CS 188 Summer 2023

Discussion 7B Solutions

1 Vectorized Gradients

Let's compute the backward step for a node that computes $x^T A x$, where x is a vector with m values, and A is a matrix with shape $m \times m$. Thus, $c = \sum_{i=1}^m x_i \sum_{j=1}^m A_{ij} x_j = \sum_{i=1}^m \sum_{j=1}^m A_{ij} x_i x_j = \sum_{j=1}^m x_j \sum_{i=1}^m A_{ij} x_i$.

- 1. What is $\frac{\partial f}{\partial A_{ij}}$? $\frac{\partial f}{\partial A_{ij}} = \frac{\partial f}{\partial c} \frac{\partial c}{\partial A_{ij}} = \frac{\partial f}{\partial c} x_i x_j$
- 2. What is $\frac{\partial f}{\partial A}$? $\frac{\partial f}{\partial A} = \frac{\partial f}{\partial c} x x^T$
- 3. What is $\frac{\partial f}{\partial x_k}$? Use the Product Rule:

$$\frac{\partial f}{\partial x_k} = \frac{\partial f}{\partial c} \frac{\partial c}{\partial x_k} = \frac{\partial f}{\partial c} \left(\frac{d}{dx_k} \sum_{i=1}^m \sum_{j=1}^m A_{ij} x_i x_j \right) = \frac{\partial f}{\partial c} \left(\left(\frac{d}{dx_k} x_k \right) \sum_{j=1}^m A_{kj} x_j + \left(\frac{d}{dx_k} x_k \right) \sum_{i=1}^m A_{ik} x_i \right) \\ \frac{\partial f}{\partial x_k} = \frac{\partial f}{\partial c} \left(\sum_{j=1}^m A_{kj} x_j + \sum_{i=1}^m A_{ki}^T x_i \right) = \frac{\partial f}{\partial c} \left(\sum_{j=1}^m (A_{kj} + A_{kj}^T) x_j \right)$$

4. What is $\frac{\partial f}{\partial x}$? $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial c} (A + A^T) x$

2	Neural Networks Potpourri			
(a)	Which of these are likely to increase during overfitting?			
	Training error			
		Validation/held-out error		
		Test error		
(b)	Which of these techniques may be used to prevent overfitting?			
		Early stopping		Laplace smoothing
		L1/L2 regularization		Model interpolation
		Dropout		Using additional training data
(c)	Which of these activation functions are differentiable everywhere?			
	Sigmoid			
		Tanh		
		ReLU		
(d)	Which of these may speed up the convergence of mini-batch gradient descent (in terms of wall-clock time)?			
		Increasing the learning rate		Decreasing the learning rate
		Increasing the batch size		Decreasing the batch size
(e)	Which of these methods updates the model parameters least often (in terms of wall-clock time)?			
	•	Batch gradient descent		
	\bigcirc	Stochastic gradient descent		
	O Mini-batch gradient descent			
(f)	f) Which of these statements is true?			
	Momentum can speed up the convergence of vanilla SGD.			
		\Box Using momentum requires storing a list of previously computed gradients.		
		\Box Learning rates should typically increase over the timecourse of training.		
	Parameters can each have their own learning rate.			
(g) Which of these optimization approaches requires computing second derivatives?				
		Stochastic gradient descent		Adam
		Nesterov accelerated gradient		Newton's method