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Q1. [10 pts] Potpourri: Blast from the Past
(a) Search. Barbie and Ken are in a building of size 𝐻 ×𝑊 ×𝐿. Each cell of the building may or may not contain a toy, and

their mission is to collect all of the toys. It is okay for Barbie and Ken to be in the same cell of the building.
(i) [2 pts] Propose a minimal state space representation for this problem.

Current locations of Barbie and Ken in the building, and a Boolean variable indicating the presence of toys for each
square.

(ii) [2 pts] What is the size of the state space?

(𝐻𝑊𝐿)2 ⋅ 2𝐻𝑊𝐿

(b) [2 pts] CSPs.
Alice is scheduling job interviews. Nine different companies reached out to interview her this coming week, and she is
panicked trying to schedule all of them in just five days! For the nine companies, three are big (𝐵1, 𝐵2, 𝐵3), three are
medium (𝑀1, 𝑀2, 𝑀3), and three are small (𝑆1, 𝑆2, 𝑆3). Write down her constraints formally below:

Index Explanation Constraint

A You should interview with 𝐵2 on Friday. 𝐵2 = 5

B You should interview with 𝐵3 on Monday.
𝐵3 = 1

C You should interview with 𝑆1 on either Monday or Tuesday. 𝑆1 ∈ {1, 2}

E You should interview with 𝑆2 after 𝑆1 (cannot be on the same
day). 𝑆2 > 𝑆1

G You should take at least two days break after 𝑀2 before 𝑀3 (If
𝑀2 occurs on Monday, the earliest 𝑀3 can occur is Thursday). 𝑀3 > 𝑀2 + 2

H You should interview with 𝑀3 after 𝐵1 (cannot be on the same
day), since they have the same interview style. 𝑀3 > 𝐵1
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(c) [4 pts] Games.

7 3 9 4 6 2 1 7.5 5 6 0 8

Door 1 Door 2 Door 3

A CB ED KGF LJH I

(i) [2 pts] Fill out the values on the game tree. Which door does the top maximizer node choose?
 Door 1 # Door 2 # Door 3

(ii) [2 pts] Which terminal nodes are never explored as a consequence of pruning? (Assume that we prune on equality.)
□ A □ B □ C ■ D □ E □ F ■ G ■ H □ I □ J ■ K ■ L
# None of the above
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Q2. [13 pts] Bayesian Networks: Across the Spider-Verse
Miles is curious about the probability that he arrives to school on time. The factors involved with him arriving to school on time
can be represented by the following Bayes Net (assume that each variable is a binary variable):

• 𝐴: Sets alarm

• 𝑆: Over sleeps

• 𝐷: Dad is late

• 𝐶: Fighting crime last night

• 𝑇 : Arrives at school on time

𝐴 𝐶

𝑆 𝐷

𝑇

(a) [7 pts] Miles wants to calculate 𝑃 (𝐶|𝑇 ) using variable elimination. Assume he eliminates variables in alphabetical order
(𝐴,𝐷, 𝑆).

(i) [1 pt] What factors does he have available at the start?

𝑃 (𝐴), 𝑃 (𝐶), 𝑃 (𝑆|𝐴,𝐶), 𝑃 (𝐷|𝐶), 𝑃 (𝑇 |𝑆,𝐷)

(ii) [1 pt] First, he eliminates 𝐴, and get the new factor

𝑓1(𝐶, 𝑆) =

∑

𝐴 𝑃 (𝐴) ∗ 𝑃 (𝑆|𝐴,𝐶)

Write out the remaining factors

𝑃 (𝐶), 𝑃 (𝐷|𝐶), 𝑃 (𝑇 |𝑆,𝐷), 𝑓1(𝐶, 𝑆)

(iii) [1 pt] Then, he eliminates 𝐷, and get the new factor

𝑓2(𝐶, 𝑆, 𝑇 ) =

∑

𝐷 𝑃 (𝐷|𝐶) ∗ 𝑃 (𝑇 |𝑆,𝐷)

Write out the remaining factors

𝑃 (𝐶), 𝑓1(𝐶, 𝑆), 𝑓2(𝐶, 𝑆, 𝑇 )

(iv) [1 pt] Then, he eliminates 𝑆, and get the new factor

𝑓3(𝐶, 𝑇 ) =

∑

𝑆 𝑓1(𝐶, 𝑆) ∗ 𝑓2(𝐶, 𝑆, 𝑇 )

Write out the remaining factors

𝑃 (𝐶), 𝑓3(𝐶, 𝑇 )

(v) [1 pt] Finally, join any remaining factors to calculate

𝑓4(𝐶, 𝑇 ) =
𝑃 (𝐶) ∗ 𝑓3(𝐶, 𝑇 )

(vi) [1 pt] How can he use this to calculate 𝑃 (𝐶 = +𝑐|𝑇 = −𝑡)? Your answer should be in terms of 𝑓4.

𝑃 (𝐶 = +𝑐|𝑇 = −𝑡) =

𝑓4(+𝑐,−𝑡)
𝑓4(+𝑐,−𝑡)+𝑓4(−𝑐,−𝑡)

(vii) [1 pt] Order factors 𝑓1, 𝑓2, and 𝑓3 in increasing order of size.
𝑓1

<
𝑓3

<
𝑓2
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The following CPTs correspond to the Bayes Net above:

𝐴 𝐶 𝑆 𝑃 (𝑆|𝐴,𝐶)
+𝑎 +𝑐 +𝑠 11∕16
+𝑎 +𝑐 −𝑠 5∕16
+𝑎 −𝑐 +𝑠 1∕8
+𝑎 −𝑐 −𝑠 7∕8
−𝑎 +𝑐 +𝑠 9∕10
−𝑎 +𝑐 −𝑠 1∕10
−𝑎 −𝑐 +𝑠 1∕5
−𝑎 −𝑐 −𝑠 4∕5

𝑇 𝐷 𝑆 𝑃 (𝑇 |𝑆,𝐷)
+𝑡 +𝑑 +𝑠 1∕20
+𝑡 +𝑑 −𝑠 2∕5
+𝑡 −𝑑 +𝑠 1∕5
+𝑡 −𝑑 −𝑠 1
−𝑡 +𝑑 +𝑠 19∕20
−𝑡 +𝑑 −𝑠 3∕5
−𝑡 −𝑑 +𝑠 4∕5
−𝑡 −𝑑 −𝑠 0

𝐶 𝐷 𝑃 (𝐷|𝐶)
+𝑐 +𝑑 1∕4
+𝑐 −𝑑 3∕4
−𝑐 +𝑑 0
−𝑐 −𝑑 1

𝐶 𝑃 (𝐴)
−𝑐 4∕5
+𝑐 1∕5

𝐴 𝑃 (𝐴)
−𝑎 1∕4
+𝑎 3∕4

Miles is now interested in calculating 𝑃 (𝐶 = +𝑐|𝑇 = −𝑡) via sampling. He generates the following random samples (assume
the variables were generated from left to right):

Sample 𝐴 𝐶 𝑆 𝐷 𝑇
1 +𝑎 −𝑐 −𝑠 −𝑑 +𝑡
2 +𝑎 −𝑐 +𝑠 −𝑑 −𝑡
3 +𝑎 +𝑐 +𝑠 −𝑑 −𝑡
4 −𝑎 −𝑐 −𝑠 +𝑑 −𝑡
5 −𝑎 −𝑐 +𝑠 +𝑑 −𝑡

(b) [3 pts] Assuming Miles uses prior sampling:
(i) [1 pt] Bubble in the samples that Miles uses to calculate the final probability.

□ 1 ■ 2 ■ 3 ■ 4 ■ 5
(ii) [2 pts] What is the probability he calculates via prior sampling?

𝑃 (𝐶 = +𝑐|𝑇 = −𝑡) =
1∕4

(c) [3 pts] Now assuming Miles uses likelihood weighting:
(i) [1 pt] What weight does Miles assign to each sample?

Sample 1:
0

Sample 2:
4∕5

Sample 3:
4∕5

Sample 4:
3∕5

Sample 5:
19∕20

What final probability does he calculate?
(ii) [2 pts] What is the probability he calculates via likelihood weighting?

𝑃 (𝐶 = +𝑐|𝑇 = −𝑡) =
16∕63
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Q3. [12 pts] HMMs: Head TA Kirby
Kirby is serving as a TA. He wants to evaluate his teaching performance after each of his weekly discussion sections, and he
does so based on how much his students collaborate during his section. He models this situation using an HMM.

𝑇0 𝑇1 𝑇2

𝐶1 𝐶2

⋯

⋯

𝑇0 𝑃 (𝑇0)
+t 0.6
-t 0.4

𝑇𝑖+1 𝑇𝑖 𝑃 (𝑇𝑖+1|𝑇𝑖)
+t +t 0.7
-t +t 0.3
+t -t 0.4
-t -t 0.6

𝐶𝑖 𝑇𝑖 𝑃 (𝐶𝑖|𝑇𝑖)
+c +t 0.5
-c +t 0.5
+c -t 0.1
-c -t 0.9

𝑇𝑖 is a binary random variable representing whether Kirby taught sufficiently well during Week 𝑖. 𝐶𝑖 is another binary random
variable representing whether students collaborated during Week 𝑖. He does not see his students’ collaboration during Week 0.

(a) [8 pts] Using the two steps of the forward algorithm, calculate the distribution of 𝑃 (𝑇1|𝐶1 = +𝑐). For the sake of
organization, you may use the first box for the time elapse update and the second box for the observation update. You
may also leave your final answers unsimplified (for example, as fractions).
Time elapse update:

𝑃 (𝑇1 = +𝑡) = 𝑃 (𝑇1 = +𝑡|𝑇0 = +𝑡)𝑃 (𝑇0 = +𝑡) + 𝑃 (𝑇1 = +𝑡|𝑇0 = −𝑡)𝑃 (𝑇0 = −𝑡)
= 0.7 ∗ 0.6 + 0.4 ∗ 0.4
= 0.58

𝑃 (𝑇1 = −𝑡) = 𝑃 (𝑇1 = −𝑡|𝑇0 = +𝑡)𝑃 (𝑇0 = +𝑡) + 𝑃 (𝑇1 = −𝑡|𝑇0 = −𝑡)𝑃 (𝑇0 = −𝑡)
= 0.3 ∗ 0.6 + 0.6 ∗ 0.4
= 0.42

Observation update:
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𝑃 (𝑇1 = +𝑡, 𝐶1 = +𝑐) = 𝑃 (𝐶1 = +𝑐|𝑇1 = +𝑡)𝑃 (𝑇1 = +𝑡)
= 0.5 ∗ 0.58 = 0.29

𝑃 (𝑇1 = −𝑡, 𝐶1 = +𝑐) = 𝑃 (𝐶1 = +𝑐|𝑇1 = −𝑡)𝑃 (𝑇1 = −𝑡)
= 0.1 ∗ 0.42 = 0.042

𝑃 (𝐶1 = +𝑐) = 𝑃 (𝐶1 = +𝑐, 𝐶1 = +𝑐) + 𝑃 (𝑇1 = −𝑡, 𝐶1 = +𝑐)
= 0.542 + 0.21 = 0.332

𝑃 (𝑇1 = +𝑡|𝐶1 = +𝑐) =
𝑃 (𝑇1 = +𝑡, 𝐶1 = +𝑐)

𝑃 (𝐶1 = +𝑐)

𝑃 (𝑇1 = −𝑡|𝐶1 = +𝑐) =
𝑃 (𝑇1 = −𝑡, 𝐶1 = +𝑐)

𝑃 (𝐶1 = +𝑐)

𝑃 (𝑇1 = +𝑡|𝐶1 = +𝑐) =

0.29
0.332

𝑃 (𝑇1 = −𝑡|𝐶1 = +𝑐) =

0.042
0.332

(b) [4 pts] In order to save computational resources, Kirby turns to particle filtering to analyze this HMM.
(i) [2 pts] At timestep 𝑡 = 3, Kirby has observed the following evidence: 𝐶1 = +𝑐, 𝐶2 = −𝑐, and 𝐶3 = +𝑐. Following

the particle filtering algorithm, assign weights to particles in the following states at 𝑡 = 3:

Particles in state +t will have weight:
0.5

Particles in state -t will have weight:
0.1

The weight of a particle in some arbitrary state t is 𝑃 (𝐶3 = +𝑐|𝑇3 = 𝑡).
(ii) [2 pts] At timestep 𝑡 = 6, we observe 3 particles in state +𝑡 and 5 particles in state −𝑡, and 𝐶6 = −𝑐. Fill in the table

describing the distribution that we resample our new particles from for 𝑡 = 7. Show any work in the box on the left.

𝑇7 𝑃 (𝑇7)

+t 0.25

-t 0.75

The 3 particles in state +t each have weight 𝑃 (𝐶6 = −𝑐|𝑇6 = +𝑡) = 0.5 (totaling 0.5 * 3 = 1.5), while the 5 particles
in state -t each have weight 𝑃 (𝐶6 = −𝑐|𝑇6 = −𝑡) = 0.9 (totaling 0.9 * 5 = 4.5). Normalizing the weights to form a
probability distribution across the domain of 𝑇 , we arrive at 𝐏(𝐓𝟕 = +𝐭) = 𝟎.𝟐𝟓 and 𝐏(𝐓𝟕 = −𝐭) = 𝟎.𝟕𝟓.
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Q4. [15 pts] Decision Networks: Coin Toss Game
Alice and Bob are participating in a coin toss game. Both players toss two fair coins. Bob’s coins are revealed first, after which
he must choose to “continue” or “concede”. If he concedes, Bob loses $2 and the game ends. If he continues, Alice’s coins
are revealed. If Bob’s coin toss resulted in strictly more heads than Alice’s, he wins $10. However, if he has an equal or lesser
number of heads than Alice, Bob loses $10. Assume Bob is rational and his utility is the amount of money he wins.

(a) [2 pts] Sketch the decision network for the game, use the following nodes and node types.
Nodes: 𝐵 represents the number of heads in Bob’s coins; 𝐴 represents the number of heads in Alice’s coins; 𝐶 represents
Bob’s choice to continue or concede; 𝑈 represents Bob’s utility.
Node types: An elliptical node represents a chance node; a rectangular node represents an action node; a diamond-shaped
node represents utility.

𝐵

𝐶

𝐴

𝑈

𝐵

𝐶

𝐴

𝑈

(b) [3 pts] For each scenario where Bob gets 0, 1, or 2 heads, what should Bob’s decision be: to "continue or "concede"?
Justify your answer.

(i) [1 pt] If Bob gets 0 heads:

(ii) [1 pt] If Bob gets 1 heads:

(iii) [1 pt] If Bob gets 2 heads:
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By simple probabilities, Pr(𝐵 = 0) = Pr(𝐴 = 0) = 0.25, Pr(𝐵 = 1) = Pr(𝐴 = 1) = 0.5, and Pr(𝐵 = 2) = Pr(𝐴 = 2) =
0.25.

EU(continue|𝐵 = 0) = −10 (1)
EU(concede|𝐵 = 0) = −2 (2)

So Bob choose to concede when there are 0 heads.

EU(continue|𝐵 = 1) = −10 ⋅ 0.75 + 10 ⋅ 0.25 = −5 (3)
EU(concede|𝐵 = 1) = −2 (4)

So Bob choose to concede when there are 1 head.

EU(continue|𝐵 = 2) = −10 ⋅ 0.25 + 10 ⋅ 0.75 = 5 (5)
EU(concede|𝐵 = 2) = −2 (6)

So Bob choose to continue when there are 2 heads.

(c) [3 pts] What is the expected monetary gain or loss for Bob in a game?

In the last part, we have MEU(𝐵 = 0) = −2 (where Bob concedes), MEU(𝐵 = 1) = −2 (where Bob concedes), and
MEU(𝐵 = 2) = 5 (where Bob chooses to continue).
So

EMEU = MEU(𝐵 = 0) Pr(𝐵 = 0) + MEU(𝐵 = 1) Pr(𝐵 = 1) + MEU(𝐵 = 2) Pr(𝐵 = 2) (7)
= −2 ⋅ 0.25 + (−2) ⋅ 0.5 + 5 ⋅ 0.25 (8)
= −0.25 (9)

Bob is expected to lose $0.25 in each game.
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(d) [2 pts] Bob perceives the game as unfair and refuses to participate. To persuade him, Alice proposes an additional rule:
Bob can pay Alice 𝑐 dollars (𝑐 > 0) to see one of Alice’s coins before seeing his own coins. Sketch the decision network
for the modified coin toss game.
New node: 𝑅 represents the revealed coin, either head (𝑅 = 𝐻) or tail (𝑅 = 𝑇 ). 𝑆 represents Bob’s decision of whether
to see one of Alice’s coins.

𝐵

𝐶

𝐴

𝑈 𝑆

𝑅

𝐵

𝐶

𝐴

𝑈 𝑆

𝑅

(e) [2 pts] Following the previous part, calculate the conditional distribution of 𝐴 given 𝑅 and fill in the table:

𝑅 Pr(𝐴 = 0|𝑅) Pr(𝐴 = 1|𝑅) Pr(𝐴 = 2|𝑅)

𝐻

𝑇

𝑅 Pr(𝐴 = 0|𝑅) Pr(𝐴 = 1|𝑅) Pr(𝐴 = 2|𝑅)

𝐻 0 0.5 0.5

𝑇 0.5 0.5 0

(f) [3 pts] (Extra Credit!!!!!, do this last) Following the previous two parts, Alice secretly insists that this new rule should
not impact her expected gain. What should the value of 𝑐 be to meet this condition? Justify your answer.
Alice insists that “this new rule should not affect her expected earnings.”
This condition equates to “Bob cannot increase his gain by purchasing the information of 𝑅.”
This condition further translates to “The cost of the information outweighs its value”, i.e., 𝑐 ≥ EVPI(𝑅) (the expected
Value of Perfect Information of 𝑅).
Let’s calculate the VPI in each case given Bob’s number of heads.
If 𝐵 = 0, Bob always loses, and the MEU also remains unchanged. So VPI(𝐵 = 0) = 0
If 𝐵 = 1:

EU(continue|𝐵 = 1, 𝑅 = 𝐻) = −10 (10)
EU(continue|𝐵 = 1, 𝑅 = 𝑇 ) = −10 ⋅ 0.5 + 10 ⋅ 0.5 = 0 (11)
EU(concede|𝐵 = 1, 𝑅 = 𝐻) = −2 (12)
EU(concede|𝐵 = 1, 𝑅 = 𝑇 ) = −2 (13)

Therefore MEU(𝐵 = 1, 𝑅 = 𝐻) = −2 (where Bob concedes) and MEU(𝐵 = 1, 𝑅 = 𝑇 ) = 0 (where Bob chooses to
continue).
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VPI(𝐵 = 1) (14)
=(MEU(𝐵 = 1, 𝑅 = 𝐻) Pr(𝑅 = 𝐻|𝐵 = 1) + MEU(𝐵 = 1, 𝑅 = 𝑇 ) Pr(𝑅 = 𝑇 |𝐵 = 1)) − MEU(𝐵 = 1) (15)
=(−2 ⋅ 0.5 + 0 ⋅ 0.5) − (−2) (16)
=1 (17)

If 𝐵 = 2:

EU(continue|𝐵 = 2, 𝑅 = 𝐻) = −10 ⋅ 0.5 + 10 ⋅ 0.5 = 0 (18)
EU(continue|𝐵 = 2, 𝑅 = 𝑇 ) = 10 (19)
EU(concede|𝐵 = 2, 𝑅 = 𝐻) = −2 (20)
EU(concede|𝐵 = 2, 𝑅 = 𝑇 ) = −2 (21)

Therefore MEU(𝐵 = 2, 𝑅 = 𝐻) = 0 (where Bob chooses to continue) and MEU(𝐵 = 2, 𝑅 = 𝑇 ) = 10 (where Bob
chooses to continue).

VPI(𝐵 = 2) (22)
=(MEU(𝐵 = 2, 𝑅 = 𝐻) Pr(𝑅 = 𝐻|𝐵 = 2) + MEU(𝐵 = 2, 𝑅 = 𝑇 ) Pr(𝑅 = 𝑇 |𝐵 = 2)) − MEU(𝐵 = 2) (23)
=(0 ⋅ 0.5 + 10 ⋅ 0.5) − 5 (24)
=0 (25)

The fair price of the information is the expected VPI:

EVPI = VPI(𝐵 = 0) Pr(𝐵 = 0) + VPI(𝐵 = 1) Pr(𝐵 = 1) + VPI(𝐵 = 2) Pr(𝐵 = 2) (26)
= 0.25 ⋅ 0 + 0.5 ⋅ 1 + 0.25 ⋅ 0 (27)
= 0.5 (28)

Therefore, as long as 𝑐 ≥ 0.5, Bob cannot increase his gain by purchasing this piece of information, or equivalently,
Alice’s gain will not be impacted.
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Q5. [13 pts] MDPs: Jim & Pam Part 2
Jim and Pam are on a 1𝑥5 grid, where Jim starts at square 1, and Pam is fixed at square 5.

Jim Pam

In each time step, Jim chooses to either move right or to rest. Choosing to move succeeds with probability 𝑝 and fails with
probability 1−𝑝, in which case Jim stays in his original square (Jim received 0 utility regardless of success or failure). Choosing
to rest always succeeds, and gives 𝑅(𝑑) = 45−𝑑 utility, where 𝑑 is the distance between Jim and Pam. For example, at the start,
where 𝑑 = 4, if Jim decides to rest, he gets 4 utility. We represent this as an infinite horizon MDP with no terminal state.

(a) [3 pts] Jim is considering two policies:
Policy 1: Rest at the start forever.
Policy 2: Attempt to move right once, and then, regardless of success or failure, rest forever.
Assuming that Jim starts in square 1, for what values of 𝑝 is Policy 1 superior to Policy 2 when the discount factor 𝛾 = 0.5?
Hint: the sum 𝑆 of an infinite geometric series with starting value 𝑎 and ratio 𝑟 is 𝑆 = 𝑎

1−𝑟

Show your work. 0 ≤
0

≤ 𝑝 ≤
1∕3

≤ 1

𝑉𝑟𝑒𝑠𝑡 = 8 and 𝑉𝑚𝑜𝑣𝑒−>𝑟𝑒𝑠𝑡 = 16𝑝 + 4(1 − 𝑝), so 8 ≥ 16𝑝 + 4(1 − 𝑝)

(b) [3 pts]
Now assume that 𝑝 = 1. Still assuming that Jim starts in square 1, for what values of 𝛾 is Policy 1 superior to Policy 2?

Show your work. 0 ≤
0

< 𝛾 <
1/4

≤ 1

𝑉𝑟𝑒𝑠𝑡 =
4

1−𝛾 and 𝑉𝑚𝑜𝑣𝑒−>𝑟𝑒𝑠𝑡 =
16𝛾
1−𝛾 , so 4

1−𝛾 ≥ 16𝛾
1−𝛾
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(c) [7 pts] For the following subparts, assume that 𝛾 = 0.5 and 𝑝 = 1.
(i) [3 pts] Perform two iterations of value iteration, for the following locations of Jim. Show your work.

𝑆𝑡𝑎𝑡𝑒𝑠 𝑠𝐽 = 1 𝑠𝐽 = 2 𝑠𝐽 = 3 𝑠𝐽 = 4 𝑠𝐽 = 5

𝑉0 0 0 0 0 0

𝑉1 4 42 43 44 45

𝑉2 2−1 ∗ 42 2−1 ∗ 43 2−1 ∗ 44 2−1 ∗ 45 45 + 2−1 ∗ 45

(ii) [3 pts] Perform two iterations of policy iteration for the following locations of Jim.

𝑆𝑡𝑎𝑡𝑒𝑠 𝑠𝐽 = 1 𝑠𝐽 = 2 𝑠𝐽 = 3 𝑠𝐽 = 4 𝑠𝐽 = 5

𝜋𝑖 𝑎𝐽 = right 𝑎𝐽 = rest 𝑎𝐽 = rest 𝑎𝐽 = rest 𝑎𝐽 = rest

𝑉 𝜋𝑖 42 2 ∗ 42 2 ∗ 43 2 ∗ 44 2 ∗ 45

𝜋𝑖+1 𝑎𝐽 = right 𝑎𝐽 = right 𝑎𝐽 = right 𝑎𝐽 = right 𝑎𝐽 = rest

𝑉 𝜋𝑖+1 2−3 ∗ 45 2−2 ∗ 45 2−1 ∗ 45 20 ∗ 45 21 ∗ 45

𝜋𝑖+2 𝑎𝐽 = right 𝑎𝐽 = right 𝑎𝐽 = right 𝑎𝐽 = right 𝑎𝐽 = rest

(iii) [1 pt] Assuming that policy iteration has converged, Jim argues it isn’t guaranteed values have converged yet, so they
need to run value iteration to get the correct values. Pam agrees that policy convergence doesn’t guarantee value
convergence, but thinks that we don’t need to switch to value iteration, as if we continue running policy iteration,
eventually the values will converge as well. Who is correct and why?
# Jim  Pam

Pam is correct. Policy iteration contains the policy evaluation step, which is essentially just value iteration once the
policy has converged.
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Q6. [12 pts] Reinforcement Learning: Island Hopping
Bob wants to traverse different islands to reach the island X. He formulates the problem as an MDP where the islands (nodes)
represent the states and the arrows represent the possible actions he can take across the seas. Use the direction of the arrows
(up, down, left, right) to refer to the specific actions that can be taken.

𝐹 𝐺

𝑃

𝑍 𝐿

𝑇

𝐷 𝑊

𝑋

(a) [2 pts] Bob’s ship doesn’t always move in the direction that he wants it to. Despite this, he wants to use MLE to build an
estimate of the transition function �̂� and the reward function �̂� for model-based reinforcement learning. He follows some
specified policy and collects some data in the form of (current state, action, next state, reward) tuples shown below:

State (s) Action (a) New State (s’) Reward
F Right G 20
D Right G -10
G Up T -30
P Down Z -15
G Right D 30
W Down D -25
G Right D 30
D Left G -5
G Right T -30
W Down X 100

(i) [1 pt] What is �̂� (G, Right, D)?

2
3

Out of the 3 actions we go right from G, we end up in our desired state of D twice.
(ii) [1 pt] What is �̂�(W, Down, D)?

-25
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(b) [3 pts] Bob looks to use temporal difference learning to learn the values of 𝜋, where he has the following initial values:

s F G T P Z L D W X
𝑉 𝜋(𝑠) 5 10 -4 8 2 -10 10 30 50

He performs one update step using the sample (G, Right, D, 30). Assume a discount factor 𝛾 = 0.5 and the learning rate
𝛼 = 0.2. What is the updated value of 𝑉 𝜋(𝐺)? Show all your work leading to your answer.

𝑉 𝜋(𝐺) = 15

sample = 𝑅(𝐺,𝑅𝑖𝑔ℎ𝑡,𝐷) + 0.5 ∗ 𝑉 𝜋(𝐷) = 30 + 0.5 ∗ 10 = 35
𝑉 𝜋(𝐺) ← (1 − 𝛼) ⋅ 𝑉 𝜋(𝐺) + 𝛼⋅ sample = 0.8 ∗ 10 + 0.2 ∗ 35 = 15

(c) [2 pts] Bob wants to have a greedy policy that will minimize exploration and maximize exploitation. Which of the
following functions 𝑓 will do so? Assume 𝑘 is a positive real number, 𝑁(𝑠, 𝑎) represents the number of times that the
state-action pair is taken, and 𝜖 is a very small number greater than 0.

□ 𝑓 (𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝑘
𝑁(𝑠,𝑎)

■ 𝑓 (𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝑘 ⋅ 𝑒𝑁(𝑠,𝑎)

□ 𝑓 (𝑠, 𝑎) = 𝑘 ⋅𝑄(𝑠, 𝑎) − 𝑙𝑜𝑔(𝑁(𝑠, 𝑎))
□ 𝑓 (𝑠, 𝑎) = 𝜖

𝑘⋅𝑄(𝑠,𝑎)⋅𝑁(𝑠,𝑎)

■ 𝑓 (𝑠, 𝑎) = 𝑁(𝑠,𝑎)⋅𝑄(𝑠,𝑎)
𝜖

# None of the above

(1) - As the number of state-action pairs increases, the benefit of exploring one particular route converges to zero.
(2) - This value blows up the more times a particular route is explored, since the exponent here is positive.
(3) - Same reasoning as (1), the logarithm term will dominate the first product term as the number of state-action pairs
increases.
(4) - The denominator is amplified as the number of times a particular route is explored, so the overall term will converge
to zero.
(5) - Same reasoning as (4), but since the product is in the numerator and the denominator is a really small value 𝜖, the
function will be unbounded and converge to infinity, so one particular route will be preferred.

(d) [5 pts] Bob now switches to Q-learning, where he wants to perform approximate Q-learning for 𝑄(𝐺, 𝑟𝑖𝑔ℎ𝑡). Assume he
has 𝑤𝑖, which denotes the 𝑖th value of a weight vector 𝑤 and 𝑓𝑖(𝑠, 𝑎), which denotes the value of the 𝑖th feature of the
Q-state (𝑠, 𝑎). He has the following values and observations:

State (s) Action (a) New State (s’) Reward (r)
G Right D 10
P Up Z 1

𝑤1 𝑤2 𝑤3
2 5 10

𝑓1(𝐺,𝑅𝑖𝑔ℎ𝑡) 𝑓2(𝐺,𝑅𝑖𝑔ℎ𝑡) 𝑓3(𝐺,𝑅𝑖𝑔ℎ𝑡)
6 3 4
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State P Z D
Q(State, Up) 2 0 0
Q(State, Down) 5 7 0
Q(State, Left) 0 0 2
Q(State, Right) 0 -8 22

(i) [3 pts] What is the initial value of 𝑄(𝐺,𝑅𝑖𝑔ℎ𝑡) based on the above weights and features?

For approximate Q-learning, we compute our desired Q-value by taking a linear combination of the weights and the
corresponding features. So we have:
𝑄(𝐺,𝑅𝑖𝑔ℎ𝑡) = 𝑤1 ⋅ 𝑓1(𝐺,𝑅𝑖𝑔ℎ𝑡) +𝑤2 ⋅ 𝑓2(𝐺,𝑅𝑖𝑔ℎ𝑡) +𝑤3 ⋅ 𝑓3(𝐺,𝑅𝑖𝑔ℎ𝑡)
= 2 ⋅ 6 + 5 ⋅ 3 + 10 ⋅ 4
= 67

(ii) [2 pts] What is the resulting weight vector after performing the first iteration of the weight update rule for going
right on G? This time, assume a discount factor 𝛾 = 0.5 and learning rate 𝛼 = 0.5.

Recall that the weight update formula for the 𝑖th weight is as follows:
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𝑤𝑖 ← 𝑤𝑖 + 𝛼⋅ difference ⋅𝑓𝑖(𝑠, 𝑎)

To perform the weight update, we need to calculate the difference term. The difference term is given as:
difference = [𝑅(𝑠, 𝑎, 𝑠′) + 𝛾 ⋅ 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)] −𝑄(𝑠, 𝑎)
where 𝑄(𝑠, 𝑎) is the Q-value we computed using the linear combination of weights and features and 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)
denotes the maximum Q-value for the new state s’ by taking a specific action a’ on s’.

We compute the difference term using our observation of going right from G to D and our initial 𝑄(𝐺,𝑅𝑖𝑔ℎ𝑡) from
the previous part. Plugging in relevant values, we get:
difference = [10 + 0.5 ⋅22] − 67 = −46

Applying this to our weight and feature vectors, we get:
𝑤1 = 2 + 0.5 ⋅ −46 ⋅ 6 = −136
𝑤2 = 5 + 0.5 ⋅ −46 ⋅ 3 = 5 − 69 = −64
𝑤3 = 10 + 0.5 ⋅ −46 ⋅ 4 = 10 − 92 = −82

Our final answer is [𝑤1, 𝑤2, 𝑤3] = [−136,−64,−82]
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Q7. [13 pts] Machine Learning: Hotdog vs. Not Hotdog
Bob is building a model to classify whether a picture contains a Hotdog or not. He uses two binary features: whether the picture
has brown color in it and whether there is red color in it. He collects this training set:

Brown
Color (𝑊1)

Red
Color (𝑊2) Label (𝑦)

1 0 not hotdog
1 0 not hotdog
1 0 not hotdog
1 1 not hotdog
1 1 hotdog
0 0 hotdog

(a) [5 pts] He first builds a Naive Bayes model. Calculate the following probabilities.

(i) [1 pt] 𝑃 (𝑦 = hotdog) =
1
3 𝑃 (𝑦 = not hotdog) =

2
3

(ii) [4 pts] 𝑃 (𝑊1 = 1 ∣ 𝑦 = hotdog) =
1
2 𝑃 (𝑊1 = 0 ∣ 𝑦 = hotdog) =

1
2

𝑃 (𝑊2 = 1 ∣ 𝑦 = hotdog) =
1
2 𝑃 (𝑊2 = 0 ∣ 𝑦 = hotdog) =

1
2

𝑃 (𝑊1 = 1 ∣ 𝑦 = not hotdog) = 1
𝑃 (𝑊1 = 0 ∣ 𝑦 = not hotdog) = 0

𝑃 (𝑊2 = 1 ∣ 𝑦 = not hotdog) =
1
4 𝑃 (𝑊2 = 0 ∣ 𝑦 = not hotdog) =

3
4

(b) [3 pts] Next, he uses the model to classify three pictures that are from the test set. Fill in the predicted labels in the table.
Test set

Brown
Color (𝑊1)

Red
Color (𝑊2)

Predicted
Label (�̂�)

1 1 not hotdog
0 1 hotdog
0 0 hotdog

(c) [5 pts] Bob then adds two new examples to his training set, as shown below.

Additional training examples
Brown

Color (𝑊1)
Red

Color (𝑊2) Label (y)

0 0 not hotdog
0 1 not hotdog
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(i) [3 pts] Now re-classify the test set using the new larger training set (hint: don’t forget to update the prior for each
class with the new dataset).

Test set
Brown

Color (𝑊1)
Red

Color (𝑊2)
Predicted
Label (�̂�)

1 1 not hotdog
0 1 not hotdog
0 0 not hotdog

(ii) [2 pts] Did any of the predictions change? Why?

Yes, the last two predictions switched from hotdog to not hotdog. The main reason is because when the label was
not hotdog there were no 0’s for 𝑊1 in the training set. So, those two test examples originally had 0 probability for
the not hotdog prediction and now have much higher probability.
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Q8. [10 pts] Neural Networks: Quadratic Activation Function
Consider the following neural network, where the input is 𝑥 ∈ ℝ𝑑 and the output is a real number prediction �̂� ∈ ℝ. We have
two neural network weight matrices: 𝑊1 ∈ ℝ𝑛1×𝑛2 and 𝑊2 ∈ ℝ𝑘, where 𝑘, 𝑑 are known numbers and you need to find out the
value of 𝑛1 and 𝑛2. We consider the following neural network:

𝑧 = 𝑊1𝑥; �̂� ∶= 𝑊 𝑇
2 𝑔(𝑧) (29)

with a quadratic activation function:

𝑔(𝑧) ∶= 𝑧 ⊙ 𝑧 (30)

where ⊙ means element-wise multiplication. For example, 𝑔(
⎡

⎢

⎢

⎣

1
2
3

⎤

⎥

⎥

⎦

) =
⎡

⎢

⎢

⎣

1
4
9

⎤

⎥

⎥

⎦

.

We consider a quadratic loss function:
(𝑊1;𝑊2) ∶=

1
2
(𝑦 − �̂�)2 (31)

(a) [2 pts] What’s the value of 𝑛1 and 𝑛2 if the above neural network is valid? You can write the answer in terms of 𝑘 and 𝑑

(i) [1 pt] 𝑛1 = 𝑘

(ii) [1 pt] 𝑛2 = 𝑑

(b) [4 pts] Calculate the derivative of the loss function with respect to the following quantities. Your answer should NOT
include the activation function 𝑔 (i.e., you need to explicitly calculate the derivative of 𝑔 rather than writing 𝑔′.) On the
other hand, your answer can include 𝑥, 𝑦, �̂�, 𝑊1, 𝑊2, and 𝑧.

(i) [2 pts] 𝜕
𝜕𝑊2

=
(𝑦 − �̂�)(𝑧)⊙ (𝑧)

(ii) [2 pts] 𝜕
𝜕𝑥 =

(𝑦 − �̂�)𝑊 𝑇
1 (𝑊2 ⊙ 2𝑧)

(c) [4 pts] We have realized that the model is not getting the accuracy that we were hoping for. For each of the following
possible solutions below, answer yes or no if they could possibly improve the model accuracy.

(i) [1 pt] If the model is overfitting, we can try to make it more complex by increasing the number of layers. No

(ii) [1 pt] If the model is overfitting, we can try to make it simpler by decreasing the number of layers. Yes

(iii) [1 pt] We could try to improve accuracy by getting more training data. Yes

(iv) [1 pt] We could try out different types of models instead of neural networks (e.g., Naive bayes) and see which one

works best on the validation set. Yes
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