1 Maximum Likelihood Estimation

Recall that a Geometric distribution is defined as the number of Bernoulli trials needed to get one success. $P(X = k) = p(1 - p)^{k-1}$.

We observe the following samples from a Geometric distribution:

$x_1 = 5, x_2 = 8, x_3 = 3, x_4 = 5, x_5 = 7$

What is the maximum likelihood estimate for p?

2 Naive Bayes

In this question, we will train a Naive Bayes classifier to predict class labels Y as a function of input features A and B. Y, A, and B are all binary variables, with domains 0 and 1. We are given 10 training points from which we will estimate our distribution.

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) What are the maximum likelihood estimates for the tables $P(Y)$, $P(A|Y)$, and $P(B|Y)$?

| Y | $P(Y)$ | A | Y | $P(A|Y)$ | B | Y | $P(B|Y)$ |
|-----|--------|-----|-----|---------|-----|-----|---------|
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
| | | 1 | 0 | | 1 | 0 | |
| | | 0 | 1 | | 0 | 1 | |
| 1 | | 1 | 1 | | 1 | 1 | |

(b) Consider a new data point ($A = 1, B = 1$). What label would this classifier assign to this sample?

(c) Let’s use Laplace Smoothing to smooth out our distribution. Compute the new distribution for $P(A|Y)$ given Laplace Smoothing with $k = 2$.

| A | Y | $P(A|Y)$ |
|-----|-----|---------|
| 0 | 0 | |
| 1 | 0 | |
| 0 | 1 | |
| 1 | 1 | |

(a) What is the minimum number of parameters needed to fully model a joint distribution \(P(Y, F_1, F_2, ..., F_n) \) over label \(Y \) and \(n \) features \(F_i \)? Assume binary class where each feature can possibly take on \(k \) distinct values.

(b) Under the Naive Bayes assumption, what is the minimum number of parameters needed to model a joint distribution \(P(Y, F_1, F_2, ..., F_n) \) over label \(Y \) and \(n \) features \(F_i \)? Assume binary class where each feature can take on \(k \) distinct values.

(c) You suspect that you are overfitting with your Naive Bayes with Laplace Smoothing. How would you adjust the strength \(k \) in Laplace Smoothing?

- Increase \(k \)
- Decrease \(k \)

(d) While using Naive Bayes with Laplace Smoothing, increasing the strength \(k \) in Laplace Smoothing can:

- Increase training error
- Increase validation error
- Decrease training error
- Decrease validation error

(e) It is possible for the perceptron algorithm to never terminate on a dataset that is linearly separable in its feature space.

- True
- False

(f) If the perceptron algorithm terminates, then it is guaranteed to find a max-margin separating decision boundary.

- True
- False

(g) In binary perceptron where the initial weight vector is \(\vec{0} \), the final weight vector can be written as a linear combination of the training data feature vectors.

- True
- False

(h) For binary class classification, logistic regression produces a linear decision boundary.

- True
- False

(i) In the binary classification case, logistic regression is exactly equivalent to a single-layer neural network with a sigmoid activation and the cross-entropy loss function.

- True
- False

(j) You train a linear classifier on 1,000 training points and discover that the training accuracy is only 50%. Which of the following, if done in isolation, has a good chance of improving your training accuracy?

- Add novel features
- Train on more data

(k) You now try training a neural network but you find that the training accuracy is still very low. Which of the following, if done in isolation, has a good chance of improving your training accuracy?

- Add more hidden layers
- Add more units to the hidden layers