
CS 188: Artificial Intelligence
Constraint Satisfaction Problems

Instructor: Nicholas Tomlin

University of California, Berkeley
[These slides adapted from Dan Klein, Pieter Abbeel, and Anca Dragan]

Announcements

o Waitlist has been emptied
o Lecture notes should be posted tonight
o Project 0 and Homework 1 due tomorrow, 11PM

Last time…

A

GS

1 3

5

Last time…

A

GS

1 3

5

Last time…

A

GS

1 3

5

h = ??

h = ??h = ??

Q: Where do heuristics come from?
A: We have to create them!

Not the best heuristic…

Last time…

A

GS

1 3
h = 6

h = 0

5

h = 7

f = g + h
 = 1 + 6
 = 7

f = g + h
 = 5 + 0
 = 5

Last time…

A

GS

1 3
h = 6

h = 0

5

h = 7

Q: Where do heuristics come from?
A: We have to create them!

Not the best heuristic…

f = g + h
 = 1 + 6
 = 7

f = g + h
 = 5 + 0
 = 5

Q: Where do heuristics come from?
A: We have to create them!

What’s a better heuristic?

Last time…

A

GS

1 3
h = 3

h = 0

5

h = 1

f = g + h
 = 1 + 3
 = 4

f = g + h
 = 5 + 0
 = 5

Q: Where do heuristics come from?
A: We have to create them!

What’s a better heuristic?

Last time…

A

GS

1 3
h = 3

h = 0

5

h = 1

f = g + h
 = 1 + 3
 = 4

f = g + h
 = 5 + 0
 = 5

Admissible = Underestimates Cost to the Goal

Last time…
o Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Last time…
o Idea: never expand a state twice

o How to implement:

o Tree search + set of expanded states (“closed set”)
o Expand the search tree node-by-node, but…
o Before expanding a node, check to make sure its state has never

been expanded before
o If not new, skip it, if new add to closed set

Last time…

S

A

B

C

G

1

1

1

2
3

Last time…

S

A

B

C

G

1

1

1

2
3

Last time…

S

A

B

C

G

1

1

1

2
3

h = 4

h = 0

h = 1

h = 1

f = g + h
 = 1 + 1
 = 2

f = g + h
 = 1 + 4
 = 5

f = g + h
 = 3 + 1
 = 4

h = 2

Last time…

S

A

B

C

G

1

1

1

2
3

h = 4

h = 0

h = 1

h = 1

f = g + h
 = 1 + 1
 = 2

f = g + h
 = 1 + 4
 = 5

f = g + h
 = 3 + 1
 = 4

h = 2

This heuristic isn’t consistent

“Triangle inequality”
h(u) ≤ d(u,v) + h(v)

Last time…

S

A

B

C

G

1

1

1

2
3

h = 4

h = 0

h = 1

h = 1

f = g + h
 = 1 + 1
 = 2

f = g + h
 = 1 + 4
 = 5

f = g + h
 = 3 + 1
 = 4

h = 2

This heuristic isn’t consistent

“Triangle inequality”
h(u) ≤ d(u,v) + h(v)

Q: Is h(A) ≤ d(A,C) + h(C)?

Last time…

S

A

B

C

G

1

1

1

2
3

h = 4

h = 0

h = 1

h = 1

f = g + h
 = 1 + 1
 = 2

f = g + h
 = 1 + 4
 = 5

f = g + h
 = 3 + 1
 = 4

h = 2

This heuristic isn’t consistent

“Triangle inequality”
h(u) ≤ d(u,v) + h(v)

Q: Is h(A) ≤ d(A,C) + h(C)?
A: No: 4 ≰ 1 + 1

Summary of A*

o Tree search:
o A* is optimal if heuristic is admissible
o UCS is a special case (h = 0)

o Graph search:
o A* optimal if heuristic is consistent
o UCS optimal (h = 0 is consistent)

o Consistency implies admissibility

o In general, most natural admissible
heuristics tend to be consistent, especially if
it comes from a relaxed problem

Bonus: Optimality of A* Graph Search

o Consider what A* does:
o Expands nodes in increasing total f value (f-contours)

Reminder: f(n) = g(n) + h(n) = cost to n + heuristic
o Proof idea: the optimal goal(s) have the lowest f value, so it

must get expanded first

…

f ≤ 3

f ≤ 2
f ≤ 1

Bonus: Optimality of A* Graph Search

Proof by contradiction:
o New possible problem: some n on path to

G* isn’t in queue when we need it, because
some worse n’ for the same state dequeued
and expanded first (disaster!)

o Take the highest such n in tree
o Let p be the ancestor of n that was on the

queue when n’ was popped
o f(p) < f(n) because of consistency
o f(n) < f(n’) because n’ is suboptimal
o p would have been expanded before n’
o Contradiction!

Beyond Pathfinding
A* can be used in a variety of
domains besides path planning

Even has applications to LLMs!

Constraint Satisfaction Problems

N variables

x1

x2

domain D
constraints

states goal test successor function
partial assignment complete; satisfies constraints assign an unassigned variable

What is Search For?
o Assumptions about the world: a single agent, deterministic actions, fully observed

state, discrete state space

o Planning: sequences of actions
o The path to the goal is the important thing
o Paths have various costs, depths
o Heuristics give problem-specific guidance

o Identification: assignments to variables
o The goal itself is important, not the path
o All paths at the same depth (for some formulations)
o CSPs are specialized for identification problems

Constraint Satisfaction Problems

o Standard search problems:
o State is a “black box”: arbitrary data structure
o Goal test can be any function over states
o Successor function can also be anything

o Constraint satisfaction problems (CSPs):
o A special subset of search problems
o State is defined by variables Xi with values from

a domain D (sometimes D depends on i)
o Goal test is a set of constraints specifying

allowable combinations of values for subsets of
variables

o Allows useful general-purpose algorithms with
more power than standard search algorithms

CSP Examples

Example: Map Coloring
o Variables:

o Domains:

o Constraints: adjacent regions must have different colors

o Solutions are assignments satisfying all constraints, e.g.:

Implicit:

Explicit:

Constraint Graphs

Constraint Graphs

o Binary CSP: each constraint relates (at most) two
variables

o Binary constraint graph: nodes are variables,
arcs show constraints

o General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is
an independent subproblem!

Example: N-Queens

o Formulation 1:
oVariables:
oDomains:
oConstraints

Example: N-Queens

o Formulation 2:
oVariables:

oDomains:

oConstraints:
Implicit:

Explicit:

Example: Cryptarithmetic

o Variables:

o Domains:

o Constraints:

X1

Example: Sudoku

▪ Variables:

▪ Each (open) square

▪ Domains:

▪ {1,2,…,9}

▪ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

Varieties of Constraints

o Varieties of Constraints
o Unary constraints involve a single variable (equivalent to reducing

domains), e.g.:

o Binary constraints involve pairs of variables, e.g.:

o Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

o Preferences (soft constraints):
o E.g., red is better than green
o Often representable by a cost for each variable assignment
o Gives constrained optimization problems
o (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs
o Assignment problems: e.g., who teaches what class
o Timetabling problems: e.g., which class is offered when and where?
o Hardware configuration
o Transportation scheduling
o Factory scheduling
o Circuit layout
o Fault diagnosis
o … lots more!

o Many real-world problems involve real-valued variables…

Solving CSPs

Standard Search Formulation

o Standard search formulation of CSPs

o States defined by the values assigned so far
(partial assignments)
o Initial state: the empty assignment, {}
o Successor function: assign a value to an

unassigned variable
o Goal test: the current assignment is complete

and satisfies all constraints

o We’ll start with the straightforward, naïve
approach, then improve it

Search Methods

o What would BFS do?

[Demo: coloring -- dfs]

{}
{WA=g} {WA=r} {NT=g}… …

Search Methods

o What would BFS do?

o What would DFS do?
o let’s see!

o What problems does naïve search have?

[Demo: coloring -- dfs]

Video of Demo Coloring -- DFS

Backtracking Search

Backtracking Search
o Backtracking search is the basic uninformed algorithm for solving CSPs

o Idea 1: One variable at a time
o Variable assignments are commutative, so fix ordering -> better branching factor!
o I.e., [WA = red then NT = green] same as [NT = green then WA = red]
o Only need to consider assignments to a single variable at each step

o Idea 2: Check constraints as you go
o I.e. consider only values which do not conflict previous assignments
o Might have to do some computation to check the constraints
o “Incremental goal test”

o Depth-first search with these two improvements
is called backtracking search (not the best name)

o Can solve n-queens for n ≈ 25

Backtracking Example

[Demo: coloring -- backtracking]

Video of Demo Coloring – Backtracking

Backtracking Search

o Backtracking = DFS + variable-ordering + fail-on-violation
o What are the choice points?

Improving Backtracking

o General-purpose ideas give huge gains in speed

o Ordering:
o Which variable should be assigned next?
o In what order should its values be tried?

o Filtering: Can we detect inevitable failure early?

Filtering

Keep track of domains for unassigned variables and cross off bad options

Filtering: Forward Checking
o Filtering: Keep track of domains for unassigned variables and cross off bad

options
o Forward checking: Cross off values that violate a constraint when added to the

existing assignment
WA

SA
NT Q

NSW
V

[Demo: coloring -- forward checking]

Video of Demo Coloring – Backtracking with Forward Checking

Filtering: Constraint Propagation
o Forward checking propagates information from assigned to unassigned variables, but doesn't

provide early detection for all failures:

o NT and SA cannot both be blue!
o Why didn’t we detect this yet?
o Constraint propagation: reason from constraint to constraint

WA SA

NT Q

NSW

V

Consistency of A Single Arc
o An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be

assigned without violating a constraint

Forward checking?
Enforcing consistency of arcs pointing to each new assignmentDelete from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
o A simple form of propagation makes sure all arcs are consistent:

o Important: If X loses a value, neighbors of X need to be rechecked!
o Arc consistency detects failure earlier than forward checking
o Can be run as a preprocessor or after each assignment
o What’s the downside of enforcing arc consistency? Remember: Delete

from the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

o Runtime: O(n2d3), can be reduced to O(n2d2)
o … but detecting all possible future problems is NP-hard – why?

Limitations of Arc Consistency

o After enforcing arc consistency:
oCan have one solution left
oCan have multiple solutions left
oCan have no solutions left (and

not know it)

o Arc consistency still runs inside
a backtracking search!

[Demo: coloring -- arc consistency]
[Demo: coloring -- forward checking]

Video of Demo Coloring – Backtracking with Forward Checking –
Complex Graph

Video of Demo Coloring – Backtracking with Arc Consistency –
Complex Graph

K-Consistency
o Increasing degrees of consistency

o 1-Consistency (Node Consistency): Each single node’s domain
has a value which meets that node’s unary constraints

o 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

o K-Consistency: For each k nodes, any consistent assignment to
k-1 can be extended to the kth node.

o Higher k more expensive to compute

o (You need to know the k=2 case: arc consistency)

Strong K-Consistency
o Strong k-consistency: also k-1, k-2, … 1 consistent

o Claim: strong n-consistency means we can solve without backtracking!

o Why?
o Choose any assignment to any variable
o Choose a new variable
o By 2-consistency, there is a choice consistent with the first
o Choose a new variable
o By 3-consistency, there is a choice consistent with the first 2
o …

o Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Ordering

Ordering: Minimum Remaining Values
o Variable Ordering: Minimum remaining values (MRV):

o Choose the variable with the fewest legal left values in its domain

o Why min rather than max?
o Also called “most constrained variable”
o “Fail-fast” ordering

Ordering: Least Constraining Value

o Value Ordering: Least Constraining Value
o Given a choice of variable, choose the least constraining

value
o I.e., the one that rules out the fewest values in the

remaining variables
o Note that it may take some computation to determine

this! (E.g., rerunning filtering)

o Why least rather than most?

o Combining these ordering ideas makes
1000 queens feasible

Demo: Coloring -- Backtracking + Forward Checking + Ordering

Summary

o Work with your rubber duck to write down:
oHow we order variables and why
oHow we order values and why

Iterative Improvement

Iterative Algorithms for CSPs
o Local search methods typically work with “complete” states, i.e., all variables assigned

o To apply to CSPs:
o Take an assignment with unsatisfied constraints
o Operators reassign variable values
o No fringe! Live on the edge.

o Algorithm: While not solved,
o Variable selection: randomly select any conflicted variable
o Value selection: min-conflicts heuristic:

o Choose a value that violates the fewest constraints
o I.e., hill climb with h(x) = total number of violated constraints

Example: 4-Queens

o States: 4 queens in 4 columns (44 = 256 states)
o Operators: move queen in column
o Goal test: no attacks
o Evaluation: c(n) = number of attacks

Iterative Improvement – n Queens

Iterative Improvement – Coloring

Performance of Min-Conflicts
o Given random initial state, can solve n-queens in almost constant time for

arbitrary n with high probability (e.g., n = 10,000,000)!

o The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Summary: CSPs
o CSPs are a special kind of search problem:

o States are partial assignments
oGoal test defined by constraints

o Basic solution: backtracking search

o Speed-ups:
o Ordering
o Filtering
o Structure – turns out trees are easy!

o Iterative min-conflicts is often effective in practice

Local Search

Local Search
o Tree search keeps unexplored alternatives on the fringe (ensures completeness)

o Local search: improve a single option until you can’t make it better (no fringe!)

o New successor function: local changes

o Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

o Simple, general idea:
o Start wherever
o Repeat: move to the best neighboring state
o If no neighbors better than current, quit

o What’s bad about this approach?

o What’s good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing
o Idea: Escape local maxima by allowing downhill moves

o But make them rarer as time goes on

75

Simulated Annealing
o Theoretical guarantee:

o Stationary distribution:

o If T decreased slowly enough,
will converge to optimal state!

o Is this an interesting guarantee?

o Sounds like magic, but reality is reality:
o The more downhill steps you need to escape a local optimum,

the less likely you are to ever make them all in a row
o People think hard about ridge operators which let you jump

around the space in better ways

Genetic Algorithms

o Genetic algorithms use a natural selection metaphor
o Keep best N hypotheses at each step (selection) based on a fitness function
o Also have pairwise crossover operators, with optional mutation to give variety

o Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

o Why does crossover make sense here?
o When wouldn’t it make sense?
o What would mutation be?
o What would a good fitness function be?

Bonus (time permitting): Structure

Problem Structure

o Extreme case: independent subproblems
o Example: Tasmania and mainland do not interact

o Independent subproblems are identifiable as
connected components of constraint graph

o Suppose a graph of n variables can be broken into
subproblems of only c variables:
o Worst-case solution cost is O((n/c)(dc)), linear in n
o E.g., n = 80, d = 2, c =20
o 280 = 4 billion years at 10 million nodes/sec
o (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

o Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
o Compare to general CSPs, where worst-case time is O(dn)

o This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs
o Algorithm for tree-structured CSPs:

o Order: Choose a root variable, order variables so that parents precede children

o Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
o Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

o Runtime: O(n d2) (why?)

Tree-Structured CSPs
o Claim 1: After backward pass, all root-to-leaf arcs are consistent
o Proof: Each X→Y was made consistent at one point and Y’s domain could not have been reduced

thereafter (because Y’s children were processed before Y)

o Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
o Proof: Induction on position

o Why doesn’t this algorithm work with cycles in the constraint graph?

o Note: we’ll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

o Conditioning: instantiate a variable, prune its neighbors' domains

o Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining
constraint graph is a tree

o Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Cutset Quiz

o Find the smallest cutset for the graph below.

Tree Decomposition*
▪ Idea: create a tree-structured graph of mega-variables
▪ Each mega-variable encodes part of the original CSP
▪ Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

 {(WA=r,SA=g,NT=b),
 (WA=b,SA=r,NT=g),
 …}

 {(NT=r,SA=g,Q=b),
 (NT=b,SA=g,Q=r),
 …}

Agree: (M1,M2) ∈
 {((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

A
gree on shared vars

NT

SA

≠
W
A

≠ ≠

Q

SA

≠
NT

≠ ≠

A
gree on shared vars

NS
W

SA

≠
Q

≠ ≠

A
gree on shared vars

V

SA

≠
NS
W

≠ ≠

