CS 188
 Summer 2023

Final Review ML

Q1. Naive Bayes

You are given a naive bayes model, shown below, with label Y and features X_{1} and X_{2}. The conditional probabilities for the model are parameterized by p_{1}, p_{2} and q.

X_{1}	Y	$P\left(X_{1} \mid Y\right)$
0	0	p_{1}
1	0	$1-p_{1}$
0	1	$1-p_{1}$
1	1	p_{1}

X_{2}	Y	$P\left(X_{2} \mid Y\right)$
0	0	p_{2}
1	0	$1-p_{2}$
0	1	$1-p_{2}$
1	1	p_{2}

Y	$P(Y)$
0	$1-q$
1	q

Note that some of the parameters are shared (e.g. $\left.P\left(X_{1}=0 \mid Y=0\right)=P\left(X_{1}=1 \mid Y=1\right)=p_{1}\right)$.
(a) Given a new data point with $X_{1}=1$ and $X_{2}=1$, what is the probability that this point has label $Y=1$? Express your answer in terms of the parameters p_{1}, p_{2} and q (you might not need all of them).

$$
P\left(Y=1 \mid X_{1}=1, X_{2}=1\right)=
$$

\qquad

The model is trained with the following data:

sample number	1	2	3	4	5	6	7	8	9	10
X_{1}	0	0	1	0	1	0	1	0	1	1
X_{2}	0	0	0	0	0	0	0	1	0	0
Y	0	0	0	0	0	0	0	1	1	1

(b) What are the maximum likelihood estimates for p_{1}, p_{2} and q ?
$p_{1}=$ \qquad $p_{2}=$ \qquad $q=$ \qquad
(c) For the next part, the model you are given is no longer simple naive bayes. Now there are two distinct
label variables Y_{1}, Y_{2}, and there is a super label Z which conditions all of these labels, thus giving us this hierarchical naive bayes model. The conditional probabilities for the model are parametrized by p_{1}, p_{2}, q_{0}, q_{1} and r. Note that some of the parameters are shared as in the previous part.

X_{1}^{i}	Y_{i}	$P\left(X_{1}^{i} \mid Y_{i}\right)$
0	0	p_{1}
1	0	$1-p_{1}$
0	1	$1-p_{1}$
1	1	p_{1}

Y_{i}	Z	$P\left(Y_{i} \mid Z\right)$
0	0	$1-q_{0}$
1	0	q_{0}
0	1	$1-q_{1}$
1	1	q_{1}

X_{2}^{i}	Y_{i}	$P\left(X_{2}^{i} \mid Y_{i}\right)$
0	0	p_{2}
1	0	$1-p_{2}$
0	1	$1-p_{2}$
1	1	p_{2}

Z	$P(Z)$
0	$1-r$
1	r

(i) What is the probability that $Z=1$ given the partial data point $X_{1}^{2}=1, X_{2}^{2}=1, Y_{1}=1$? Simplify your answer as much as possible and express it in terms of the parameters $p_{1}, p_{2}, q_{0}, q_{1}$ and r (you might not need all of them).
$P\left(Z=1 \mid X_{1}^{2}=1, X_{2}^{2}=1, Y_{1}=1\right)=$ \qquad
(ii) Now we are given a partial data point with $X_{1}^{2}=1, X_{2}^{2}=1, Y_{1}=1$. What is the probability that $Y_{2}=1$. Simplify your answer as much as possible and express it in terms of the parameters $p_{1}, p_{2}, q_{0}, q_{1}$ and r (you might not need all of them).
$P\left(Y_{2}=1 \mid X_{1}^{2}=1, X_{2}^{2}=1, Y_{1}=1\right)=$ \qquad
(d) Let $L_{n b}$ and $L_{h n b}$ be the likelihood of the training data under the naive bayes model and the hierarchical naive bayes model, respectively. Assume each of the models use their respective maximum likelihood parameters. Which of the following properties are guaranteed to be true?$L_{n b} \leq L_{h n b}$$L_{n b} \geq L_{h n b}$$L_{n b}=L_{h n b}$Insufficient information, the above relationships rely on the particular training data.None of the above.

Q2. Perceptron

We would like to use a perceptron to train a classifier for datasets with 2 features per point and labels +1 or -1 .
Consider the following labeled training data:

Features $\left(x_{1}, x_{2}\right)$	Label y^{*}
$(-1,2)$	1
$(3,-1)$	-1
$(1,2)$	-1
$(3,1)$	1

(a) Our two perceptron weights have been initialized to $w_{1}=2$ and $w_{2}=-2$. After processing the first point with the perceptron algorithm, what will be the updated values for these weights?
(b) After how many steps will the perceptron algorithm converge? Write "never" if it will never converge.

Note: one steps means processing one point. Points are processed in order and then repeated, until convergence.
(c) Instead of the standard perceptron algorithm, we decide to treat the perceptron as a single node neural network and update the weights using gradient descent on the loss function.
The loss function for one data point is $\operatorname{Loss}\left(y, y^{*}\right)=\left(y-y^{*}\right)^{2}$, where y^{*} is the training label for a given point and y is the output of our single node network for that point.
(i) Given a general activation function $g(z)$ and its derivative $g^{\prime}(z)$, what is the derivative of the loss function with respect to w_{1} in terms of $g, g^{\prime}, y^{*}, x_{1}, x_{2}, w_{1}$, and w_{2} ?

$$
\frac{\partial L o s s}{\partial w_{1}}=
$$

(ii) For this question, the specific activation function that we will use is:

$$
g(z)=1 \text { if } z \geq 0 \text { and }=-1 \text { if } z<0
$$

Given the following gradient descent equation to update the weights given a single data point. With initial weights of $w_{1}=2$ and $w_{2}=-2$, what are the updated weights after processing the first point? Gradient descent update equation: $w_{i}=w_{i}-\alpha \frac{\partial \text { Loss }}{\partial w_{1}}$
(iii) What is the most critical problem with this gradient descent training process with that activation function?

