CS 188
 Summer 2023
 Discussion 7B Solutions

1 Vectorized Gradients

Let's compute the backward step for a node that computes $x^{T} A x$, where x is a vector with m values, and A is a matrix with shape $m \times m$. Thus, $c=\sum_{i=1}^{m} x_{i} \sum_{j=1}^{m} A_{i j} x_{j}=\sum_{i=1}^{m} \sum_{j=1}^{m} A_{i j} x_{i} x_{j}=\sum_{j=1}^{m} x_{j} \sum_{i=1}^{m} A_{i j} x_{i}$.

1. What is $\frac{\partial f}{\partial A_{i j}}$?

$$
\frac{\partial f}{\partial A_{i j}}=\frac{\partial f}{\partial c} \frac{\partial c}{\partial A_{i j}}=\frac{\partial f}{\partial c} x_{i} x_{j}
$$

2. What is $\frac{\partial f}{\partial A}$?

$$
\frac{\partial f}{\partial A}=\frac{\partial f}{\partial c} x x^{T}
$$

3. What is $\frac{\partial f}{\partial x_{k}}$?

Use the Product Rule:

$$
\begin{gathered}
\frac{\partial f}{\partial x_{k}}=\frac{\partial f}{\partial c} \frac{\partial c}{\partial x_{k}}=\frac{\partial f}{\partial c}\left(\frac{d}{d x_{k}} \sum_{i=1}^{m} \sum_{j=1}^{m} A_{i j} x_{i} x_{j}\right)=\frac{\partial f}{\partial c}\left(\left(\frac{d}{d x_{k}} x_{k}\right) \sum_{j=1}^{m} A_{k j} x_{j}+\left(\frac{d}{d x_{k}} x_{k}\right) \sum_{i=1}^{m} A_{i k} x_{i}\right) \\
\frac{\partial f}{\partial x_{k}}=\frac{\partial f}{\partial c}\left(\sum_{j=1}^{m} A_{k j} x_{j}+\sum_{i=1}^{m} A_{k i}^{T} x_{i}\right)=\frac{\partial f}{\partial c}\left(\sum_{j=1}^{m}\left(A_{k j}+A_{k j}^{T}\right) x_{j}\right)
\end{gathered}
$$

4. What is $\frac{\partial f}{\partial x}$?
$\frac{\partial f}{\partial x}=\frac{\partial f}{\partial c}\left(A+A^{T}\right) x$

2 Neural Networks Potpourri

(a) Which of these are likely to increase during overfitting?
$\begin{array}{ll}\square & \text { Training error } \\ \square & \text { Validation/held-out error } \\ \square & \text { Test error }\end{array}$
(b) Which of these techniques may be used to prevent overfitting?

Early stopping	\square	Laplace smoothing
L1/L2 regularization	\square	Model interpolation
Dropout	\square	Using additional training data

(c) Which of these activation functions are differentiable everywhere?

\square	Sigmoid
\square	Tanh
\square	ReLU

(d) Which of these may speed up the convergence of mini-batch gradient descent (in terms of wall-clock time)?

- Increasing the learning rate
Decreasing the learning rate
Increasing the batch size Decreasing the batch size
(e) Which of these methods updates the model parameters least often (in terms of wall-clock time)?
- Batch gradient descent
\bigcirc Stochastic gradient descent
\bigcirc Mini-batch gradient descent
(f) Which of these statements is true?
- Momentum can speed up the convergence of vanilla SGD.
\square Using momentum requires storing a list of previously computed gradients.
\square Learning rates should typically increase over the timecourse of training.
- Parameters can each have their own learning rate.
(g) Which of these optimization approaches requires computing second derivatives?Stochastic gradient descentAdam
\square Nesterov accelerated gradient
\square Newton's method

