
CS 188
Summer 2023 Final Review Neural Networks
Q1. Neural Networks: Representation

G1: y*x *

w2w1

H1: y

w11 w12

*x

w21
w22

*

G5: y* + relux * +

b2w2b1w1

H5: y

w11 w12

* + relux

w21
w22

* +

b2b11 b12

G3: y* relux *

w2w1

H3: y

w11 w12

* relux

w21
w22

*

G4: y* + relux *

w2b1w1

H4: y

w11 w12

* + relux

w21
w22

*

b11 b12

G2: y* +x *

w2b1w1

H2: y

w11 w12

* +x

w21
w22

*

b11 b12

For each of the piecewise-linear functions below, mark all networks from the list above that can represent the
function exactly on the range x ∈ (−∞,∞). In the networks above, relu denotes the element-wise ReLU
nonlinearity: relu(z) = max(0, z). The networks Gi use 1-dimensional layers, while the networks Hi have some
2-dimensional intermediate layers.

(a)

3 2 1 0 1 2 3
3

2

1

0

1

2

3
y

x

□ G1

□ G2

□ G3

□ G4

□ G5

None of the above

□ H1

□ H2

□ H3

□ H4

□ H5

3 2 1 0 1 2 3
3

2

1

0

1

2

3
y

x

□ G1

□ G2

□ G3

□ G4

□ G5

None of the above

□ H1

□ H2

□ H3

□ H4

□ H5

(b)

3 2 1 0 1 2 3
3

2

1

0

1

2

3
y

x

□ G1

□ G2

□ G3

□ G4

□ G5

None of the above

□ H1

□ H2

□ H3

□ H4

□ H5

3 2 1 0 1 2 3
3

2

1

0

1

2

3
y

x

□ G1

□ G2

□ G3

□ G4

□ G5

None of the above

□ H1

□ H2

□ H3

□ H4

□ H5

1

(c)

3 2 1 0 1 2 3
3

2

1

0

1

2

3
y

x

□ G1

□ G2

□ G3

□ G4

□ G5

None of the above

□ H1

□ H2

□ H3

□ H4

□ H5

3 2 1 0 1 2 3
3

2

1

0

1

2

3
y

x

□ G1

□ G2

□ G3

□ G4

□ G5

None of the above

□ H1

□ H2

□ H3

□ H4

□ H5

2

Q2. Deep “Blackjack”
To celebrate the end of the semester, you visit Las Vegas and decide to play a good, old fashioned game of
“Blackjack”!

Recall that the game has states 0,1,. . . ,8, corresponding to dollar amounts, and a Done state where the game
ends. The player starts with $2, i.e. at state 2. The player has two actions: Stop (a = 0) and Roll (a = 1), and
is forced to take the Stop action at states 0,1,and 8.

When the player takes the Stop action (a = 0), they transition to the Done state and receive reward equal to
the amount of dollars of the state they transitioned from: e.g. taking the stop action at state 3 gives the player
$3. The game ends when the player transitions to Done.

The Roll action (a = 1) is available from states 2-7. The player rolls a biased 6-sided die. If the player Rolls
from state s and the die lands on outcome o, the player transitions to state s+ o− 2, as long as s+ o− 2 ≤ 8
(s is the amount of dollars of the current state, o is the amount rolled, and the negative 2 is the price to roll).
If s+ o− 2 > 8, the player busts, i.e. transitions to Done and does NOT receive reward.

As the bias of the dice is unknown, you decided to perform some good-old fashioned reinforcement learning
(RL) to solve the game. However, unlike in the midterm, you have decided to flex and solve the game using
approximate Q-learning. Not only that, you decided not to design any features - the features for the Q-value
at (s, a) will simply be the vector [s a], where s is the state and a is the action.

(a) First, we will investigate how your choice of features impacts whether or not you can learn the optimal
policy. Suppose the unique optimal policy in the MDP is the following:

State 2 3 4 5 6 7

π∗(s) Roll Roll Roll Stop Stop Stop

For each of the cases below, select “Possible with large neural net” if the policy can be expressed by using
a large neural net to represent the Q-function using the features specified as input. (That is, the greedy
policy with respect to some Q-function representable with a large neural network is the optimal policy:
Q(s, π∗(s)) > Q(s, a) for all states s and actions a ̸= π∗(s).) Select “Possible with weighted sum” if the
policy can be expressed by using a weighted linear sum to represent the Q-function. Select “Not Possible”
if expressing the policy with given features is impossible no matter the function.

(i) Suppose we decide to use the state s and action a as the features for Q(s, a).

□ Possible with large neural network □ Possible with linear weighted sum of features # Not
possible

(ii) Now suppose we decide to use s+ a as the feature for Q(s, a).

□ Possible with large neural network □ Possible with linear weighted sum of features # Not
possible

(iii) Now suppose we decide to use a as the feature for Q(s, a).

□ Possible with large neural network □ Possible with linear weighted sum of features # Not
possible

(iv) Now suppose we decide to use sign(s−4.5) ·a as the feature for Q(s, a), where sign(x) is −1 if x < 0,
1 if x > 0, and 0 if x = 0.

□ Possible with large neural network □ Possible with linear weighted sum of features # Not
possible

3

(b) Next, we investigate the effect of different neural network architectures on your ability to learn the optimal
policy. Recall that our features for the Q-value at (s, a) will simply be the vector [s a], where s is the
state and a is the action. In addition, suppose that the unique optimal policy is the following:

State 2 3 4 5 6 7

π∗(s) Roll Roll Roll Stop Stop Stop

Which of the following neural network architectures can express Q-values that represent the optimal
policy? That is, the greedy policy with respect to some Q-function representable with the given neural
network is the optimal policy: Q(s, π∗(s)) > Q(s, a) for all states s and actions a ̸= π∗(s). Hint: Recall

that ReLU(x) =

{
x x > 0

0 x ≤ 0

□ Neural Network 1:

□ Neural Network 2:

□ Neural Network 3:

□ Neural Network 4:

4

□ Neural Network 5:

None of the above.

(c) As with the linear approximate q-learning, you decide to minimize the squared error of the Bellman resid-
ual. Let Qw(s, a) be the approximate Q-values of s, a. After taking action a in state s and transitioning
to state s′ with reward r, you first compute the target target = r + γmaxa′ Qw(s′, a′). Then your loss is:

loss(w) =
1

2
(Qw(s, a)− target)

2

You then perform gradient descent to minimize this loss. Note that we will not take the gradient through
the target - we treat it as a fixed value.

Which of the following updates represents one step of gradient descent on the weight parameter wi with
learning rate α ∈ (0, 1) after taking action a in state s and transitioning to state s′ with reward r? [Hint:
which of these is equivalent to the normal approximate Q-learning update when Qw,(s, a) = w · f(s, a)?]

wi = wi + α (Qw(s, a)− (r + γmaxa′ Qw(s′, a′))) ∂Qw(s,a)
∂wi

wi = wi − α (Qw(s, a)− (r + γmaxa′ Qw(s′, a′))) ∂Qw(s,a)
∂wi

wi = wi + α (Qw(s, a)− (r + γmaxa′ Qw(s′, a′))) s

wi = wi − α (Qw(s, a)− (r + γmaxa′ Qw(s′, a′))) s

None of the above.

(d) and (e) are on the next page.

(d) While programming the neural network, you’re getting some bizarre errors. To debug these, you decide
to calculate the gradients by hand and compare them to the result of your code.

Suppose your neural network is the following:
That is, Qw(s, a) = s+ a+ w1 ReLU(w0 + s+ a).

You are able to recall that d
dxReLU(x) =

{
1 x ≥ 0

0 x < 0
.

(i) Suppose w0 = −4, and w1 = −1. What is Qw(5, 0)?

Qw(5, 0) =

5

Neural Network 6

(ii) Suppose w0 = −4, and w1 = −1. What is the gradient with respect to w0, evaluated at s = 5, a = 0?

∂
w0

Qw(5, 0) =

(iii) Suppose w0 = −4, and w1 = −1. What is the gradient with respect to w0, evaluated at s = 3, a = 0?

∂
w0

Qw(3, 0) =

(e) After picking a feature representation, neural network architecture, and update rule, as well as calculating
the gradients, it’s time to turn to the age old question... will this even work?

(i) Without any other assumptions, is it guaranteed that your approximate Q-values will converge to
the optimal policy, if each s, a pair is observed an infinite amount of times?

Yes # No

(ii) Without any other assumptions, is it guaranteed that your approximate Q-values will converge to
the optimal policy, if each s, a pair is observed an infinite amount of times and there exists some w
such that Qw(s, a) = Q∗(s, a)?

Yes # No

6

