
CS 188: Artificial Intelligence 
Constraint Satisfaction Problems

Instructor: Nicholas Tomlin

University of California, Berkeley
[These slides adapted from Dan Klein, Pieter Abbeel, and Anca Dragan]



Announcements

o Waitlist has been emptied
o Lecture notes should be posted tonight
o Project 0 and Homework 1 due tomorrow, 11PM
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Q: Where do heuristics come from?
A: We have to create them!

Not the best heuristic…
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Admissible = Underestimates Cost to the Goal



Last time…
o Failure to detect repeated states can cause exponentially more work.  

Search TreeState Graph



Last time…
o Idea: never expand a state twice

o How to implement: 

o Tree search + set of expanded states (“closed set”)
o Expand the search tree node-by-node, but…
o Before expanding a node, check to make sure its state has never 

been expanded before
o If not new, skip it, if new add to closed set
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This heuristic isn’t consistent

“Triangle inequality”
h(u) ≤ d(u,v) + h(v)
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This heuristic isn’t consistent

“Triangle inequality”
h(u) ≤ d(u,v) + h(v)

Q: Is h(A) ≤ d(A,C) + h(C)?
A: No: 4 ≰ 1 + 1



Summary of A*

o Tree search:
o A* is optimal if heuristic is admissible
o UCS is a special case (h = 0)

o Graph search:
o A* optimal if heuristic is consistent
o UCS optimal (h = 0 is consistent)

o Consistency implies admissibility

o In general, most natural admissible 
heuristics tend to be consistent, especially if 
it comes from a relaxed problem



Bonus: Optimality of A* Graph Search

o Consider what A* does:
o Expands nodes in increasing total f value (f-contours) 

Reminder: f(n) = g(n) + h(n) = cost to n + heuristic
o Proof idea: the optimal goal(s) have the lowest f value, so it 

must get expanded first

…

f ≤ 3

f ≤ 2
f ≤ 1



Bonus: Optimality of A* Graph Search

Proof by contradiction:
o New possible problem: some n on path to 

G* isn’t in queue when we need it, because 
some worse n’ for the same state dequeued 
and expanded first (disaster!)

o Take the highest such n in tree
o Let p be the ancestor of n that was on the 

queue when n’ was popped
o f(p) < f(n) because of consistency
o f(n) < f(n’) because n’ is suboptimal
o p would have been expanded before n’
o Contradiction!



Beyond Pathfinding
A* can be used in a variety of 
domains besides path planning

Even has applications to LLMs! 



Constraint Satisfaction Problems

N variables

x1

x2

domain D
constraints

states goal test successor function
partial assignment complete; satisfies constraints assign an unassigned variable



What is Search For?
o Assumptions about the world: a single agent, deterministic actions, fully observed 

state, discrete state space

o Planning: sequences of actions
o The path to the goal is the important thing
o Paths have various costs, depths
o Heuristics give problem-specific guidance

o Identification: assignments to variables
o The goal itself is important, not the path
o All paths at the same depth (for some formulations)
o CSPs are specialized for identification problems



Constraint Satisfaction Problems

o Standard search problems:
o State is a “black box”: arbitrary data structure
o Goal test can be any function over states
o Successor function can also be anything

o Constraint satisfaction problems (CSPs):
o A special subset of search problems
o State is defined by variables Xi  with values from 

a domain D (sometimes D depends on i)
o Goal test is a set of constraints specifying 

allowable combinations of values for subsets of 
variables

o Allows useful general-purpose algorithms with 
more power than standard search algorithms



CSP Examples



Example: Map Coloring
o Variables:

o Domains:

o Constraints: adjacent regions must have different colors

o Solutions are assignments satisfying all constraints, e.g.:

 

Implicit:

Explicit:



Constraint Graphs



Constraint Graphs

o Binary CSP: each constraint relates (at most) two 
variables

o Binary constraint graph: nodes are variables, 
arcs show constraints

o General-purpose CSP algorithms use the graph 
structure to speed up search. E.g., Tasmania is 
an independent subproblem!



Example: N-Queens

o Formulation 1:
oVariables:
oDomains:
oConstraints



Example: N-Queens

o Formulation 2:
oVariables:

oDomains:

oConstraints:
Implicit:

Explicit:



Example: Cryptarithmetic

o Variables:

o Domains:

o Constraints:

X1



Example: Sudoku

▪ Variables: 

▪ Each (open) square 

▪ Domains: 

▪ {1,2,…,9} 

▪ Constraints: 

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of 
pairwise inequality 
constraints)



Varieties of Constraints

o Varieties of Constraints
o Unary constraints involve a single variable (equivalent to reducing 

domains), e.g.:

o Binary constraints involve pairs of variables, e.g.:

o Higher-order constraints involve 3 or more variables:
   e.g., cryptarithmetic column constraints

o Preferences (soft constraints):
o E.g., red is better than green
o Often representable by a cost for each variable assignment
o Gives constrained optimization problems
o (We’ll ignore these until we get to Bayes’ nets)

 



Real-World CSPs
o Assignment problems: e.g., who teaches what class
o Timetabling problems: e.g., which class is offered when and where?
o Hardware configuration
o Transportation scheduling
o Factory scheduling
o Circuit layout
o Fault diagnosis
o … lots more!

o Many real-world problems involve real-valued variables…



Solving CSPs



Standard Search Formulation

o Standard search formulation of CSPs

o States defined by the values assigned so far 
(partial assignments)
o Initial state: the empty assignment, {}
o Successor function: assign a value to an 

unassigned variable
o Goal test: the current assignment is complete 

and satisfies all constraints

o We’ll start with the straightforward, naïve 
approach, then improve it



Search Methods

o What would BFS do?

[Demo: coloring -- dfs]

{}
{WA=g} {WA=r} {NT=g}… …



Search Methods

o What would BFS do?

o What would DFS do?
o let’s see! 

o What problems does naïve search have?

[Demo: coloring -- dfs]



Video of Demo Coloring -- DFS



Backtracking Search



Backtracking Search
o Backtracking search is the basic uninformed algorithm for solving CSPs

o Idea 1: One variable at a time
o Variable assignments are commutative, so fix ordering -> better branching factor! 
o I.e., [WA = red then NT = green] same as [NT = green then WA = red]
o Only need to consider assignments to a single variable at each step

o Idea 2: Check constraints as you go
o I.e. consider only values which do not conflict previous assignments
o Might have to do some computation to check the constraints
o “Incremental goal test”

o Depth-first search with these two improvements
is called backtracking search (not the best name)

o Can solve n-queens for n ≈ 25



Backtracking Example

[Demo: coloring -- backtracking]



Video of Demo Coloring – Backtracking



Backtracking Search

o Backtracking = DFS + variable-ordering + fail-on-violation
o What are the choice points?



Improving Backtracking

o General-purpose ideas give huge gains in speed

o Ordering:
o Which variable should be assigned next?
o In what order should its values be tried?

o Filtering: Can we detect inevitable failure early?



Filtering

Keep track of domains for unassigned variables and cross off bad options



Filtering: Forward Checking
o Filtering: Keep track of domains for unassigned variables and cross off bad 

options
o Forward checking: Cross off values that violate a constraint when added to the 

existing assignment
WA

SA
NT Q

NSW
V

[Demo: coloring -- forward checking]



Video of Demo Coloring – Backtracking with Forward Checking



Filtering: Constraint Propagation
o Forward checking propagates information from assigned to unassigned variables, but doesn't 

provide early detection for all failures:

o NT and SA cannot both be blue!
o Why didn’t we detect this yet?
o Constraint propagation: reason from constraint to constraint

WA SA

NT Q

NSW

V



Consistency of A Single Arc
o An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be 

assigned without violating a constraint

Forward checking?
Enforcing consistency of arcs pointing to each new assignmentDelete from the tail!

WA SA

NT Q

NSW

V



Arc Consistency of an Entire CSP
o A simple form of propagation makes sure all arcs are consistent:

o Important: If X loses a value, neighbors of X need to be rechecked!
o Arc consistency detects failure earlier than forward checking
o Can be run as a preprocessor or after each assignment 
o What’s the downside of enforcing arc consistency? Remember: Delete 

from  the tail!

WA SA

NT Q

NSW

V



Enforcing Arc Consistency in a CSP

o Runtime: O(n2d3), can be reduced to O(n2d2)
o … but detecting all possible future problems is NP-hard – why?



Limitations of Arc Consistency

o After enforcing arc consistency:
oCan have one solution left
oCan have multiple solutions left
oCan have no solutions left (and 

not know it)

o Arc consistency still runs inside 
a backtracking search!

[Demo: coloring -- arc consistency]
[Demo: coloring -- forward checking]



Video of Demo Coloring – Backtracking with Forward Checking – 
Complex Graph



Video of Demo Coloring – Backtracking with Arc Consistency – 
Complex Graph



K-Consistency
o Increasing degrees of consistency

o 1-Consistency (Node Consistency): Each single node’s domain 
has a value which meets that node’s unary constraints

o 2-Consistency (Arc Consistency): For each pair of nodes, any 
consistent assignment to one can be extended to the other

o K-Consistency: For each k nodes, any consistent assignment to 
k-1 can be extended to the kth node.

o Higher k more expensive to compute

o (You need to know the k=2 case: arc consistency)



Strong K-Consistency
o Strong k-consistency: also k-1, k-2, … 1 consistent

o Claim: strong n-consistency means we can solve without backtracking!

o Why?
o Choose any assignment to any variable
o Choose a new variable
o By 2-consistency, there is a choice consistent with the first
o Choose a new variable
o By 3-consistency, there is a choice consistent with the first 2
o …

o Lots of middle ground between arc consistency and n-consistency!  (e.g. k=3, called 
path consistency)



Ordering



Ordering: Minimum Remaining Values
o Variable Ordering: Minimum remaining values (MRV):

o Choose the variable with the fewest legal left values in its domain

o Why min rather than max?
o Also called “most constrained variable”
o “Fail-fast” ordering



Ordering: Least Constraining Value

o Value Ordering: Least Constraining Value
o Given a choice of variable, choose the least constraining 

value
o I.e., the one that rules out the fewest values in the 

remaining variables
o Note that it may take some computation to determine 

this!  (E.g., rerunning filtering)

o Why least rather than most?

o Combining these ordering ideas makes
1000 queens feasible



Demo: Coloring -- Backtracking + Forward Checking + Ordering



Summary

o Work with your rubber duck to write down:
oHow we order variables and why
oHow we order values and why



Iterative Improvement



Iterative Algorithms for CSPs
o Local search methods typically work with “complete” states, i.e., all variables assigned

o To apply to CSPs:
o Take an assignment with unsatisfied constraints
o Operators reassign variable values
o No fringe!  Live on the edge.

o Algorithm: While not solved,
o Variable selection: randomly select any conflicted variable
o Value selection: min-conflicts heuristic:

o Choose a value that violates the fewest constraints
o I.e., hill climb with h(x) = total number of violated constraints



Example: 4-Queens

o States: 4 queens in 4 columns (44 = 256 states)
o Operators: move queen in column
o Goal test: no attacks
o Evaluation: c(n) = number of attacks



Iterative Improvement – n Queens



Iterative Improvement – Coloring



Performance of Min-Conflicts
o Given random initial state, can solve n-queens in almost constant time for 

arbitrary n with high probability (e.g., n = 10,000,000)!

o The same appears to be true for any randomly-generated CSP except in a narrow 
range of the ratio



Summary: CSPs
o CSPs are a special kind of search problem:

o States are partial assignments
oGoal test defined by constraints

o Basic solution: backtracking search

o Speed-ups:
o Ordering
o Filtering
o Structure – turns out trees are easy!

o Iterative min-conflicts is often effective in practice



Local Search



Local Search
o Tree search keeps unexplored alternatives on the fringe (ensures completeness)

o Local search: improve a single option until you can’t make it better (no fringe!)

o New successor function: local changes

o Generally much faster and more memory efficient (but incomplete and suboptimal)



Hill Climbing

o Simple, general idea:
o Start wherever
o Repeat: move to the best neighboring state
o If no neighbors better than current, quit

o What’s bad about this approach?

o What’s good about it?



Hill Climbing Diagram



Hill Climbing Quiz

Starting from X, where do you end up ? 
  
Starting from Y, where do you end up ? 

Starting from Z, where do you end up ?



Simulated Annealing
o Idea:  Escape local maxima by allowing downhill moves

o But make them rarer as time goes on

75



Simulated Annealing
o Theoretical guarantee:

o Stationary distribution:

o If T decreased slowly enough,
will converge to optimal state!

o Is this an interesting guarantee?

o Sounds like magic, but reality is reality:
o The more downhill steps you need to escape a local optimum, 

the less likely you are to ever make them all in a row
o People think hard about ridge operators which let you jump 

around the space in better ways



Genetic Algorithms

o Genetic algorithms use a natural selection metaphor
o Keep best N hypotheses at each step (selection) based on a fitness function
o Also have pairwise crossover operators, with optional mutation to give variety

o Possibly the most misunderstood, misapplied (and even maligned) technique around



Example: N-Queens

o Why does crossover make sense here?
o When wouldn’t it make sense?
o What would mutation be?
o What would a good fitness function be?



Bonus (time permitting): Structure



Problem Structure

o Extreme case: independent subproblems
o Example: Tasmania and mainland do not interact

o Independent subproblems are identifiable as 
connected components of constraint graph

o Suppose a graph of n variables can be broken into 
subproblems of only c variables:
o Worst-case solution cost is O((n/c)(dc)), linear in n
o E.g., n = 80, d = 2, c =20
o 280 = 4 billion years at 10 million nodes/sec
o (4)(220) = 0.4 seconds at 10 million nodes/sec



Tree-Structured CSPs

o Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
o Compare to general CSPs, where worst-case time is O(dn)

o This property also applies to probabilistic reasoning (later): an example of the relation 
between syntactic restrictions and the complexity of reasoning



Tree-Structured CSPs
o Algorithm for tree-structured CSPs:

o Order: Choose a root variable, order variables so that parents precede children

o Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
o Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

o Runtime: O(n d2)  (why?)



Tree-Structured CSPs
o Claim 1: After backward pass, all root-to-leaf arcs are consistent
o Proof: Each X→Y was made consistent at one point and Y’s domain could not have been reduced 

thereafter (because Y’s children were processed before Y)

o Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
o Proof: Induction on position

o Why doesn’t this algorithm work with cycles in the constraint graph?

o Note: we’ll see this basic idea again with Bayes’ nets



Improving Structure



Nearly Tree-Structured CSPs

o Conditioning: instantiate a variable, prune its neighbors' domains

o Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining 
constraint graph is a tree

o Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c



Cutset Conditioning

SA

SA SA SA

Instantiate the cutset 
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset



Cutset Quiz

o Find the smallest cutset for the graph below.



Tree Decomposition*
▪ Idea: create a tree-structured graph of mega-variables 
▪ Each mega-variable encodes part of the original CSP 
▪ Subproblems overlap to ensure consistent solutions 

M1 M2 M3 M4

         {(WA=r,SA=g,NT=b),       
          (WA=b,SA=r,NT=g), 
          …}

         {(NT=r,SA=g,Q=b), 
          (NT=b,SA=g,Q=r), 
          …}

Agree: (M1,M2) ∈ 
        {((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)),  …}

A
gree on    shared vars

NT

SA

≠
W
A

≠ ≠

Q

SA

≠
NT

≠ ≠

A
gree on    shared vars

NS
W

SA

≠
Q

≠ ≠

A
gree on    shared vars

V

SA

≠
NS
W

≠ ≠


