1 Particle Filtering

Let’s use Particle Filtering to estimate the distribution of $P(W_2|O_1 = a, O_2 = b)$. Here’s the HMM again.

$$
\begin{array}{c|c|c|c}
W_t & W_{t+1} & P(W_{t+1}|W_t) \\
\hline
0 & 0 & 0.4 \\
0 & 1 & 0.6 \\
1 & 0 & 0.8 \\
1 & 1 & 0.2 \\
\end{array}
\begin{array}{c|c|c|c}
W_t & O_t & P(O_t|W_t) \\
\hline
0 & a & 0.9 \\
0 & b & 0.1 \\
1 & a & 0.5 \\
1 & b & 0.5 \\
\end{array}
$$

We start with two particles representing our distribution for W_1.

$P_1 : W_1 = 0$
$P_2 : W_1 = 1$

Use the following random numbers to run particle filtering:

$[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]$

(a) **Observe**: Compute the weight of the two particles after evidence $O_1 = a$.

$w(P_1) = P(O_t = a|W_t = 0) = 0.9$
$w(P_2) = P(O_t = a|W_t = 1) = 0.5$

(b) **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights.

We now sample from the weighted distribution we found above. Using the first two random samples, we find:

$P_1 = \text{sample(weights, 0.22)} = 0$
$P_2 = \text{sample(weights, 0.05)} = 0$

(c) **Predict**: Sample P_1 and P_2 from applying the time update.

$P_1 = \text{sample}(P(W_{t+1}|W_t = 0), 0.33) = 0$
$P_2 = \text{sample}(P(W_{t+1}|W_t = 0), 0.20) = 0$

(d) **Update**: Compute the weight of the two particles after evidence $O_2 = b$.

$w(P_1) = P(O_t = b|W_t = 0) = 0.1$
$w(P_2) = P(O_t = b|W_t = 1) = 0.1$

(e) **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights.

Because both of our particles have $X = 0$, resampling will still leave us with two particles with $X = 0$.

$P_1 = 0$
$P_2 = 0$

(f) What is our estimated distribution for $P(W_2|O_1 = a, O_2 = b)$?

$P(W_2 = 0|O_1 = a, O_2 = b) = 2/2 = 1$
$P(W_2 = 1|O_1 = a, O_2 = b) = 0/2 = 0$
2 MangoBot Human Detector

Your startup company MangoBot wants to build robots that deliver packages on the road. One core module of the robot’s software is to detect whether a human is standing in front of it. We model the presence of humans with a Markov model:

\[
\begin{align*}
H_0 & \overset{P(H_{t+1}|H_t)}{\rightarrow} H_1 & \overset{P(H_{t+1}|H_t)}{\rightarrow} H_2 & \overset{P(H_{t+1}|H_t)}{\rightarrow} \cdots \\
\end{align*}
\]

where \(H_t \in \{0, 1\} \) corresponds to a human being absent or present respectively. The initial distribution and the transition probabilities are given as follows:

\[
\begin{array}{c|c}
H_0 & P(H_0) \\
\hline
0 & p \\
1 & 1 - p \\
\end{array}
\quad
\begin{array}{c|c|c}
H_t & H_{t+1} & P(H_{t+1}|H_t) \\
\hline
0 & 0 & 0.9 \\
0 & 1 & 0.1 \\
1 & 0 & 0.8 \\
1 & 1 & 0.2 \\
\end{array}
\]

(a) Express the following quantities in terms of \(p \):

(i) \(P(H_1 = 1) = -0.1p + 0.2 \)

\[
P(H_1 = 1) = P(H_1 = 1, H_0 = 0) + P(H_1 = 1, H_0 = 1) = P(H_0 = 0)P(H_1 = 1|H_0 = 0) + P(H_0 = 1)P(H_1 = 1|H_0 = 1) = 0.2(1-p) + 0.1p = 0.2 - 0.1p
\]

(ii) \(\lim_{t \to \infty} P(H_t = 0) = 8/9 \)

As \(t \to \infty \), the system converges to the stationary distribution \(\pi \), which satisfies \(\pi = T^\top \pi \), where \(T \) is the transition probability matrix \(\begin{bmatrix} 0.9 & 0.1 \\ 0.8 & 0.2 \end{bmatrix} \). Assume \(\pi = [q \quad (1-q)]^\top \) and solve for \(q \) in \(\pi = T^\top \pi \) gives \(q = 8/9 \).

To make things simple, we stick to the original first-order Markov chain formulation. To make the detection more accurate, the company built a sensor that returns an observation \(O_t \) each time step as a noisy measurement of the unknown \(H_t \). The new model is illustrated in the figure, and the relationship between \(H_t \) and \(O_t \) is provided in the table below.

\[
\begin{array}{c|c|c|c|c}
H_t & O_{t+1} & P(O_{t+1}|H_t) \\
\hline
0 & 0 & 0.8 \\
0 & 1 & 0.2 \\
1 & 0 & 0.3 \\
1 & 1 & 0.7 \\
\end{array}
\]

(b) Based on the observed sensor values \(o_0, o_1, \ldots, o_t \), we now want the robot to find the most likely sequence \(H_0, H_1, \ldots, H_t \) indicating the presence/absence of a human up to the current time.

(i) Suppose that \([o_0, o_1, o_2] = [0, 1, 1] \) are observed. The following "trellis diagram" shows the possible state transitions. Fill in the values for the arcs labeled A, B, C, and D with the product of the transition probability and the observation likelihood for the destination state. The values may depend on \(p \).
(ii) There are two possible most likely state sequences, depending on the value of p. Complete the following (Write the sequence as "x,y,z" (without quotes), where x, y, z are either 0 or 1): Hint: it might be helpful to complete the labelling of the trellis diagram above.

- When $p < 0.25$, the most likely sequence H_0, H_1, H_2 is $1,0,0$.
- Otherwise, the most likely sequence H_0, H_1, H_2 is $0,0,0$.

After filling out the full trellis diagram, we can easily observe that the sequence with largest probability given $H_0 = 0$ is $(0, 0, 0)$ and the sequence with largest probability given $H_0 = 1$ is $(1, 0, 0)$. (To see what is the sequence with largest probability, we run search from $H_0 = 0$ to either $H_2 = 0$ or $H_0 = 1$, but instead of adding the costs we multiply the probabilities.) Therefore the two possible most likely state sequences are $(0, 0, 0)$, with probability $0.8p \times 0.18 \times 0.18$, and $(1, 0, 0)$, with probability $0.3(1 - p) \times 0.16 \times 0.18$. Setting up the equation $0.8p \times 0.18 \times 0.18 = 0.3(1 - p) \times 0.16 \times 0.18$ gives $p = 0.25$ to be the threshold.

Note that this is a bit counter-intuitive since the observations suggest the exact opposite thing. However, in this problem the transition probabilities for 0 to 0 and 1 to 0 are so large that they dominates the computation.

(c) True or False: For a fixed p value and observations $\{o_0, o_1, o_2\}$ in general, H_1^*, the most likely value for H_1, is always the same as the value of H_1 in the most likely sequence H_0, H_1, H_2. ☐ True ☐ False

The maximum likelihood estimation (MLE) for a single variable is in general not the same as the value of that variable in the most likely sequence estimation (MLSE). For example, in this problem, when $p = 0.3$, the MLE for H_0 is 1, but the value of H_0 in the MLSE is 1. There exists similar examples for H_1.

A: $0.8p$; B: $0.3(1 - p)$; C: $0.9 \times 0.2 = 0.18$; D: $0.2 \times 0.7 = 0.14$.

The diagram shows the trellis diagram with states H_0, H_1, and H_2 at each level, and transitions labeled with probabilities A, B, C, and D.