## CS 188 Summer 2023

## Discussion 4B Solutions

## 1 Particle Filtering

Let's use Particle Filtering to estimate the distribution of  $P(W_2|O_1 = a, O_2 = b)$ . Here's the HMM again.



We start with two particles representing our distribution for  $W_1$ .  $P_1: W_1 = 0$ 

 $P_2: W_1 = 1$ 

Use the following random numbers to run particle filtering:

[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]

- (a) Observe: Compute the weight of the two particles after evidence  $O_1 = a$ .  $w(P_1) = P(O_t = a | W_t = 0) = 0.9$  $w(P_2) = P(O_t = a | W_t = 1) = 0.5$
- (b) Resample: Using the random numbers, resample P<sub>1</sub> and P<sub>2</sub> based on the weights. We now sample from the weighted distribution we found above. Using the first two random samples, we find: P<sub>1</sub> = sample(weights, 0.22) = 0 P<sub>2</sub> = sample(weights, 0.05) = 0
- (c) **Predict**: Sample  $P_1$  and  $P_2$  from applying the time update.  $P_1 = sample(P(W_{t+1}|W_t = 0), 0.33) = 0$  $P_2 = sample(P(W_{t+1}|W_t = 0), 0.20) = 0$
- (d) Update: Compute the weight of the two particles after evidence  $O_2 = b$ .  $w(P_1) = P(O_t = b|W_t = 0) = 0.1$  $w(P_2) = P(O_t = b|W_t = 0) = 0.1$
- (e) Resample: Using the random numbers, resample  $P_1$  and  $P_2$  based on the weights. Because both of our particles have X = 0, resampling will still leave us with two particles with X = 0.  $P_1 = 0$  $P_2 = 0$
- (f) What is our estimated distribution for  $P(W_2|O_1 = a, O_2 = b)$ ?  $P(W_2 = 0|O_1 = a, O_2 = b) = 2/2 = 1$  $P(W_2 = 1|O_1 = a, O_2 = b) = 0/2 = 0$

## 2 MangoBot Human Detector

Your startup company MangoBot wants to build robots that delivers packages on the road. One core module of the robot's software is to detect whether a human is standing in front of it. We model the presence of humans with a Markov model:



where  $H_t \in \{0, 1\}$  corresponds to a human being absent or present respectively. The initial distribution and the transition probabilities are given as follows:

| $H_0$ | $P(H_0)$ |
|-------|----------|
| 0     | p        |
| 1     | 1-p      |

| $H_t$ | $H_{t+1}$ | $P(H_{t+1} H_t)$ |
|-------|-----------|------------------|
| 0     | 0         | 0.9              |
| 0     | 1         | 0.1              |
| 1     | 0         | 0.8              |
| 1     | 1         | 0.2              |

(a) Express the following quantities in terms of p:

- (i)  $P(H_1 = 1) = -0.1p + 0.2$  $P(H_1 = 1) = P(H_1 = 1, H_0 = 0) + P(H_1 = 1, H_0 = 1) = P(H_0 = 0)P(H_1 = 1|H_0 = 0) + P(H_0 = 1)P(H_1 = 1|H_0 = 1) = 0.2(1 - p) + 0.1p = 0.2 - 0.1p$
- (ii)  $\lim_{t\to\infty} P(H_t=0) = 8/9$ As  $t\to\infty$ , the system converges to the stationary distribution  $\pi$ , which satisfies  $\pi = T^{\top}\pi$ , where T is the transition probability matrix  $\begin{bmatrix} 0.9 & 0.1 \\ 0.8 & 0.2 \end{bmatrix}$ . Assume  $\pi = [q \quad (1-q)]^{\top}$  and solve for q in  $\pi = T^{\top}\pi$  gives q = 8/9.

To make things simple, we stick to the original first-order Markov chain formulation. To make the detection more accurate, the company built a sensor that returns an observation  $O_t$  each time step as a noisy measurement of the unknown  $H_t$ . The new model is illustrated in the figure, and the relationship between  $H_t$  and  $O_t$  is provided in the table below.



- (b) Based on the observed sensor values  $o_0, o_1, \dots, o_t$ , we now want the robot to find the most likely sequence  $H_0, H_1, \dots, H_t$  indicating the presence/absence of a human up to the current time.
  - (i) Suppose that  $[o_0, o_1, o_2] = [0, 1, 1]$  are observed. The following "trellis diagram" shows the possible state transitions. Fill in the values for the arcs labeled A, B, C, and D with the product of the transition probability and the observation likelihood for the destination state. The values may depend on p.



A: 0.8p; B: 0.3(1-p); C: 0.9 \* 0.2 = 0.18; D: 0.2 \* 0.7 = 0.14.

(ii) There are two possible most likely state sequences, depending on the value of p. Complete the following (Write the sequence as "x,y,z" (without quotes), where x, y, z are either 0 or 1): Hint: it might be helpful to complete the labelling of the trellis diagram above.

• When 
$$p <$$
 0.25 , the most likely sequence  $H_0, H_1, H_2$  is 1,0,0

After filling out the full trellis diagram, we can easily observe that the sequence with largest probability given  $H_0 = 0$  is (0, 0, 0) and the sequence with largest probability given  $H_0 = 1$  is (1, 0, 0). (To see what is the sequence with largest probability, we run search from  $H_0 = 0$  to either  $H_2 = 0$  or  $H_0 = 1$ , but instead of adding the costs we multiply the probabilities.) Therefore the two possible most likely state sequences are (0, 0, 0), with probability 0.8p \* 0.18 \* 0.18, and (1, 0, 0), with probability 0.3(1 - p) \* 0.16 \* 0.18. Setting up the equation 0.8p \* 0.18 \* 0.18 = 0.3(1 - p) \* 0.16 \* 0.18 gives p = 0.25 to be the threshold. Note that this is a bit counter-intuitive since the observations suggest the exact opposite thing. However, in this problem the transition probabilities for 0 to 0 and 1 to 0 are so large that they dominates the computation.

(c) True or False: For a fixed p value and observations  $\{o_0, o_1, o_2\}$  in general,  $H_1^*$ , the most likely value for  $H_1$ , is always the same as the value of  $H_1$  in the most likely sequence  $H_0, H_1, H_2$ .  $\bigcirc$  True  $\bigcirc$  False The maximum likelihood estimation (MLE) for a single variable is in general not the same as the value of that variable in the most likely sequence estimation (MLSE). For example, in this problem, when p = 0.3, the MLE for  $H_0$  is 1, but the value of  $H_0$  in the MLSE is 1. There exists similar examples for  $H_1$ .