1 Particle Filtering

Let’s use Particle Filtering to estimate the distribution of \(P(W_2|O_1 = a, O_2 = b) \). Here’s the HMM again.

We start with two particles representing our distribution for \(W_1 \).

\[P_1 : W_1 = 0 \]
\[P_2 : W_1 = 1 \]

Use the following random numbers to run particle filtering:

\[[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96] \]

(a) **Observe**: Compute the weight of the two particles after evidence \(O_1 = a \).

(b) **Resample**: Using the random numbers, resample \(P_1 \) and \(P_2 \) based on the weights.

(c) **Predict**: Sample \(P_1 \) and \(P_2 \) from applying the time update.

(d) **Update**: Compute the weight of the two particles after evidence \(O_2 = b \).

(e) **Resample**: Using the random numbers, resample \(P_1 \) and \(P_2 \) based on the weights.

(f) What is our estimated distribution for \(P(W_2|O_1 = a, O_2 = b) \)?

2 MangoBot Human Detector

Your startup company MangoBot wants to build robots that deliver packages on the road. One core module of the robot’s software is to detect whether a human is standing in front of it. We model the presence of humans with a Markov model:

\[
\begin{array}{c}
H_0 \\
\text{P(H_{t+1}|H_t)} \\
H_1 \\
\text{P(H_{t+1}|H_t)} \\
H_2 \\
\text{P(H_{t+1}|H_t)} \\
\end{array}
\]

where \(H_t \in \{0, 1\} \) corresponds to a human being absent or present respectively. The initial distribution and the transition probabilities are given as follows:
(a) Express the following quantities in terms of p:

(i) $P(H_1|1) = \ldots$

(ii) $\lim_{t \to \infty} P(H_t = 0) = \ldots$

To make things simple, we stick to the original first-order Markov chain formulation. To make the detection more accurate, the company built a sensor that returns an observation O_t each time step as a noisy measurement of the unknown H_t. The new model is illustrated in the figure, and the relationship between H_t and O_t is provided in the table below.

(b) Based on the observed sensor values o_0, o_1, \ldots, o_t, we now want the robot to find the most likely sequence H_0, H_1, \ldots, H_t indicating the presence/absence of a human up to the current time.

(i) Suppose that $[o_0, o_1, o_2] = [0, 1, 1]$ are observed. The following "trellis diagram" shows the possible state transitions. Fill in the values for the arcs labeled A, B, C, and D with the product of the transition probability and the observation likelihood for the destination state. The values may depend on p.

(ii) There are two possible most likely state sequences, depending on the value of p. Complete the following (Write the sequence as "x,y,z" (without quotes), where x, y, z are either 0 or 1):

- When $p < \ldots$, the most likely sequence H_0, H_1, H_2 is \(\ldots \)

- Otherwise, the most likely sequence H_0, H_1, H_2 is \(\ldots \)

(c) True or False: For a fixed p value and observations $\{o_0, o_1, o_2\}$ in general, H_1^*, the most likely value for H_1, is always the same as the value of H_1 in the most likely sequence H_0, H_1, H_2. \(\bigcirc \) True \(\bigcirc \) False