
CS 188
Summer 2023 Discussion 6C Solutions

1 Vector Calculus
Let x⃗, c⃗ ∈ Rn and A ∈ Rn×n. For the following parts, before taking any derivatives, identify what the derivative looks
like (is it a scalar, vector, or matrix?) and how we calculate each term in the derivative. Then carefully solve for
an arbitrary entry of the derivative, then stack/arrange all of them to get the final result. Note that the convention
we will use going forward is that vector derivatives of a scalar (with respect to a column vector) are expressed as a
row vector, i.e. ∂f

∂x⃗ = [ ∂f
∂x1

, ∂f
∂x2

, ..., ∂f
∂xn

] since a row acting on a column gives a scalar. You may have seen alternative
conventions before, but the important thing is that you need to understand the types of objects and how they map
to the shapes of the multidimensional arrays we use to represent those types.

1. Show ∂
∂x⃗ (x⃗

T c⃗) = c⃗T This is a vector derivative of a scalar quantity, so our result will be a row vector. Looking

at the i-th entry, ∂
∂xi

(x⃗T c⃗) = ∂
∂xi

(
∑

j cjxj) = ci. Stacking all the entries into a row vector, we get c⃗T .

2. Show ∂
∂x⃗ ||x⃗||

2
2 = 2x⃗T This is a vector derivative of a scalar quantity, so our result will be a row vector. Looking

at the i-th entry, ∂
∂xi

(||x⃗||22) = ∂
∂xi

(
∑

j x
2
j ) = 2xi. Stack all the entries into a row to get 2x⃗T .

3. Show ∂
∂x⃗ (Ax⃗) = A This is a vector derivative of a vector quantity, so the result will be a matrix. Let f⃗ = Ax⃗.

Note that fi =
∑

k Aikxk Looking at the (i, j)-th entry of our matrix, ∂fi
∂xj

= ∂
∂xj

(
∑

k Aikxk) = Aij . Arranging

all of these in a matrix will recover A.

4. Show ∂
∂x⃗ (x⃗

TAx⃗) = x⃗T (A+AT ) This is a vector derivative of a scalar quantity, so our result will be a vector.
Before taking any derivatives, we can write x⃗TAx⃗ =

∑
i

∑
j Aijxixj . Taking the derivative with respect to an

arbitrary xk and focusing on just the terms involving xk (as the derivative of the other terms wrt xk is zero),
we can write

∂

∂xk
(x⃗TAx⃗) =

∂

∂xk
((
∑
j ̸=k

Akjxkxj) + (
∑
i̸=k

Aikxixk) +Akkx
2
k)

= (
∑
j ̸=k

Akjxj) + (
∑
i ̸=k

Aikxi) + 2Akkxk

= (
∑
j

Akjxj) + (
∑
i

Aikxi) =
∑
i

(Akixi +Aikxi)

= x⃗T (kth row of A + kth col of A) = x⃗T (Ak +AT
k )

Stacking all the results in a row vector, we get ∂
∂x⃗ (x⃗

TAx⃗) = x⃗T (A+AT ) as desired.

5. Under what condition is the previous derivative equal to 2x⃗TA? We want (A+AT ) = 2A. This is true if and
only if A = AT , ie. the matrix A is symmetric.
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2 Solving Linear Regression with Vector Calculus
In this problem we will solve two variations of linear regression – ordinary least squares and ridge regression – using
vector calculus.

1. Ordinary Least Squares Consider the equation Xw⃗ = y⃗, where X ∈ Rn×d is a non-square data matrix, w ∈ Rd

is a weight vector, and y ∈ Rn is vector of labels corresponding to the datapoints in each row of X.

Consider the case where n > d, i.e. our data matrix X has more rows than columns (tall matrix) and the
system is overdetermined. How do we find the weights w⃗ that minimizes the error between Xw⃗ and
y? In other words, we want to solve minw⃗ ∥Xw⃗ − y⃗∥2.
Use vector calculus to solve this optimization problem for w⃗.

Call our objective f . Expand
f(w⃗) = w⃗TXTXw⃗ − 2w⃗TXy⃗ + y⃗T y⃗

Take gradient wrt w⃗ and set it to zero:

∇w⃗f = 2XTXw⃗ − 2XT y⃗ = 0⃗

Solve for w⃗:
(XTX)w⃗ = XT y⃗

w⃗ = (XTX)−1XT y⃗

2. Ridge Regression Ridge regression can be understood as the unconstrained optimization problem

argmin
w⃗

∥y⃗ −Xw⃗∥22 + λ∥w⃗∥22, (1)

whereX ∈ Rn×d is a data matrix, and y⃗ ∈ Rn is the target vector of measurement values. What’s new compared
to the simple OLS problem is the addition of the λ∥w⃗∥2 term, which can be interpreted as a ”penalty” on the
weights being too big.

Use vector calculus to expand the objective and solve this optimization problem for w⃗.

Call our objective f . Expand

f(w⃗) = w⃗TXTXw⃗ − 2w⃗TXy⃗ + y⃗T y⃗ + λw⃗T w⃗

Take gradient wrt w⃗ and set it to zero:

∇w⃗f = 2XTXw⃗ − 2XT y⃗ + 2λw⃗ = 0⃗

Solve for w⃗:
(XTX + λI)w⃗ = XT y⃗

w⃗ = (XTX + λI)−1XT y⃗
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