1 Particle Filtering

Let's use Particle Filtering to estimate the distribution of $P\left(W_{2} \mid O_{1}=a, O_{2}=b\right)$. Here's the HMM again.

W_{1}	$P\left(W_{1}\right)$
0	0.3
1	0.7

W_{t}	W_{t+1}	$P\left(W_{t+1} \mid W_{t}\right)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_{t}	O_{t}	$P\left(O_{t} \mid W_{t}\right)$
0	a	0.9
0	b	0.1
1	a	0.5
1	b	0.5

We start with two particles representing our distribution for W_{1}.
$P_{1}: W_{1}=0$
$P_{2}: W_{1}=1$
Use the following random numbers to run particle filtering:

$$
[0.22,0.05,0.33,0.20,0.84,0.54,0.79,0.66,0.14,0.96]
$$

(a) Observe: Compute the weight of the two particles after evidence $O_{1}=a$.
$w\left(P_{1}\right)=P\left(O_{t}=a \mid W_{t}=0\right)=0.9$
$w\left(P_{2}\right)=P\left(O_{t}=a \mid W_{t}=1\right)=0.5$
(b) Resample: Using the random numbers, resample P_{1} and P_{2} based on the weights.

We now sample from the weighted distribution we found above. Using the first two random samples, we find:
$P_{1}=\operatorname{sample}($ weights, 0.22$)=0$
$P_{2}=\operatorname{sample}($ weights, 0.05$)=0$
(c) Predict: Sample P_{1} and P_{2} from applying the time update.
$P_{1}=\operatorname{sample}\left(P\left(W_{t+1} \mid W_{t}=0\right), 0.33\right)=0$
$P_{2}=\operatorname{sample}\left(P\left(W_{t+1} \mid W_{t}=0\right), 0.20\right)=0$
(d) Update: Compute the weight of the two particles after evidence $O_{2}=b$.
$w\left(P_{1}\right)=P\left(O_{t}=b \mid W_{t}=0\right)=0.1$
$w\left(P_{2}\right)=P\left(O_{t}=b \mid W_{t}=0\right)=0.1$
(e) Resample: Using the random numbers, resample P_{1} and P_{2} based on the weights.

Because both of our particles have $X=0$, resampling will still leave us with two particles with $X=0$.
$P_{1}=0$
$P_{2}=0$
(f) What is our estimated distribution for $P\left(W_{2} \mid O_{1}=a, O_{2}=b\right)$?

$$
\begin{gathered}
P\left(W_{2}=0 \mid O_{1}=a, O_{2}=b\right)=2 / 2=1 \\
P\left(W_{2}=1 \mid O_{1}=a, O_{2}=b\right)=0 / 2=0
\end{gathered}
$$

2 MangoBot Human Detector

Your startup company MangoBot wants to build robots that delivers packages on the road. One core module of the robot's software is to detect whether a human is standing in front of it. We model the presence of humans with a Markov model:

where $H_{t} \in\{0,1\}$ corresponds to a human being absent or present respectively. The initial distribution and the transition probabilities are given as follows:

H_{0}	$P\left(H_{0}\right)$
0	p
1	$1-p$

H_{t}	H_{t+1}	$P\left(H_{t+1} \mid H_{t}\right)$
0	0	0.9
0	1	0.1
1	0	0.8
1	1	0.2

(a) Express the following quantities in terms of p :
(i) $P\left(H_{1}=1\right)=-0.1 p+0.2$
$P\left(H_{1}=1\right)=P\left(H_{1}=1, H_{0}=0\right)+P\left(H_{1}=1, H_{0}=1\right)=P\left(H_{0}=0\right) P\left(H_{1}=1 \mid H_{0}=0\right)+P\left(H_{0}=\right.$ 1) $P\left(H_{1}=1 \mid H_{0}=1\right)=0.2(1-p)+0.1 p=0.2-0.1 p$
(ii) $\lim _{t \rightarrow \infty} P\left(H_{t}=0\right)=8 / 9$

As $t \rightarrow \infty$, the system converges to the stationary distribution π, which satisfies $\pi=T^{\top} \pi$, where T is the transition probability matrix $\left[\begin{array}{cc}0.9 & 0.1 \\ 0.8 & 0.2\end{array}\right]$. Assume $\pi=\left[\begin{array}{ll}q & (1-q)\end{array}\right]^{\top}$ and solve for q in $\pi=T^{\top} \pi$ gives $q=8 / 9$.

To make things simple, we stick to the original first-order Markov chain formulation. To make the detection more accurate, the company built a sensor that returns an observation O_{t} each time step as a noisy measurement of the unknown H_{t}. The new model is illustrated in the figure, and the relationship between H_{t} and O_{t} is provided in the table below.

H_{t}	O_{t}	$P\left(O_{t} \mid H_{t}\right)$
0	0	0.8
0	1	0.2
1	0	0.3
1	1	0.7

(b) Based on the observed sensor values $o_{0}, o_{1}, \cdots, o_{t}$, we now want the robot to find the most likely sequence $H_{0}, H_{1}, \cdots, H_{t}$ indicating the presence/absence of a human up to the current time.
(i) Suppose that $\left[o_{0}, o_{1}, o_{2}\right]=[0,1,1]$ are observed. The following "trellis diagram" shows the possible state transitions. Fill in the values for the arcs labeled $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D with the product of the transition probability and the observation likelihood for the destination state. The values may depend on p.

A: $0.8 p$; B: $0.3(1-p)$; C: $0.9 * 0.2=0.18 ; \mathrm{D}: 0.2 * 0.7=0.14$.
(ii) There are two possible most likely state sequences, depending on the value of p. Complete the following (Write the sequence as " $\mathrm{x}, \mathrm{y}, \mathrm{z}$ " (without quotes), where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are either 0 or 1): Hint: it might be helpful to complete the labelling of the trellis diagram above.

- When $p<0.25$, the most likely sequence H_{0}, H_{1}, H_{2} is $1,0,0$
- Otherwise, the most likely sequence H_{0}, H_{1}, H_{2} is $0,0,0$

After filling out the full trellis diagram, we can easily observe that the sequence with largest probability given $H_{0}=0$ is $(0,0,0)$ and the sequence with largest probability given $H_{0}=1$ is $(1,0,0)$. (To see what is the sequence with largest probability, we run search from $H_{0}=0$ to either $H_{2}=0$ or $H_{0}=1$, but instead of adding the costs we multiply the probabilities.) Therefore the two possible most likely state sequences are $(0,0,0)$, with probability $0.8 p * 0.18 * 0.18$, and $(1,0,0)$, with probability $0.3(1-p) * 0.16 * 0.18$. Setting up the equation $0.8 p * 0.18 * 0.18=0.3(1-p) * 0.16 * 0.18$ gives $p=0.25$ to be the threshold.
Note that this is a bit counter-intuitive since the observations suggest the exact opposite thing. However, in this problem the transition probabilities for 0 to 0 and 1 to 0 are so large that they dominates the computation.
(c) True or False: For a fixed p value and observations $\left\{o_{0}, o_{1}, o_{2}\right\}$ in general, H_{1}^{*}, the most likely value for H_{1}, is always the same as the value of H_{1} in the most likely sequence H_{0}, H_{1}, H_{2}. True False The maximum likelihood estimation (MLE) for a single variable is in general not the same as the value of that variable in the most likely sequence estimation (MLSE). For example, in this problem, when $p=0.3$, the MLE for H_{0} is 1 , but the value of H_{0} in the MLSE is 1 . There exists similar examples for H_{1}.

