
CS 188
Summer 2023 Final Review Neural Networks Solutions
Q1. Neural Networks: Representation

G1: y*x *

w2w1

H1: y

w11 w12

*x

w21 
w22

*

G5: y* + relux * +

b2w2b1w1

H5: y

w11 w12

* + relux

w21 
w22

* +

b2b11 b12

G3: y* relux *

w2w1

H3: y

w11 w12

* relux

w21 
w22

*

G4: y* + relux *

w2b1w1

H4: y

w11 w12

* + relux

w21 
w22

*

b11 b12

G2: y* +x *

w2b1w1

H2: y

w11 w12

* +x

w21 
w22

*

b11 b12

For each of the piecewise-linear functions below, mark all networks from the list above that can represent the
function exactly on the range x ∈ (−∞,∞). In the networks above, relu denotes the element-wise ReLU
nonlinearity: relu(z) = max(0, z). The networks Gi use 1-dimensional layers, while the networks Hi have some
2-dimensional intermediate layers.

(a)

3 2 1 0 1 2 3
3

2

1

0

1

2

3
y

x

■ G1

■ G2

□ G3

□ G4

□ G5

# None of the above

■ H1

■ H2

■ H3

■ H4

■ H5

3 2 1 0 1 2 3
3

2

1

0

1

2

3
y

x

□ G1

■ G2

□ G3

□ G4

□ G5

# None of the above

□ H1

■ H2

□ H3

■ H4

■ H5

The networks G3, G4, G5 include a ReLU nonlinearity on a scalar quantity, so it is impossible for their
output to represent a non-horizontal straight line. On the other hand, H3, H4, H5 have a 2-dimensional
hidden layer, which allows two ReLU elements facing in opposite directions to be added together to form
a straight line. The second subpart requires a bias term because the line does not pass through the origin.

1



(b)

3 2 1 0 1 2 3
3

2

1

0

1

2

3
y

x

□ G1

□ G2

□ G3

□ G4

□ G5

# None of the above

□ H1

□ H2

■ H3

■ H4

■ H5

3 2 1 0 1 2 3
3

2

1

0

1

2

3
y

x

□ G1

□ G2

□ G3

□ G4

□ G5

 None of the above

□ H1

□ H2

□ H3

□ H4

□ H5

These functions include multiple non-horizontal linear regions, so they cannot be represented by any of
the networks Gi which apply ReLU no more than once to a scalar quantity.

The first subpart can be represented by any of the networks with 2-dimensional ReLU nodes. The point
of nonlinearity occurs at the origin, so nonzero bias terms are not required.

The second subpart has 3 points where the slope changes, but the networks Hi only have a single 2-
dimensional ReLU node. Each application of ReLU to one element can only introduce a change of slope
for a single value of x.

(c)

3 2 1 0 1 2 3
3

2

1

0

1

2

3
y

x

□ G1

□ G2

□ G3

□ G4

□ G5

# None of the above

□ H1

□ H2

□ H3

□ H4

■ H5

3 2 1 0 1 2 3
3

2

1

0

1

2

3
y

x

□ G1

□ G2

□ G3

□ G4

□ G5

# None of the above

□ H1

□ H2

□ H3

■ H4

■ H5

Both functions have two points where the slope changes, so none of the networks Gi;H1, H2 can represent
them.

An output bias term is required for the first subpart because one of the flat regions must be generated by
the flat part of a ReLU function, but neither one of them is at y = 0.

The second subpart doesn’t require a bias term at the output: it can be represented as −relu(−x+1
2 ) −

relu(x + 1). Note how if the segment at x > 2 were to be extended to cross the x axis, it would cross
exactly at x = −1, the location of the other slope change. A similar statement is true for the segment at
x < −1.

2



Q2. Deep “Blackjack”
To celebrate the end of the semester, you visit Las Vegas and decide to play a good, old fashioned game of
“Blackjack”!

Recall that the game has states 0,1,. . . ,8, corresponding to dollar amounts, and a Done state where the game
ends. The player starts with $2, i.e. at state 2. The player has two actions: Stop (a = 0) and Roll (a = 1), and
is forced to take the Stop action at states 0,1,and 8.

When the player takes the Stop action (a = 0), they transition to the Done state and receive reward equal to
the amount of dollars of the state they transitioned from: e.g. taking the stop action at state 3 gives the player
$3. The game ends when the player transitions to Done.

The Roll action (a = 1) is available from states 2-7. The player rolls a biased 6-sided die. If the player Rolls
from state s and the die lands on outcome o, the player transitions to state s+ o− 2, as long as s+ o− 2 ≤ 8
(s is the amount of dollars of the current state, o is the amount rolled, and the negative 2 is the price to roll).
If s+ o− 2 > 8, the player busts, i.e. transitions to Done and does NOT receive reward.

As the bias of the dice is unknown, you decided to perform some good-old fashioned reinforcement learning
(RL) to solve the game. However, unlike in the midterm, you have decided to flex and solve the game using
approximate Q-learning. Not only that, you decided not to design any features - the features for the Q-value
at (s, a) will simply be the vector [s a], where s is the state and a is the action.

(a) First, we will investigate how your choice of features impacts whether or not you can learn the optimal
policy. Suppose the unique optimal policy in the MDP is the following:

State 2 3 4 5 6 7

π∗(s) Roll Roll Roll Stop Stop Stop

For each of the cases below, select “Possible with large neural net” if the policy can be expressed by using
a large neural net to represent the Q-function using the features specified as input. (That is, the greedy
policy with respect to some Q-function representable with a large neural network is the optimal policy:
Q(s, π∗(s)) > Q(s, a) for all states s and actions a ̸= π∗(s).) Select “Possible with weighted sum” if the
policy can be expressed by using a weighted linear sum to represent the Q-function. Select “Not Possible”
if expressing the policy with given features is impossible no matter the function.

(i) Suppose we decide to use the state s and action a as the features for Q(s, a).

■ Possible with large neural network □ Possible with linear weighted sum of features # Not
possible

A sufficiently large neural network could represent the true optimal Q-function using this feature repre-
sentation. The optimal Q-function satisfies the desired property (there are no ties as the optimal policy
is unique). Alternatively, a sufficiently large neural network could represent a function that is 1 for the
optimal action in each state, and 0 otherwise, which also suffices.

No linear weighted sum of features can represent this optimal policy. To see this, let our linear weighted
sum be w0s+w1a+w3. We need Q(4, 1) > Q(4, 0) and Q(5, 0) > Q(5, 1). Plugging in the expression for Q,
the former inequality requires that w1 > 0. The second inequality requires that w1 < 0, a contradiction.
So we cannot represent the policy with a weighted sum of features.

(ii) Now suppose we decide to use s+ a as the feature for Q(s, a).

■ Possible with large neural network □ Possible with linear weighted sum of features # Not
possible

3



Indeed, it’s possible that no neural network can represent the optimal Q-function with this feature repre-
sentation, as Q(4, 1) does not have to equal Q(5, 0). However, the question is not asking about representing
the optimal Q-function, but instead the optimal policy, which merely requires that Q(s, 1) > Q(s, 0) for
s ≤ 4 and Q(s, 0) > Q(s, 1) for s ≥ 5. This can be done with the feature representation. For example
the neural network in part (d) can represent the following function (using w0 = −5 and w1 = −2) that
represents the optimal policy:

A Q-function from s+ a, that represents the optimal policy.

Again, no linear weighted sum of features can represent this optimal policy. To see this, let our linear
weighted sum be w0s+w0a+w1. This is a special case of the linear weighted sums in part (i), which we
know cannot represent the optimal policy.

(iii) Now suppose we decide to use a as the feature for Q(s, a).

□ Possible with large neural network □ Possible with linear weighted sum of features  Not
possible

This isn’t possible, regardless of what function you use. With this representation, we will have Q(4, 1) =
Q(5, 1) and Q(4, 0) = Q(5, 0). So we cannot both have Q(4, 1) > Q(4, 0) and Q(5, 0) > Q(5, 1).

(iv) Now suppose we decide to use sign(s−4.5) ·a as the feature for Q(s, a), where sign(x) is −1 if x < 0,
1 if x > 0, and 0 if x = 0.

■ Possible with large neural network ■ Possible with linear weighted sum of features # Not
possible

Q(s, a) = −sign(s − 4.5) · a is sufficient to represent the optimal policy, as we have Q(s, 0) = 0 for all s,
Q(s, 1) = 1 > Q(s, 0) for s ≤ 4, and Q(s, 1) = −1 < Q(s, 0) for s ≥ 5. This is a linear function of the
input, and so can also be represented using a neural network.

(b) Next, we investigate the effect of different neural network architectures on your ability to learn the optimal
policy. Recall that our features for the Q-value at (s, a) will simply be the vector [s a], where s is the
state and a is the action. In addition, suppose that the unique optimal policy is the following:

State 2 3 4 5 6 7

π∗(s) Roll Roll Roll Stop Stop Stop

Which of the following neural network architectures can express Q-values that represent the optimal
policy? That is, the greedy policy with respect to some Q-function representable with the given neural

4



network is the optimal policy: Q(s, π∗(s)) > Q(s, a) for all states s and actions a ̸= π∗(s). Hint: Recall

that ReLU(x) =

{
x x > 0

0 x ≤ 0

□ Neural Network 1:

□ Neural Network 2:

□ Neural Network 3:

□ Neural Network 4:

■ Neural Network 5:

5



# None of the above.

Recall from the previous question that no linear function of the features [s a] can represent the optimal
policy. So network 1, which is linear (as it has no activation function), cannot represent the optimal policy.

Network 2 cannot represent the optimal function, as it does not take as input the action. So Q(s, 0) =
Q(s, 1) for all states s.

Network 3 cannot simultaneously satisfy Q(4, 0) < Q(4, 1) and Q(5, 0) > Q(5, 1). This is because the
rectified linear unit is a monotonic function: if x ≥ y, then ReLU(x) ≥ ReLU(y). Since we cannot
represent the optimal policy using a linear function of s, a, we cannot represent it with a ReLU of a linear
function of s, a.

Network 4 is always 0, so it cannot represent the (unique) optimal policy.

Network 5 can represent the optimal policy. For example, w0 = −4, w1 = −2 represents the optimal
policy.

(c) As with the linear approximate q-learning, you decide to minimize the squared error of the Bellman resid-
ual. Let Qw(s, a) be the approximate Q-values of s, a. After taking action a in state s and transitioning
to state s′ with reward r, you first compute the target target = r + γmaxa′ Qw(s′, a′). Then your loss is:

loss(w) =
1

2
(Qw(s, a)− target)

2

You then perform gradient descent to minimize this loss. Note that we will not take the gradient through
the target - we treat it as a fixed value.

Which of the following updates represents one step of gradient descent on the weight parameter wi with
learning rate α ∈ (0, 1) after taking action a in state s and transitioning to state s′ with reward r? [Hint:
which of these is equivalent to the normal approximate Q-learning update when Qw,(s, a) = w · f(s, a)?]

# wi = wi + α (Qw(s, a)− (r + γmaxa′ Qw(s′, a′))) ∂Qw(s,a)
∂wi

 wi = wi − α (Qw(s, a)− (r + γmaxa′ Qw(s′, a′))) ∂Qw(s,a)
∂wi

# wi = wi + α (Qw(s, a)− (r + γmaxa′ Qw(s′, a′))) s

# wi = wi − α (Qw(s, a)− (r + γmaxa′ Qw(s′, a′))) s

# None of the above.

Note that the gradient of the loss with respect to the parameter, via the chain rule, is:(
Qw(s, a)−

(
r + γmax

a′
Qw(s′, a′)

)) ∂Qw(s, a)

∂wi

The second option performs gradient descent, the first option is gradient ascent, and the other options
compute the gradient incorrectly.

(d) While programming the neural network, you’re getting some bizarre errors. To debug these, you decide
to calculate the gradients by hand and compare them to the result of your code.

Suppose your neural network is the following:
That is, Qw(s, a) = s+ a+ w1 ReLU(w0 + s+ a).

6



Neural Network 6

You are able to recall that d
dxReLU(x) =

{
1 x ≥ 0

0 x < 0
.

(i) Suppose w0 = −4, and w1 = −1. What is Qw(5, 0)?

Qw(5, 0) = 4

Plugging in values, we get
Qw(5, 0) = 5−ReLU(−4 + 5) = 4.

(ii) Suppose w0 = −4, and w1 = −1. What is the gradient with respect to w0, evaluated at s = 5, a = 0?

∂
w0

Qw(5, 0) = -1

Since the input to the ReLU is positive, the gradient of the ReLU is 1. Applying the chain rule, we get
that ∂

w0
Qw(5, 0) = w1 = −1

(iii) Suppose w0 = −4, and w1 = −1. What is the gradient with respect to w0, evaluated at s = 3, a = 0?

∂
w0

Qw(3, 0) = 0

Since the input to the ReLU is negative, the gradient of the ReLU is 0. Applying the chain rule, the
gradient with respect to w0 has to be 0.

(e) After picking a feature representation, neural network architecture, and update rule, as well as calculating
the gradients, it’s time to turn to the age old question... will this even work?

(i) Without any other assumptions, is it guaranteed that your approximate Q-values will converge to
the optimal policy, if each s, a pair is observed an infinite amount of times?

# Yes No

(ii) Without any other assumptions, is it guaranteed that your approximate Q-values will converge to
the optimal policy, if each s, a pair is observed an infinite amount of times and there exists some w
such that Qw(s, a) = Q∗(s, a)?

# Yes No

Note that there’s no guarantee that your neural network will converge in this case. For example, the
learning rate can be too large! (As in the RL Blackjack question on midterm.)

7


