
CS 188
Summer 2023 Final Review HMMs Solutions

1 We Are Getting Close...
Mesut is trying to remotely control a car, which has gone out of his view. The unknown state of the car is
represented by the random variable X. While Mesut can’t see the car itself, his high-tech sensors on the car
provides two useful readings: an estimate (E) of the distance to the car in front, and a detection model (D)
that detects if the car is headed into a wall. Using these two readings, Mesut applies the controls (C), which
determine the velocity of the car by changing the acceleration. The DBN below describes the setup.

(a) For the above DBN, complete the equations for performing updates. (Hint: think about the prediction
update and observation update equations in the forward algorithm for HMMs.)

Time elapse: (i) = (ii) (iii) (iv) P (xt−1|e0:t−1, d0:t−1, c0:t−1)

(i) # P (xt)  P (xt|e0:t−1, d0:t−1, c0:t−1) # P (et, dt, ct|e0:t−1, d0:t−1, c0:t−1)

(ii) # P (c0:t−1) # P (x0:t−1, c0:t−1) # P (e0:t−1, d0:t−1, c0:t−1)
# P (e0:t, d0:t, c0:t)  1

(iii)  Σxt−1 # Σxt # maxxt−1 # maxxt # 1

(iv) # P (xt−1|xt−2) # P (xt−1, xt−2) # P (xt|e0:t−1, d0:t−1, c0:t−1)
# P (xt|xt−1) # P (xt, xt−1) # P (xt, e0:t−1, d0:t−1, c0:t−1)
 P (xt|xt−1, ct−1) # P (xt, xt−1, ct−1) # 1

Recall the prediction update of forward algorithm: P (xt|o0:t−1) = Σxt−1P (xt|xt−1)P (xt−1|o0:t−1), where
o is the observation. Here it is similar, despite that there are several observations at each time, which
means ot corresponds to et, dt, ct for each t, and that X is dependent on the C value of the previous time,
so we need P (xt|xt−1, ct−1) instead of P (xt|xt−1). Also note that X is independent of Dt−1, Et−1 given
Ct−1, Xt−1.

Update to incorporate new evidence at time t:
P (xt|e0:t, d0:t, c0:t) = (v) (vi) (vii) Your choice for (i)

(v) # (P (ct|c0:t−1))
−1 # (P (et|e0:t−1)P (dt|d0:t−1)P (ct|c0:t−1))

−1

 (P (et, dt, ct|e0:t−1, d0:t−1, c0:t−1))
−1 # (P (e0:t−1|et)P (d0:t−1|dt)P (c0:t−1|ct))−1

# (P (e0:t−1, d0:t−1, c0:t−1|et, dt, ct))−1 # 1

(vi) # Σxt−1
# Σxt

# Σxt−1,xt
# maxxt−1

# maxxt
 1

(vii) □ P (xt|et, dt, ct) □ P (xt, et, dt, ct)

□ P (xt|et, dt, ct, ct−1) □ P (xt, et, dt, ct, ct−1)

■ P (et, dt|xt)P (ct|et, dt, ct−1) □ P (et, dt, ct|xt) # 1

Recall the observation update of forward algorithm: P (xt|o0:t) ∝ P (xt, ot|o0:t−1) = P (ot|xt)P (xt|o0:t−1).
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Here the observations ot corresponds to et, dt, ct for each t. Apply the Chain Rule, we are having
P (xt|e0:t, d0:t, c0:t) ∝ P (xt, et, dt, ct|e0:t−1, d0:t−1, c0:t−1) = P (et, dt, ct|xt, ct−1)P (xt|e0:t−1, d0:t−1, c0:t−1)
= P (et, dt|xt)P (ct|et, dt, ct−1)P (xt|e0:t−1, d0:t−1, c0:t−1).
Note that in P (et, dt, ct|xt, ct−1), we cannot omit ct−1 due to the arrow between ct and ct−1.

To calculate the normalizing constant, use Bayes Rule: P (xt|e0:t, d0:t, c0:t) = P (xt,et,dt,ct|e0:t−1,d0:t−1,c0:t−1)
P (et,dt,ct|e0:t−1,d0:t−1,c0:t−1)

.

(viii) Suppose we want to do the above updates in one step and use normalization to reduce compu-
tation. Select all the terms that are not explicitly calculated in this implementation.
DO NOT include the choices if their values are 1.

□ (ii) □ (iii) □ (iv) ■ (v) □ (vi) □ (vii) # None of the above

(v) is a constant, so we don’t calculate it during implementation and simply do a normalization instead.
Everything else is necessary.

2 Particle Filtering Apprenticeship
We are observing an agent’s actions in an MDP and are trying to determine which out of a set {π1, . . . , πn}
the agent is following. Let the random variable Π take values in that set and represent the policy that the
agent is acting under. We consider only stochastic policies, so that At is a random variable with a distribution
conditioned on St and Π. As in a typical MDP, St is a random variable with a distribution conditioned on St−1

and At−1. The full Bayes net is shown below.

The agent acting in the environment knows what state it is currently in (as is typical in the MDP setting).
Unfortunately, however, we, the observer, cannot see the states St. Thus we are forced to use an adapted
particle filtering algorithm to solve this problem. Concretely, we will develop an efficient algorithm to estimate
P (Π | a1:t).

(a) The Bayes net for part (a) is

Π

st−1 st st+1

at−1 at at+1

· · ·· · ·

· · · · · ·

(i) Select all of the following that are guaranteed
to be true in this model for t > 3:

□ St ⊥⊥ St−2 | St−1

■ St ⊥⊥ St−2 | St−1, A1:t−1

□ St ⊥⊥ St−2 | Π

□ St ⊥⊥ St−2 | Π, A1:t−1

■ St ⊥⊥ St−2 | Π, St−1

■ St ⊥⊥ St−2 | Π, St−1, A1:t−1

□ None of the above

We will compute our estimate for P (Π | a1:t) by coming up with a recursive algorithm for computing
P (Π, St | a1:t). (We can then sum out St to get the desired distribution; in this problem we ignore that
step.)

(ii) Write a recursive expression for P (Π, St | a1:t) in terms of the CPTs in the Bayes net above.

P (Π, St | a1:t) ∝
∑
st−1

P (Π, st−1 | a1:t−1)P (at | St,Π)P (St | st−1, at−1)

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state
st and a potential policy πi.
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(iii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill
in the boxes with the correct values so that the algorithm will approximate P (Π, St | a1:t).
1. Elapse time: for each particle (st, πi), sample a successor st+1 from P (St+1 | st, at).

The policy π′ in the new particle is πi .

2. Incorporate evidence: To each new particle (st+1, π
′), assign weight P (at+1 | st+1, π

′).

3. Resample particles from the weighted particle distribution.

(b) We now observe the acting agent’s actions and rewards at each time step (but we still don’t know the
states). Unlike the MDPs in lecture, here we use a stochastic reward function, so that Rt is a random
variable with a distribution conditioned on St and At. The new Bayes net is given by

Π

st−1 st st+1

at−1 at at+1

· · ·· · ·

· · · · · ·

rt−1 rt rt+1 · · ·· · ·

Notice that the observed rewards do in fact give use-
ful information since d-separation does not give that
Rt ⊥⊥ Π | A1:t.

(i) Give an active path connecting Rt and Π when
A1:t are observed. Your answer should be an
ordered list of nodes in the graph, for example
“St, St+1, At,Π, At−1, Rt−1”.

Rt, St, At,Π. This list reversed is also correct,
and many other similar (though more complicated)
paths are also correct.

(ii) Write a recursive expression for P (Π, St | a1:t, r1:t) in terms of the CPTs in the Bayes net above.

P (Π, St | a1:t, r1:t) ∝
∑
st−1

P (Π, st−1 | a1:t−1, r1:t−1)P (at | St,Π)P (St | st−1, at−1)P (rt | at, St)

(c) We now observe only the sequence of rewards and
no longer observe the sequence of actions. The new
Bayes net is shown on the right.

Π

st−1 st st+1

at−1 at at+1

· · ·· · ·

· · · · · ·

rt−1 rt rt+1 · · ·· · ·
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(i) Write a recursive expression for P (Π, St, At | r1:t) in terms of the CPTs in the Bayes net above.

P (Π, St, At | r1:t) ∝
∑
st−1

∑
at−1

P (Π, st−1, at−1 | r1:t−1)P (At | St,Π)P (St | st−1, at−1)P (rt | St, At)

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state
st, a single action at, and a potential policy πi.

(ii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill
in the boxes with the correct values so that the algorithm will approximate P (Π, St, At | r1:t).

1. Elapse time: for each particle (st, at, πi), sample a successor state st+1 from P (St+1 | st, at).

Then, sample a successor action at+1 from P (At+1 | st+1, πi).

The policy π′ in the new particle is πi.

2. Incorporate evidence: To each new particle (st+1, at+1, π
′), assign weight P (rt+1 | st+1, at+1).

3. Resample particles from the weighted particle distribution.
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3 Particle Filtering
You’ve chased your arch-nemesis Leland to the Stanford quad. You enlist two robo-watchmen to help find him!
The grid below shows the campus, with ID numbers to label each region. Leland will be moving around the
campus. His location at time step t will be represented by random variable Xt. Your robo-watchmen will also
be on campus, but their locations will be fixed. Robot 1 is always in region 1 and robot 2 is always in region
9. (See the * locations on the map.) At each time step, each robot gives you a sensor reading to help you
determine where Leland is. The sensor reading of robot 1 at time step t is represented by the random variable
Et,1. Similarly, robot 2’s sensor reading at time step t is Et,2. The Bayes Net to the right shows your model of
Leland’s location and your robots’ sensor readings.

1* 2 3 4 5

6 7 8 9* 10

11 12 13 14 15

X0 X1 X2
...

E0,1

E0,2

E1,1

E1,2

E2,1

E2,2

In each time step, Leland will either stay in the same region or move to an adjacent region. For example, the
available actions from region 4 are (WEST, EAST, SOUTH, STAY). He chooses between all available actions
with equal probability, regardless of where your robots are. Note: moving off the grid is not considered an
available action.

Each robot will detect if Leland is in an adjacent region. For example, the regions adjacent to region 1 are 1,
2, and 6. If Leland is in an adjacent region, then the robot will report NEAR with probability 0.8. If Leland
is not in an adjacent region, then the robot will still report NEAR, but with probability 0.3.

For example, if Leland is in region 1 at time step t the probability tables are:

E P (Et,1|Xt = 1) P (Et,2|Xt = 1)

NEAR 0.8 0.3

FAR 0.2 0.7

(a) Suppose we are running particle filtering to track Leland’s location, and we start at t = 0 with particles
[X = 6, X = 14, X = 9, X = 6]. Apply a forward simulation update to each of the particles using the
random numbers in the table below.

Assign region IDs to sample spaces in numerical order. For example, if, for a particular particle,
there were three possible successor regions 10, 14 and 15, with associated probabilities, P (X = 10), P (X =
14) and P (X = 15), and the random number was 0.6, then 10 should be selected if 0.6 ≤ P (X = 10), 14
should be selected if P (X = 10) < 0.6 < P (X = 10) + P (X = 14), and 15 should be selected otherwise.
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Particle at t = 0 Random number for update Particle after forward simulation update

X = 6 0.864 11

X = 14 0.178 9

X = 9 0.956 14

X = 6 0.790 11

(b) Some time passes and you now have particles [X = 6, X = 1, X = 7, X = 8] at the particular time step,
but you have not yet incorporated your sensor readings at that time step. Your robots are still in regions
1 and 9, and both report NEAR. What weight do we assign to each particle in order to incorporate this
evidence?

Particle Weight

X = 6 0.8 * 0.3

X = 1 0.8 * 0.3

X = 7 0.3 * 0.3

X = 8 0.3 * 0.8

(c) To decouple this question from the previous question, let’s say you just incorporated the sensor readings
and found the following weights for each particle (these are not the correct answers to the previous
problem!):

Particle Weight

X = 6 0.1
X = 1 0.4
X = 7 0.1
X = 8 0.2

Normalizing gives us the distribution

X = 1 : 0.4/0.8 = 0.5

X = 6 : 0.1/0.8 = 0.125

X = 7 : 0.1/0.8 = 0.125

X = 8 : 0.2/0.8 = 0.25

Use the following random numbers to resample you particles. As on the previous page, assign region
IDs to sample spaces in numerical order.

6



Random number: 0.596 0.289 0.058 0.765

Particle: 6 1 1 8

7


