Q1. Deep Learning

(a) Perform forward propagation on the neural network below for $x = 1$ by filling in the values in the table. Note that (i), ..., (vii) are outputs after performing the appropriate operation as indicated in the node.

<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
<th>(v)</th>
<th>(vi)</th>
<th>(vii)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

(b) [Optional] Below is a neural network with weights a, b, c, d, e, f. The inputs are x_1 and x_2.

The first hidden layer computes $r_1 = \max(c \cdot x_1 + e \cdot x_2, 0)$ and $r_2 = \max(d \cdot x_1 + f \cdot x_2, 0)$.

The second hidden layer computes $s_1 = \frac{1}{1 + \exp(-a \cdot r_1)}$ and $s_2 = \frac{1}{1 + \exp(-b \cdot r_2)}$.

The output layer computes $y = s_1 + s_2$. Note that the weights a, b, c, d, e, f are indicated along the edges of the neural network here.

Suppose the network has inputs $x_1 = 1, x_2 = -1$.

The weight values are $a = 1, b = 1, c = 4, d = 1, e = 2, f = 2$.

Forward propagation then computes $r_1 = 2, r_2 = 0, s_1 = 0.9, s_2 = 0.5, y = 1.4$. Note: some values are rounded.

Using the values computed from forward propagation, use backpropagation to numerically calculate the following partial derivatives. Write your answers as a single number (not an expression). You do not need a calculator. Use scratch paper if needed.

Hint: For $g(z) = \frac{1}{1 + \exp(-z)}$, the derivative is $\frac{\partial g}{\partial z} = g(z)(1 - g(z))$.

<table>
<thead>
<tr>
<th></th>
<th>$\frac{\partial y}{\partial a}$</th>
<th>$\frac{\partial y}{\partial b}$</th>
<th>$\frac{\partial y}{\partial c}$</th>
<th>$\frac{\partial y}{\partial d}$</th>
<th>$\frac{\partial y}{\partial e}$</th>
<th>$\frac{\partial y}{\partial f}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.18</td>
<td>0.09</td>
<td>0.09</td>
<td>-0.09</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
\[\frac{\partial y}{\partial a} = \frac{\partial y}{\partial s_1} \frac{\partial s_1}{\partial a} \]
\[= 1 \cdot \frac{\partial g(a \cdot r_1)}{\partial a} \]
\[= r_1 \cdot g(a \cdot r_1)(1 - g(a \cdot r_1)) \]
\[= r_1 \cdot s_1(1 - s_1) \]
\[= 2 \cdot 0.9 \cdot (1 - 0.9) \]
\[= 0.18 \]

\[\frac{\partial y}{\partial b} = \frac{\partial y}{\partial s_2} \frac{\partial s_2}{\partial b} \]
\[= 1 \cdot \frac{\partial g(b \cdot r_2)}{\partial b} \]
\[= r_2 \cdot g(b \cdot r_2)(1 - g(b \cdot r_2)) \]
\[= r_2 \cdot s_2(1 - s_2) \]
\[= 0 \cdot 0.5(1 - 0.5) \]
\[= 0 \]

\[\frac{\partial y}{\partial c} = \frac{\partial y}{\partial s_1} \frac{\partial s_1}{\partial r_1} \frac{\partial r_1}{\partial c} \]
\[= 1 \cdot [a \cdot g(a \cdot r_1)(1 - g(a \cdot r_1))] \cdot x_1 \]
\[= [a \cdot s_1(1 - s_1)] \cdot x_1 \]
\[= [1 \cdot 0.9(1 - 0.9)] \cdot 1 \]
\[= 0.09 \]

\[\frac{\partial y}{\partial d} = \frac{\partial y}{\partial s_2} \frac{\partial s_2}{\partial r_2} \frac{\partial r_2}{\partial d} \]
\[= \frac{\partial y}{\partial s_2} \frac{\partial s_2}{\partial r_2} \cdot 0 \]
\[= 0 \]

\[\frac{\partial y}{\partial e} = \frac{\partial y}{\partial s_1} \frac{\partial s_1}{\partial r_1} \frac{\partial r_1}{\partial e} \]
\[= 1 \cdot [a \cdot g(a \cdot r_1)(1 - g(a \cdot r_1))] \cdot x_2 \]
\[= [a \cdot s_1(1 - s_1)] \cdot x_2 \]
\[= [1 \cdot 0.9(1 - 0.9)] \cdot -1 \]
\[= -0.09 \]

\[\frac{\partial y}{\partial f} = \frac{\partial y}{\partial s_2} \frac{\partial s_2}{\partial r_2} \frac{\partial r_2}{\partial f} \]
\[= \frac{\partial y}{\partial s_2} \frac{\partial s_2}{\partial r_2} \cdot 0 \]
\[= 0 \]
(c) Below are two plots with horizontal axis x_1 and vertical axis x_2 containing data labelled \times and \bullet. For each plot, we wish to find a function $f(x_1, x_2)$ such that $f(x_1, x_2) \geq 0$ for all data labelled \times and $f(x_1, x_2) < 0$ for all data labelled \bullet.

Below each plot is the function $f(x_1, x_2)$ for that specific plot. Complete the expressions such that all the data is labelled correctly. If not possible, mark “No valid combination”.

Below are two plots with horizontal axis x_1 and vertical axis x_2 containing data labelled \times and \bullet.

Below each plot is the function $f(x_1, x_2)$ for that specific plot. Complete the expressions such that all the data is labelled correctly. If not possible, mark “No valid combination”.

There are two possible solutions:

$f(x_1, x_2) = \max(x_1, -x_1) - 1$

There are four possible solutions:

$f(x_1, x_2) = x_2 - \max(x_1, -x_1)$

There are four possible solutions:

$f(x_1, x_2) = x_2 - \max(x_1, -x_1)$

$f(x_1, x_2) = x_2 - \max(-x_1, x_1)$

$f(x_1, x_2) = -\max(x_1 - x_2, -x_1 - x_2)$

$f(x_2, x_2) = -\max(-x_1 - x_2, x_1 - x_2)$
2 Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here \(x \) is a single real-valued input feature with an associated class \(y^* \) (0 or 1). There are two weight parameters \(w_1 \) and \(w_2 \), and non-linearity functions \(g_1 \) and \(g_2 \) (to be defined later, below). The network will output a value \(a_2 \) between 0 and 1, representing the probability of being in class 1. We will be using a loss function \(\text{Loss} \) (to be defined later, below), to compare the prediction \(a_2 \) with the true class \(y^* \).

1. Perform the forward pass on this network, writing the output values for each node \(z_1, a_1, z_2 \) and \(a_2 \) in terms of the node’s input values:

\[
\begin{align*}
 z_1 &= x \ast w_1 \\
 a_1 &= g_1(z_1) \\
 z_2 &= a_1 \ast w_2 \\
 a_2 &= g_2(z_2)
\end{align*}
\]

2. Compute the loss \(\text{Loss}(a_2, y^*) \) in terms of the input \(x \), weights \(w_i \), and activation functions \(g_i \):

 Recursively substituting the values computed above, we have:

\[
\text{Loss}(a_2, y^*) = \text{Loss}(g_2(w_2 \ast g_1(w_1 \ast x)), y^*)
\]

3. [Optional] Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive \(\frac{\partial \text{Loss}}{\partial w_2} \). Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the node’s output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)

\[
\frac{\partial \text{Loss}}{\partial w_2} = \frac{\partial \text{Loss}}{\partial a_2} \frac{\partial a_2}{\partial z_2} \frac{\partial z_2}{\partial w_2}
\]

4. [Optional] Suppose the loss function is quadratic, \(\text{Loss}(a_2, y^*) = \frac{1}{2}(a_2 - y^*)^2 \), and \(g_1 \) and \(g_2 \) are both sigmoid functions \(g(z) = \frac{1}{1 + e^{-z}} \) (note: it’s typically better to use a different type of loss, cross-entropy, for classification problems, but we’ll use this to make the math easier).

 Using the chain rule from Part 3, and the fact that \(\frac{\partial g(z)}{\partial z} = g(z)(1 - g(z)) \) for the sigmoid function, write \(\frac{\partial \text{Loss}}{\partial w_2} \) in terms of the values from the forward pass, \(y^*, a_1, \) and \(a_2 \):
First we’ll compute the partial derivatives at each node:

\[
\frac{\partial \text{Loss}}{\partial a_2} = (a_2 - y^*) \\
\frac{\partial a_2}{\partial z_2} = \frac{\partial g_2(z_2)}{\partial z_2} = g_2(z_2)(1 - g_2(z_2)) = a_2(1 - a_2) \\
\frac{\partial z_2}{\partial w_2} = a_1
\]

Now we can plug into the chain rule from part 3:

\[
\frac{\partial \text{Loss}}{\partial w_2} = \frac{\partial \text{Loss}}{\partial a_2} \frac{\partial a_2}{\partial z_2} \frac{\partial z_2}{\partial w_2} = (a_2 - y^*) \cdot a_2(1 - a_2) \cdot a_1
\]

5. [Optional] Now use the chain rule to derive \(\frac{\partial \text{Loss}}{\partial w_1}\) as a product of partial derivatives at each node used in the chain rule:

\[
\frac{\partial \text{Loss}}{\partial w_1} = \frac{\partial \text{Loss}}{\partial a_2} \frac{\partial a_2}{\partial z_2} \frac{\partial z_2}{\partial a_1} \frac{\partial a_1}{\partial z_1} \frac{\partial z_1}{\partial w_1}
\]

6. [Optional] Finally, write \(\frac{\partial \text{Loss}}{\partial w_1}\) in terms of \(x, y^*, w_i, a_i, z_i\): The partial derivatives at each node (in addition to the ones we computed in Part 4) are:

\[
\frac{\partial z_2}{\partial a_1} = w_2 \\
\frac{\partial a_1}{\partial z_1} = \frac{\partial g_1(z_1)}{\partial z_1} = g_1(z_1)(1 - g_1(z_1)) = a_1(1 - a_1) \\
\frac{\partial z_1}{\partial a_1} = x
\]

Plugging into the chain rule from Part 5 gives:

\[
\frac{\partial \text{Loss}}{\partial w_1} = \frac{\partial \text{Loss}}{\partial a_2} \frac{\partial a_2}{\partial z_2} \frac{\partial z_2}{\partial a_1} \frac{\partial a_1}{\partial z_1} \frac{\partial z_1}{\partial w_1} = (a_2 - y^*) \cdot a_2(1 - a_2) \cdot w_2 \cdot a_1(1 - a_1) \cdot x
\]

7. [Optional] What is the gradient descent update for \(w_1\) with step-size \(\alpha\) in terms of the values computed above?

\[
w_1 \leftarrow w_1 - \alpha(a_2 - y^*) \cdot a_2(1 - a_2) \cdot w_2 \cdot a_1(1 - a_1) \cdot x
\]