CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Instructor: Nicholas Tomlin
University of California, Berkeley
[These slides adapted from Dan Klein, Pieter Abbeel, and Anca Dragan]

Announcements

- Waitlist has been emptied
- Lecture notes should be posted tonight
- Project 0 and Homework 1 due tomorrow, 11PM

Last time...

Last time...

Last time...

Last time...

Q: Where do heuristics come from?
A: We have to create them!

Not the best heuristic...

Last time...

Q: Where do heuristics come from?
A: We have to create them!

Not the best heuristic...

Last time...

Q: Where do heuristics come from?
A: We have to create them!

What's a better heuristic?

Last time...

Q: Where do heuristics come from?
A: We have to create them!

What's a better heuristic?

Last time...

- Failure to detect repeated states can cause exponentially more work.

Last time...

- Idea: never expand a state twice
- How to implement:
- Tree search + set of expanded states ("closed set")
- Expand the search tree node-by-node, but...
- Before expanding a node, check to make sure its state has never been expanded before
- If not new, skip it, if new add to closed set

Last time...

Last time...

Last time...

Last time...

This heuristic isn't consistent
"Triangle inequality"
$\mathrm{h}(\mathrm{u}) \leq \mathrm{d}(\mathrm{u}, \mathrm{v})+\mathrm{h}(\mathrm{v})$

Last time...

This heuristic isn't consistent
"Triangle inequality"
$\mathrm{h}(\mathrm{u}) \leq \mathrm{d}(\mathrm{u}, \mathrm{v})+\mathrm{h}(\mathrm{v})$
$h=1$

$$
\begin{aligned}
f & =g+h \\
& =1+1
\end{aligned}
$$

$$
=2
$$

Last time...

This heuristic isn't consistent
"Triangle inequality"
$\mathrm{h}(\mathrm{u}) \leq \mathrm{d}(\mathrm{u}, \mathrm{v})+\mathrm{h}(\mathrm{v})$
$h=1$

$$
\begin{aligned}
f & =g+h \\
& =1+1
\end{aligned}
$$

Q : Is $\mathrm{h}(\mathrm{A}) \leq \mathrm{d}(\mathrm{A}, \mathrm{C})+\mathrm{h}(\mathrm{C})$?

$$
=2
$$

A: No: $4 \not \leq 1+1$

Summary of A*

- Tree search:
- A* is optimal if heuristic is admissible
- UCS is a special case $(\mathrm{h}=0)$
- Graph search:
- A* optimal if heuristic is consistent
- UCS optimal ($\mathrm{h}=0$ is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if it comes from a relaxed problem

Bonus: Optimality of A* Graph Search

- Consider what A* does:
- Expands nodes in increasing total f value (f -contours) Reminder: $\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n})=$ cost to $\mathrm{n}+$ heuristic
- Proof idea: the optimal goal(s) have the lowest f value, so it must get expanded first

Bonus: Optimality of A* Graph Search

Proof by contradiction:

- New possible problem: some n on path to G^{*} isn't in queue when we need it, because some worse n^{\prime} for the same state dequeued and expanded first (disaster!)
- Take the highest such n in tree
- Let p be the ancestor of n that was on the queue when n^{\prime} was popped

- $f(p)<f(n)$ because of consistency
- $f(n)<f\left(n^{\prime}\right)$ because n^{\prime} is suboptimal
- p would have been expanded before n^{\prime}
- Contradiction!

Beyond Pathfinding

A* can be used in a variety of domains besides path planning

Even has applications to LLMs!

Constraint Satisfaction Problems

N variables domain D constraints

states
partial assignment
goal test
complete; satisfies constraints
successor function
assign an unassigned variable

What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
- The path to the goal is the important thing
- Paths have various costs, depths
- Heuristics give problem-specific guidance
- Identification: assignments to variables
- The goal itself is important, not the path
- All paths at the same depth (for some formulations)
- CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
- State is a "black box": arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything
- Constraint satisfaction problems (CSPs):
- A special subset of search problems
- State is defined by variables $\boldsymbol{X}_{\boldsymbol{i}}$ with values from a domain \boldsymbol{D} (sometimes \boldsymbol{D} depends on \boldsymbol{i})
- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Allows useful general-purpose algorithms with more power than standard search algorithms

CSP Examples

Tasmania

Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $\quad D=\{r e d$, green, blue $\}$
- Constraints: adjacent regions must have different colors

> Implicit: \quad WA $\neq N T$
> Explicit: $\quad(W A, N T) \in\{($ red, green $),($ red, blue $), \ldots\}$

- Solutions are assignments satisfying all constraints, e.g.:

$$
\begin{aligned}
& \{W A=\text { red, } N T=\text { green, } Q=\text { red, } N S W=\text { green, } \\
& V=\text { red, } S A=\text { blue, } T=\text { green }\}
\end{aligned}
$$

Constraint Graphs

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints

- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: N-Queens

- Formulation 1:
- Variables: $X_{i j}$
- Domains: $\{0,1\}$
- Constraints

$$
\begin{aligned}
& \forall i, j, k \quad\left(X_{i j}, X_{i k}\right) \in\{(0,0),(0,1),(1,0)\} \\
& \forall i, j, k \quad\left(X_{i j}, X_{k j}\right) \in\{(0,0),(0,1),(1,0)\} \\
& \forall i, j, k \quad\left(X_{i j}, X_{i+k, j+k}\right) \in\{(0,0),(0,1),(1,0)\} \quad \sum_{i, j} X_{i j}=N \\
& \forall i, j, k \quad\left(X_{i j}, X_{i+k, j-k}\right) \in\{(0,0),(0,1),(1,0)\}
\end{aligned}
$$

Example: N-Queens

- Formulation 2:
- Variables: Q_{k}
- Domains: $\{1,2,3, \ldots N\}$

- Constraints:

Implicit:
$\forall i, j$ non-threatening $\left(Q_{i}, Q_{j}\right)$

Explicit:

$$
\left(Q_{1}, Q_{2}\right) \in\{(1,3),(1,4), \ldots\}
$$

Example: Cryptarithmetic

- Variables:

FTUWRO $X_{1} X_{2} X_{3}$

- Domains:
$\{0,1,2,3,4,5,6,7,8,9\}$
O Constraints:
alldiff($F, T, U, W, R, O)$
$O+O=R+10 \cdot X_{1}$

Example: Sudoku

- Variables:
- Each (open) square
- Domains:
- $\{1,2, \ldots, 9\}$
- Constraints:

9-way alldiff for each column
9-way alldiff for each row
9-way alldiff for each region
(or can have a bunch of pairwise inequality constraints)

Varieties of Constraints

- Varieties of Constraints
- Unary constraints involve a single variable (equivalent to reduci domains), e.g.:

$$
\text { SA } \neq \text { green }
$$

- Binary constraints involve pairs of variables, e.g.:

$$
S A \neq W A
$$

- Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints
- Preferences (soft constraints):
- E.g., red is better than green
- Often representable by a cost for each variable assignment
- Gives constrained optimization problems
- (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

- Many real-world problems involve real-valued variables...

Solving CSPs

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
o Initial state: the empty assignment, $\}$
- Successor function: assign a value to an unassigned variable
- Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

Search Methods

- What would BFS do?

$$
\}
$$

$$
\{W A=g\} \quad\{W A=r\} \quad \ldots \quad\{N T=g\} \quad \ldots
$$

[Demo: coloring -- dfs]

Search Methods

- What would BFS do?
- What would DFS do?
o let's see!

- What problems does naïve search have?

Video of Demo Coloring -- DFS

Backtracking Search

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
- Variable assignments are commutative, so fix ordering -> better branching factor!
- I.e., $[W A=$ red then $N T=$ green] same as $[\mathrm{NT}=$ green then $\mathrm{WA}=$ red]
- Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
o I.e. consider only values which do not conflict previous assignments
- Might have to do some computation to check the constraints
- "Incremental goal test"
- Depth-first search with these two improvements is called backtracking search (not the best name)
- Can solve n-queens for $\mathrm{n} \approx 25$

Backtracking Example

Video of Demo Coloring - Backtracking

Backtracking Search

```
function BACKTRACKING-SEARCH(csp) returns solution/failure
    return Recursive-Backtracking({}, sp)
function Recursive-Backtracking(assignment, csp) returns soln/failure
    if assignment is complete then return assignment
    var\leftarrow \leftarrowSelect-Unassigned-VARIABLE(VARIABLES[csp], assignment, csp)
for each value in OrdER-Domain-VALUES(var, assignment, csp) do
    if value is consistent with assignment] given Constraints[csp] then
        add {var = value} to assignment
        result }\leftarrow\mathrm{ Recursive-BacktRacking(assignment, csp)
        if result =f failure then return result
        remove {var = value} from assignment
return failure
```

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
- Which variable should be assigned next?
- In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?

Filtering

Keep track of domains for unassigned variables and cross off bad options

Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

Video of Demo Coloring - Backtracking with Forward Checking

Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

- An arc $X \rightarrow Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint

Forward checking?

Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Remember: Delete
from the tail!

Enforcing Arc Consistency in a CSP

```
function AC-3(csp) returns the CSP, possibly with reduced domains
    inputs: csp, a binary CSP with variables {\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\ldots,\mp@subsup{X}{n}{}}
    local variables queue, a queue of arcs, initially all the arcs in csp
    while queue is not empty do
        ( }\mp@subsup{X}{i}{},\mp@subsup{X}{j}{})\leftarrow\mathrm{ Remove-FIRSt(queue)
        if Remove-Inconsistent-Values( }\mp@subsup{X}{i}{},\mp@subsup{X}{j}{})\mathrm{ then
            for each }\mp@subsup{X}{k}{}\mathrm{ in NEIGHBORS[}\mp@subsup{X}{i}{}]\mathrm{ do
                add (X (X, Xi) to queue
    function Remove-Inconsistent-Values( }\mp@subsup{X}{i}{},\mp@subsup{X}{j}{})\mathrm{ returns true iff succeeds
    removed }\leftarrow\mathrm{ false
    for each }x\mathrm{ in Domain[ }\mp@subsup{X}{i}{}]\mathrm{ do
        if no value }y\mathrm{ in Domain [ }\mp@subsup{X}{j}{}]\mathrm{ allows (x,y) to satisfy the constraint }\mp@subsup{X}{i}{}\leftrightarrow\mp@subsup{X}{j}{
            then delete }x\mathrm{ from Domain [Xi]; removed }\leftarrow\mathrm{ true
    return removed
```

- Runtime: $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~d}^{3}\right)$, can be reduced to $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~d}^{2}\right)$
- ... but detecting all possible future problems is NP-hard - why?

Limitations of Arc Consistency

- After enforcing arc consistency:
- Can have one solution left
- Can have multiple solutions left
- Can have no solutions left (and not know it)
- Arc consistency still runs inside a backtracking search!

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]

Video of Demo Coloring - Backtracking with Forward Checking Complex Graph

Video of Demo Coloring - Backtracking with Arc Consistency Complex Graph

K-Consistency

- Increasing degrees of consistency
- 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
- 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
- K-Consistency: For each k nodes, any consistent assignment to $\mathrm{k}-1$ can be extended to the $\mathrm{k}^{\text {th }}$ node.
- Higher k more expensive to compute
- (You need to know the $\mathrm{k}=2$ case: arc consistency)

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
- Choose any assignment to any variable
- Choose a new variable
- By 2-consistency, there is a choice consistent with the first
- Choose a new variable
- By 3-consistency, there is a choice consistent with the first 2
- ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. $k=3$, called path consistency)

Ordering

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
- Given a choice of variable, choose the least constraining value
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Demo: Coloring -- Backtracking + Forward Checking + Ordering

Summary

- Work with your rubber duck to write down:
- How we order variables and why
- How we order values and why

Iterative Improvement

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
- Take an assignment with unsatisfied constraints
- Operators reassign variable values

- No fringe! Live on the edge.
- Algorithm: While not solved,
- Variable selection: randomly select any conflicted variable
- Value selection: min-conflicts heuristic:
- Choose a value that violates the fewest constraints
\circ I.e., hill climb with $\mathrm{h}(\mathrm{x})=$ total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns ($4^{4}=256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $c(n)=$ number of attacks

Iterative Improvement - n Queens

Iterative Improvement - Coloring

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $\mathrm{n}=10,000,000$)!
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

Summary: CSPs

- CSPs are a special kind of search problem:
- States are partial assignments
- Goal test defined by constraints
- Basic solution: backtracking search
- Speed-ups:
- Ordering
- Filtering
o Structure - turns out trees are easy!

- Iterative min-conflicts is often effective in practice

Local Search

Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
- New successor function: local changes

- Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

- Simple, general idea:
- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit
- What's bad about this approach?
- What's good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up ?
Starting from Y , where do you end up ?
Starting from Z, where do you end up ?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
- But make them rarer as time goes on
function Simulated-AnNEALING(problem, schedule) returns a solution state inputs: problem, a problem
schedule, a mapping from time to "temperature"
local variables: current, a node
next, a node
T, a "temperature" controlling prob. of downward steps
current \leftarrow Make-Node (Initial-State[problem])
for $t \leftarrow 1$ to ∞ do
$T \leftarrow$ schedule $[t]$
if $T=0$ then return current
next \leftarrow a randomly selected successor of current
$\Delta E \leftarrow \operatorname{ValUE}[$ next $]$ - VALUE [current $]$
if $\Delta E>0$ then current \leftarrow next
else current \leftarrow next only with probability $e^{\Delta E / T}$

Simulated Annealing

- Theoretical guarantee:
- Stationary distribution:

$$
p(x) \propto e^{\frac{E(x)}{k T}}
$$

- If T decreased slowly enough,

- Sounds like magic, but reality is reality:
- The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
- People think hard about ridge operators which let you jump around the space in better ways

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Keep best N hypotheses at each step (selection) based on a fitness function
- Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?

Bonus (time permitting): Structure

Problem Structure

- Extreme case: independent subproblems
- Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into
 subproblems of only c variables:
- Worst-case solution cost is $\mathrm{O}((\mathrm{n} / \mathrm{c})(\mathrm{dc}))$, linear in n
- E.g., $n=80, d=2, c=20$
- $2^{80}=4$ billion years at 10 million nodes $/ \mathrm{sec}$
- $(4)\left(2^{20}\right)=0.4$ seconds at 10 million nodes / sec

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $\mathrm{O}\left(\mathrm{n} \mathrm{d}^{2}\right)$ time - Compare to general CSPs, where worst-case time is $O\left(\mathrm{~d}^{\mathrm{n}}\right)$
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$
- Assign forward: For $\mathrm{i}=1: \mathrm{n}$, assign X_{i} consistently with Pa

○ Runtime: $\mathrm{O}\left(\mathrm{n} \mathrm{d}^{2}\right)$ (why?)

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each $X \rightarrow Y$ was made consistent at one point and Y 's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

Improving Structure

Nearly Tree-Structured CSPs

(T)

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O\left((d c)(n-c) d^{2}\right)$, very fast for small c

Cutset Conditioning

Cutset Quiz

- Find the smallest cutset for the graph below.

Tree Decomposition*

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Subproblems overlap to ensure consistent solutions

