Q1. Searching with Heuristics

Consider the A* searching process on the connected undirected graph, with starting node S and the goal node G. Suppose the cost for each connection edge is always positive. We define $h^*(X)$ as the shortest (optimal) distance to G from a node X.

Answer Questions (a), (b) and (c). You may want to solve Questions (a) and (b) at the same time.

(a) Suppose $h$ is an admissible heuristic, and we conduct A* tree search using heuristic $h'$ and finally find a solution. Let $C$ be the cost of the found path (directed by $h'$, defined in part (a)) from S to G

(i) Choose one best answer for each condition below.

1. If $h'(X) = \frac{1}{2}h(X)$ for all Node X, then
   - $C = h^*(S)$
   - $C > h^*(S)$
   - $C \geq h^*(S)$

2. If $h'(X) = \frac{h(X) + h^*(X)}{2}$ for all Node X, then
   - $C = h^*(S)$
   - $C > h^*(S)$
   - $C \geq h^*(S)$

3. If $h'(X) = h(X) + h^*(X)$ for all Node X, then
   - $C = h^*(S)$
   - $C > h^*(S)$
   - $C \geq h^*(S)$

4. If we define the set $K(X)$ for a node X as all its neighbor nodes Y satisfying $h^*(X) > h^*(Y)$, and the following always holds

   $h'(X) \leq \left\{ \begin{array}{ll} \min_{Y \in K(X)} h'(Y) - h(Y) + h(X) & \text{if } K(X) \neq \emptyset \\ h(X) & \text{if } K(X) = \emptyset \end{array} \right.$

   then,
   - $C = h^*(S)$
   - $C > h^*(S)$
   - $C \geq h^*(S)$

5. If K is the same as above, we have

   $h'(X) = \left\{ \begin{array}{ll} \min_{Y \in K(X)} h(Y) + \text{cost}(X, Y) & \text{if } K(X) \neq \emptyset \\ h(X) & \text{if } K(X) = \emptyset \end{array} \right.$

   where cost(X, Y) is the cost of the edge connecting X and Y,

   then,
   - $C = h^*(S)$
   - $C > h^*(S)$
   - $C \geq h^*(S)$

6. If $h'(X) = \min_{Y \in K(X) + \{X\}} h(Y)$ (K is the same as above),

   then,
   - $C = h^*(S)$
   - $C > h^*(S)$
   - $C \geq h^*(S)$

(ii) In which of the conditions above, $h'$ is still admissible and for sure to dominate $h$? Check all that apply. Remember we say $h_1$ dominates $h_2$ when $h_1(X) \geq h_2(X)$ holds for all X.

   1 □ 2 □ 3 □ 4 □ 5 □ 6

(b) Suppose $h$ is a consistent heuristic, and we conduct A* graph search using heuristic $h'$ and finally find a solution.

(i) Answer exactly the same questions for each conditions in Question (a)(i).

1. $C = h^*(S)$
   - $C > h^*(S)$
   - $C \geq h^*(S)$

2. $C = h^*(S)$
   - $C > h^*(S)$
   - $C \geq h^*(S)$

3. $C = h^*(S)$
   - $C > h^*(S)$
   - $C \geq h^*(S)$

4. $C = h^*(S)$
   - $C > h^*(S)$
   - $C \geq h^*(S)$

5. $C = h^*(S)$
   - $C > h^*(S)$
   - $C \geq h^*(S)$

6. $C = h^*(S)$
   - $C > h^*(S)$
   - $C \geq h^*(S)$

(ii) In which of the conditions above, $h'$ is still consistent and for sure to dominate $h$? Check all that apply.

   1 □ 2 □ 3 □ 4 □ 5 □ 6
Q2. Iterative Deepening Search

Pacman is performing search in a maze again! The search graph has a branching factor of $b$, a solution of depth $d$, a maximum depth of $m$, and edge costs that may not be integers. Although he knows breadth first search returns the solution with the smallest depth, it takes up too much space, so he decides to try using iterative deepening. As a reminder, in standard depth-first iterative deepening we start by performing a depth first search terminated at a maximum depth of one. If no solution is found, we start over and perform a depth first search to depth two and so on. This way we obtain the shallowest solution, but use only $O(bd)$ space.

But Pacman decides to use a variant of iterative deepening called **iterative deepening A***, where instead of limiting the depth-first search by depth as in standard iterative deepening search, we can limit the depth-first search by the $f$ value as defined in A* search. As a reminder $f[node] = g[node] + h[node]$ where $g[node]$ is the cost of the path from the start state and $h[node]$ is a heuristic value estimating the cost to the closest goal state.

In this question, all searches are tree searches and **not** graph searches.

(a) Complete the pseudocode outlining how to perform iterative deepening A* by choosing the option from the next page that fills in each of these blanks. Iterative deepening A* should return the solution with the lowest cost when given a consistent heuristic. Note that cutoff is a boolean and new-limit is a number.

function **Iterative-Deepening-Tree-Search**(problem)  
  start-node ← Make-Node(Initial-State[problem])  
  limit ← $f[start-node]$  
  loop  
    fringe ← Make-Stack(start-node)  
    new-limit ← (i)  
    cutoff ← (ii)  
    while fringe is not empty do  
      node ← REMOVE-FRONT(fringe)  
      if GOAL-TEST(problem, State[node]) then  
        return node  
      end if  
      for child-node in EXPAND(State[node], problem) do  
        if $f[child-node] \leq$ limit then  
          fringe ← INSERT(child-node, fringe)  
          new-limit ← (iii)  
          cutoff ← (iv)  
        else  
          new-limit ← (v)  
          cutoff ← (vi)  
        end if  
      end for  
    end while  
    if not cutoff then  
      return failure  
    end if  
    limit ← (vii)  
  end loop  
end function
### (b) Assuming there are no ties in $f$ value between nodes, which of the following statements about the number of nodes that iterative deepening A* expands is True? If the same node is expanded multiple times, count all of the times that it is expanded. If none of the options are correct, mark None of the above.

- The number of times that iterative deepening A* expands a node is greater than or equal to the number of times A* will expand a node.
- The number of times that iterative deepening A* expands a node is less than or equal to the number of times A* will expand a node.
- We don’t know if the number of times iterative deepening A* expands a node is more or less than the number of times A* will expand a node.
- None of the above