  $P_\infty$  of the chain
- It satisfies

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$



### Hidden Markov Models

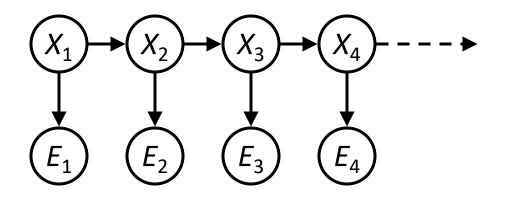
- Markov chains not so useful for most agents
  - Need observations to update your beliefs
- Hidden Markov models (HMMs)
  - Underlying Markov chain over states X
  - You observe outputs (effects) at each time step





## **Conditional Independence**

- HMMs have two important independence properties:
  - Markov hidden process: future depends on past via the present
  - Current observation independent of all else given current state



- Evidence variables are not guaranteed to be independent
  - They tend to correlated by the hidden state

# Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution
  B<sub>t</sub>(X) = P<sub>t</sub>(X<sub>t</sub> | e<sub>1</sub>, ..., e<sub>t</sub>) (the belief state) over time
- We start with B<sub>1</sub>(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)

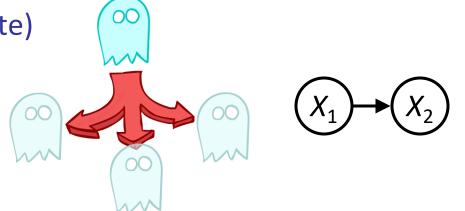
# Passage of Time

Assume we have current belief P(X | evidence to date)

 $B(X_t) = P(X_t | e_{1:t})$ 

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$
  
=  $\sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$   
=  $\sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$ 



• Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t) B(x_t)$$

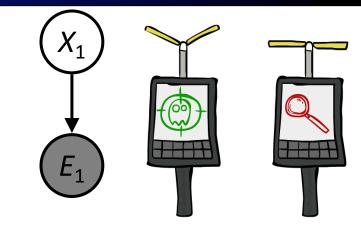
- Basic idea: beliefs get "pushed" through the transitions
  - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

# Observation

Assume we have current belief P(X | previous evidence):

 $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$ 

• Then, after evidence comes in:



$$\frac{P(X_{t+1}|e_{1:t+1})}{\propto_{X_{t+1}}} = \frac{P(X_{t+1}, e_{t+1}|e_{1:t})}{P(e_{t+1}|e_{1:t})}$$

 $= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$ 

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

• Or, compactly:

 $B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$ 

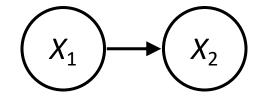
- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

# Forward Algorithm

Every time step, we start with current P(X | evidence)

$$B(X_t) = P(X_t | e_{1:t})$$

• We update for time:

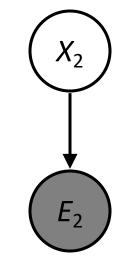


$$\frac{B'(X_{t+1})}{x_t} = \sum_{x_t} P(X'|x_t) \frac{B(x_t)}{B(x_t)}$$

• We update for evidence:

$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1}) B'(X_{t+1})$$

Don't forget to normalize at the end!

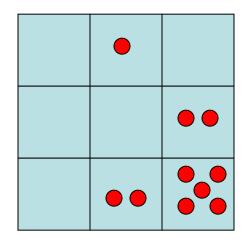


# Approximate Inference in HMMs: Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
- Solution: approximate inference
  - Track samples of X, not all values
  - Particle is just new name for sample
  - Time per step is linear in the number of samples
  - But: number needed may be large
  - In memory: list of particles, not states

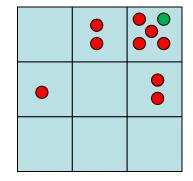
| 0.0 | 0.1 | 0.0 |
|-----|-----|-----|
| 0.0 | 0.0 | 0.2 |
| 0.0 | 0.2 | 0.5 |





### **Representation:** Particles

- Our representation of P(X) is now a list of N particles (samples)
  - Generally, N << |X|</p>
  - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
  - So, many x may have P(x) = 0!
  - More particles, more accuracy



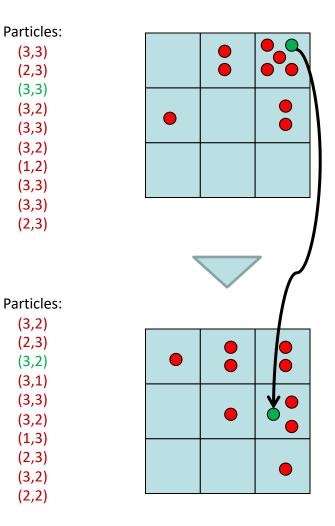
Particles: (3,3) (2,3) (3,2) (3,3) (3,2) (1,2) (3,3) (3,3) (3,3) (2,3)

### Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$ 

- This is like prior sampling samples' frequencies reflect the transition probabilities
- This captures the passage of time
  - If enough samples, close to exact values before and after (consistent)



(3,3) (2,3)(3,3)(3,2)

(3,3) (3,2)(1,2)(3,3)

(3,3) (2,3)

(3,2)

(2,3)

(3,2)(3,1) (3,3)(3,2) (1,3)(2,3) (3,2) (2,2)

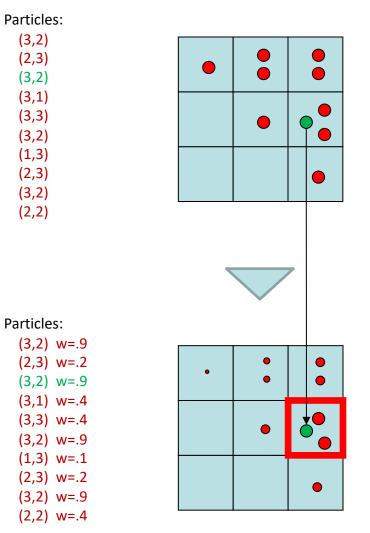
# Particle Filtering: Observe

#### Slightly trickier:

 Similar to likelihood weighting, down-weight samples based on the evidence

w(x) = P(e|x)

 $B(X) \propto P(e|X)B'(X)$ 



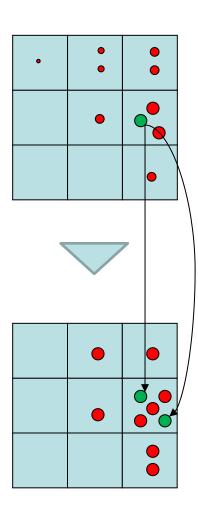
# Particle Filtering: Resample

- Rather than tracking weighted samples, we resample (draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

| Particle | s:   |  |
|----------|------|--|
| (3,2)    | w=.9 |  |
| (2,3)    | w=.2 |  |
| (3,2)    | w=.9 |  |
| (3,1)    | w=.4 |  |
| (3,3)    | w=.4 |  |
| (3,2)    | w=.9 |  |
| (1,3)    | w=.1 |  |
| (2,3)    | w=.2 |  |
| (3,2)    | w=.9 |  |
| (2,2)    | w=.4 |  |
|          |      |  |
|          |      |  |
|          |      |  |

(New) Particles:

(3,2) (2,2) (3,2) (2,3) (3,3) (3,2) (1,3) (2,3) (3,2) (3,2)



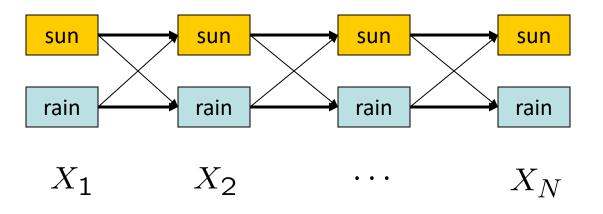
# **Particle Filtering**

#### Particles: track samples of states rather than an explicit distribution

|            | Elapse     | Weight     | Resample         |
|------------|------------|------------|------------------|
|            |            |            |                  |
| Particles: | Particles: | Particles: | (New) Particles: |
| (3,3)      | (3,2)      | (3,2) w=.9 | (3,2)            |
| (2,3)      | (2,3)      | (2,3) w=.2 | (2,2)            |
| (3,3)      | (3,2)      | (3,2) w=.9 | (3,2)            |
| (3,2)      | (3,1)      | (3,1) w=.4 | (2,3)            |
| (3,3)      | (3,3)      | (3,3) w=.4 | (3,3)            |
| (3,2)      | (3,2)      | (3,2) w=.9 | (3,2)            |
| (1,2)      | (1,3)      | (1,3) w=.1 | (1,3)            |
| (3,3)      | (2,3)      | (2,3) w=.2 | (2,3)            |
| (3,3)      | (3,2)      | (3,2) w=.9 | (3,2)            |
| (2,3)      | (2,2)      | (2,2) w=.4 | (3,2)            |

# Most Likely Explanation: Viterbi Algorithm

State trellis: graph of states and transitions over time



- Each arc represents some transition  $x_{t-1} \rightarrow x_t$
- Each arc has weight  $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

#### Viterbi algorithm contd.



| W <sub>t-1</sub> | P(W <sub>t</sub>  W <sub>t-1</sub> ) |      |
|------------------|--------------------------------------|------|
|                  | sun                                  | rain |
| sun              | 0.9                                  | 0.1  |
| rain             | 0.3                                  | 0.7  |

| W <sub>t</sub> | P(U <sub>t</sub>  W <sub>t</sub> ) |       |
|----------------|------------------------------------|-------|
|                | true                               | false |
| sun            | 0.2                                | 0.8   |
| rain           | 0.9                                | 0.1   |

Time complexity? O(|X|<sup>2</sup> T) Space complexity? O(|X|T) Number of paths? O(|X|<sup>T</sup>)