
Discussion 7B

1 Vectorized Gradients

Let's compute the backward step for a node that computes $x^T A x$, where x is a vector with m values, and A is a matrix with shape $m \times m$. Thus, $c = \sum_{i=1}^m x_i \sum_{j=1}^m A_{ij} x_j = \sum_{i=1}^m \sum_{j=1}^m A_{ij} x_i x_j = \sum_{j=1}^m x_j \sum_{i=1}^m A_{ij} x_i$.

- 1. What is $\frac{\partial f}{\partial A_{ij}}$?
- 2. What is $\frac{\partial f}{\partial A}$?
- 3. What is $\frac{\partial f}{\partial x_k}$?

4. What is $\frac{\partial f}{\partial x}$?

2	Neural Networks Potpourri			
(a)	Which of these are likely to increase during overfitting?			
		Training error Validation/held-out error Test error		
(b)	Which of these techniques may be used to prevent overfitting?			
		Early stopping L1/L2 regularization Dropout		Laplace smoothing Model interpolation Using additional training data
(c)	Which of these activation functions are differentiable everywhere?			
		Sigmoid Tanh ReLU		
(d)	Which of these may speed up the convergence of mini-batch gradient descent (in terms of wall-clock time)?			
		Increasing the learning rate Increasing the batch size		Decreasing the learning rate Decreasing the batch size
(e)	Which of these methods updates the model parameters least often (in terms of wall-clock time)?			
	0 0 0	Batch gradient descent Stochastic gradient descent Mini-batch gradient descent		
(f)) Which of these statements is true?			
	 Momentum can speed up the convergence of vanilla SGD. Using momentum requires storing a list of previously computed gradients. Learning rates should typically increase over the timecourse of training. Parameters can each have their own learning rate. 			
(g) Which of these optimization approaches requires computing second derivatives?				
		Stochastic gradient descent Nesterov accelerated gradient		Adam Newton's method