CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Instructor: Nicholas Tomlin

University of California, Berkeley

[These slides adapted from Dan Klein, Pieter Abbeel, and Anca Dragan]

Announcements

O Waitlist has been emptied
o Lecture notes should be posted tonight
o Project 0 and Homework 1 due tomorrow, 11PM

[Last time...

[Last time...

[Last time...

[Last time...

Q: Where do heuristics come from?

A: We have to create them!

Not the best heuristic...

[Last time...

Q: Where do heuristics come from?

A: We have to create them!

Not the best heuristic...

[Last time...

Q: Where do heuristics come from?

A: We have to create them!

What's a better heuristic?

Q: Where do heuristics come from?

A: We have to create them!

[Last time...

(s F—

What's a better heuristic?

@1

f=8+h
=5+0

[ast time...

O Failure to detect repeated states can cause exponentially more work.

/ State Graph \ / Search Tree \

A e

O
RYZRVERYER
r O
.-‘<-_-—..:'-: m
- n Ay
O
-:;‘_._._ﬁ..,
o _~
e

[ast time...

O Idea: never expand a state twice

© How to implement:

o Tree search + set of expanded states (“closed set”)
o Expand the search tree node-by-node, but...

o Before expanding a node, check to make sure its state has never
been expanded before

o If not new, skip it, if new add to closed set

[ast time...

[ast time...

[ast time...

[ast time...

This heuristic isn’t consistent

“Triangle inequality”

h(u) < d(u,v) + h(v)

[ast time...

This heuristic isn’t consistent

“Triangle inequality”

h(u) < d(u,v) + h(v)

Q: Ish(A) <d(A,C) + h(C)?

[ast time...

This heuristic isn’t consistent

“Triangle inequality”

h(u) < d(u,v) + h(v)

Q:Ish(A) <d(A,C) + h(C)?
A:No:4«£1+1

©)

©)

©)

©)

Summary of A*

Tree search:
o A*is optimal if heuristic is admissible
o UCS is a special case (h = 0)

Graph search:
o A* optimal if heuristic is consistent
o UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible
heuristics tend to be consistent, especially if
it comes from a relaxed problem

Bonus: Optimality of A* Graph Search

o Consider what A* does:
o Expands nodes in increasing total f value (f-contours)
Reminder: f(n) = g(n) + h(n) = cost to n + heuristic
o Proof idea: the optimal goal(s) have the lowest f value, so it
must get expanded first

Bonus: Optimality of A* Graph Search

Prootf by contradiction:

o New possible problem: some 7 on path to
G* isn’t in queue when we need it, because
some worse 1’ for the same state dequeued
and expanded first (disaster!)

o Take the highest such 7 in tree G*

Let p be the ancestor of n that was on the
queue when n” was popped

@)

f(p) < f(n) because of consistency
f(n) < f(n’) because n” is suboptimal

p would have been expanded before n’

O O O O

Contradiction!

Beyond Pathfinding

A” can be used in a variety of
domains besides path planning

Even has applications to LLMs!

er geht ja nicht hach hause
T,
TS
|V
he Mrrr)
> goes | home
HEEE H EEEE
—» are |»
does not go home

4

Constraint Satisfaction Problems

N variables
domain D

constraints

states goal test successor function

partial assignment complete; satisfies constraints assign an unassigned variable

What is Search For?

o Assumptions about the world: a single agent, deterministic actions, fully observed

state, discrete state space . ‘
oot ré"
&_lfx»--

o Planning: sequences of actions

o The path to the goal is the important thing

o Paths have various costs, depths

o Heuristics give problem-specific guidance

o Identification: assignments to variables
o The goal itself is important, not the path
o All paths at the same depth (for some formulations)
o (CSPs are specialized for identification problems

Constraint Satisfaction Problems

o Standard search problems:
o State is a “black box”: arbitrary data structure
o Goal test can be any function over states
o Successor function can also be anything

o Constraint satisfaction problems (CSPs):
o A special subset of search problems
o State is defined by variables X; with values from
a domain D (sometimes D depends on i)

o Goal test is a set of constraints specifying
allowable combinations of values for subsets of
variables

o Allows useful general-purpose algorithms with
more power than standard search algorithms

CSP Examples

Example: Map Coloring

Variables: VA, NT, Q, NSW, V, SA, T

Domains: D = {red,green,blue}

Constraints: adjacent regions must have different colors

Implicit: WA = NT

Explicit: (WA, NT) € {(red, green), (red, blue), ...}
Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}

Constraint Graphs

O
@

Constraint Graphs

o Binary CSP: each constraint relates (at most) two @
variables @"@

© Binary constraint graph: nodes are variables, @‘@
arcs show constraints °

o General-purpose CSP algorithms use the graph @

structure to speed up search. E.g., Tasmania is
an independent subproblem!

Example: N-Queens

o Formulation 1:
O Variables: Xij

© Domains: {0,1}

O Constraints

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi.j.k (Xi Xp) € {(0,0),(0,1), (1,0)} X, =
Vi, 3,k (Xij, Xigk,j+x) € {(0,0),(0,1),(1,0)} 1,

Vi, g,k (Xij, Xiqr j—r) €1(0,0),(0,1),(1,0)}

Example: N-Queens

o Formulation 2: Q1
o Variables: @k Q2
Q3

o Domains: 1123V} Q4

O Constraints:
Implicit: Vi,j non-threatening(Q;, Q;)

Explicit: (Q1,Q»>) € {(1,3),(1,4),...}

Example: Cryptarithmetic

X]
O Variables: T W?
FTUWRO X1 Xo X3 + T W|O
O Domains: FOU 5,
{0,1,2,3,4,5,6,7,8,9}
(O Constraints:)
alldiff(F, T,U, W, R, O) FY (1) (U) (W) (RO
O+0=R+10-X,

Example: Sudoku

= Variables:
= Each (open) square

= Domains:

A 7 / 8] = {1,2,,9}
/
8|4 116 = Constraints:
5 1
1 318 9 9-way alldiff for each column
6 8 4 3 9-way alldiff for each row
2 915 L 9-way alldiff for each region
7 2
7 (or can have a bunch of
|8 2|6 pairwise inequality
2 3 / constraints)

Varieties of Constraints

O Varieties of Constraints

o Unary constraints involve a single variable (equivalent to reduci
domains), e.g.:

SA # green
o Binary constraints involve pairs of variables, e.g.:
SA £ WA

o Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

O Preferences (soft constraints):
o E.g., red is better than green
Often representable by a cost for each variable assignment
Gives constrained optimization problems
(We'll ignore these until we get to Bayes’ nets)

o O O

O 0O O O O O O O

Real-World CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when and where?
Hardware configuration

Transportation scheduling mo |1

Factory scheduling

Circuit layout

Fault diagnosis

09 OL | —

\

... lots more!

Many real-world problems involve real-valued variables...

Solving CSPs

Standard Search Formulation

o Standard search formulation of CSPs

O States defined by the values assigned so far
(partial assignments)

o Initial state: the empty assignment, {}

o Successor function: assign a value to an
unassigned variable

o Goal test: the current assignment is complete
and satisfies all constraints

o We'll start with the straightforward, naive
approach, then improve it

Search Methods

o What would BFS do?

{/
[{(WA=¢} {(WA=r} ... (NT=g} ... J

[]

J[Demo: coloring -- dfs]

Search Methods

o What would BFS do?

o What would DFS do?

O let’s see!

o What problems does naive search have?

[Demo: coloring -- dfs]

Video of Demo Coloring -- DFS

Backtracking Search

¥

©)

©)

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time

O Variable assignments are commutative, so fix ordering -> better branching factor!
o lLe., [WA =red then NT = green] same as [NT = green then WA = red]
o Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
o le. consider only values which do not conflict previous assignments
o Might have to do some computation to check the constraints
o “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Backtracking Example

—]

¢ O ¢

Video of Demo Coloring — Backtracking

Backtracking Search

function BACKTRACKING-SEARCH(csy
return RECURSIVE-BACKTRACKING

yTetwurns solution/failure

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var<— SELECT-UNASSIGNED- VARIABLH(VARIABLES|csp|, assignment, csp)
or each value in ORDER-DOI\IAIN—VALUEE}(1"(1,7‘, assignment, csp) do
if{value is consistent with assignment{given CONSTRAINTS[csp| then
add {var = valuey to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

o Backtracking = DFS + variable-ordering + fail-on-violation
o What are the choice points?

Improving Backtracking

o General-purpose ideas give huge gains in speed
O Ordering:
© Which variable should be assigned next?

o In what order should its values be tried?

o Filtering: Can we detect inevitable failure early?

Filtering

Keep track of domains for unassigned variables and cross off bad options

Filtering: Forward Checking

o Filtering: Keep track of domains for unassigned variables and cross oft bad
options

o Forward checking: Cross off values that violate a constraint when added to the
existing assignment

WA NT['Q

NSW

WA NT Q NSW \' SA

[Demo: coloring -- forward checking]

Video of Demo Coloring — Backtracking with Forward Checking

Filtering: Constraint Propagation

o Forward checking propagates information from assigned to unassigned variables, but doesn't
provide early detection for all failures:

WA NT Q NSW Vv SA
| _N;rLQ (I I I T IC Y I
‘ s — EErEmrE[ErE] om
p= = I B mEoE] (m
—

o NT and SA cannot both be blue!
o Why didn’t we detect this yet?
o Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

o Anarc X — Y is consistent iff for every x in the tail there is some y in the head which could be
assigned without violating a constraint

NT g WA NT Q NSW Y SA

‘ W B _ "EENEETEETEET e

Forward checking? _
: . e . Delete from the tail!
Enforcing consistency of arcs pointing to each new assignmertt

Arc Consistency of an Entire CSP

o A simple form of propagation makes sure all arcs are consistent:

\'

SA

NT [-@ WA NT Q NSW
oW | 1 m _|_

V\W

Important: If X loses a value, neighbors of X need to be rechecked!
Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

What's the downside of enforcing arc consistency?

Remember: Delete
from the tail!

Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X7, Xy, ..., X}

local Variables queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT- VALUES(.X;, X) then
for each X}, in NEIGHBORs[X;] do
add (Xz., X;)Jto queue

function REMOVE-INCONSISTENT-VALUES(X;, X)) returns true iff succeeds
removed < false
for each r in DoMAIN[X}] do
if no value iy in DOMAIN[X]] allows (z,9) to satisfy the constraint X; < X
then delete = from DOMAIN[X;]|; removed — true
return removed

o Runtime: O(n2d3), can be reduced to O(n2d?2)
O ... but detecting all possible future problems is NP-hard — why?

Limitations of Arc Consistency

o After enforcing arc consistency:
© Can have one solution left
o Can have multiple solutions left

o Can have no solutions left (and
not know it)

o Arc consistency still runs inside
a backtracking search!

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]

Video of Demo Coloring — Backtracking with Forward Checking —
Complex Graph

Video of Demo Coloring — Backtracking with Arc Consistency —
Complex Graph

K-Consistency

O Increasing degrees of consistency

o 1-Consistency (Node Consistency): Each single node’s domain
has a value which meets that node’s unary constraints

o 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

o K-Consistency: For each k nodes, any consistent assignment to
k-1 can be extended to the kth node.

o Higher k more expensive to compute

o (You need to know the k=2 case: arc consistency)

©)

O

Strong K-Consistency

Strong k-consistency: also k-1, k-2, ... 1 consistent
Claim: strong n-consistency means we can solve without backtracking!

Why?
Choose any assignment to any variable
Choose a new variable

Choose a new variable

o
o

o By 2-consistency, there is a choice consistent with the first
o

o By 3-consistency, there is a choice consistent with the first 2
o

Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Ordering

Ordering: Minimum Remaining Values

O Variable Ordering: Minimum remaining values (MRV):

o Choose the variable with the fewest legal left values in its domain

=S

o0 Why min rather than max?

o Also called “most constrained variable”

o “Fail-fast” ordering

Ordering: Least Constraining Value

o Value Ordering: Least Constraining Value
o Given a choice of variable, choose the least constraining

value .
o Le., the one that rules out the fewest values in the ‘
remaining variables

o Note that it may take some computation to determine
this! (E.g., rerunning filtering)

o0 Why least rather than most?

o Combining these ordering ideas makes
1000 queens feasible

Demo: Coloring -- Backtracking + Forward Checking + Ordering

Summary

o Work with your rubber duck to write down:
o How we order variables and why

o How we order values and why

Iterative Improvement

, il
-

A _\ &\

,//

o~

—

[terative Algorithms for CSPs

o Local search methods typically work with “complete” states, i.e., all variables assigned

o To apply to CSPs:
o Take an assignment with unsatisfied constraints ‘i‘ . #
O Operators reassign variable values
o No fringe! Live on the edge.

o Algorithm: While not solved,
O Variable selection: randomly select any conflicted variable

o0 Value selection: min-conflicts heuristic:
o Choose a value that violates the fewest constraints

o Le., hill climb with h(x) = total number of violated constraints

~
S

o

Example: 4-Queens

]
W
.

L
I

W

W

W

]
:>E|%:>E
H B L

h=5 h=2

=y

=0

States: 4 queens in 4 columns (44 = 256 states)
Operators: move queen in column

Goal test: no attacks

Evaluation: c(n) = number of attacks

O O O O

Iterative Improvement — n Queens

[terative Improvement — Coloring

Performance of Min-Conflicts

o Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)!

0 The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

__number of constraints
number of variables

CPU
time

|
critical
ratio

Summary: CSPs

o CSPs are a special kind of search problem:
O States are partial assignments
o Goal test defined by constraints

o Basic solution: backtracking search

O Speed-ups:
O Ordering

09 O —

O Filtering
O Structure — turns out trees are easy!

O Iterative min-conflicts is often effective in practice

[Local Search

(©)

©)

@)

[.ocal Search

Tree search keeps unexplored alternatives on the fringe (ensures completeness)
Local search: improve a single option until you can’t make it better (no fringe!)

New successor function: local changes

| o

999

Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

o Simple, general idea:
O Start wherever

WL

o Repeat: move to the best neighboring state |

— T —— =

o If no neighbors better than current, quit

o What's bad about this approach?

© What's good about it?

Hill Climbing Diagram

objectixe function /ﬁbbal maximum

shoulder

\ local maximum

"flat” local maximum

»state space
current

state

Hill Climbing Quiz

Objective Function
L)

State Space

.

Starting from X, where do you end up ?
Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing

o Idea: Escape local maxima by allowing downhill moves

o But make them rarer as time goes on

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])
for t<— 1 to oo do
T'— schedule[{]
if 7'= 0 then return current
nexrt < a randomly selected successor of current
AFE«— VALUE[next] — VALUE[current]
if AE > 0 then current <« next

else current «— next only with probability e® £/7

Simulated Annealing

o Theoretical guarantee: E(x)
O Stationary distribution: p (33) X e kT

o If T decreased slowly enough,
will converge to optimal state!

o Is this an interesting guarantee?

O Sounds like magic, but reality is reality:

© The more downhill steps you need to escape a local optimum,
the less likely you are to ever make them all in a row

o People think hard about ridge operators which let you jump
around the space in better ways

Fithess Selection

Genetic Algorithms

Pairs

Cross—-Over

24748552 | 24 31% 327@52411 32748552 3274812
32752411 [23 29% 247548552 >_< 24752411 24752411
24415124 | 20 26% 327-52é411 32752124 32252124
32543213 | 11 14% 244155124 >_< 24415411 2441541[7]

o Genetic algorithms use a natural selection metaphor
o Keep best N hypotheses at each step (selection) based on a fitness function
o Also have pairwise crossover operators, with optional mutation to give variety

0 Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

o Why does crossover make sense here?
o When wouldn’t it make sense?

o What would mutation be?

o What would a good fitness function be?

Bonus (time permitting): Structure

Problem Structure

o Extreme case: independent subproblems

o Example: Tasmania and mainland do not interact @"@

o Independent subproblems are identifiable as @‘@

connected components of constraint graph o
O Suppose a graph of n variables can be broken into @
subproblems of only c variables:

o Worst-case solution cost is O((n/c)(d¢)), linear in n
o E.g,n=80,d=2,¢c=20

o 280 =4 billion years at 10 million nodes/sec

o (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

0 Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
o Compare to general CSPs, where worst-case time is O(dn)

o This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

o Algorithm for tree-structured CSPs:
o Order: Choose a root variable, order variables so that parents precede children

2

o Remove backward: For i =n : 2, apply Removelnconsistent(Parent(X.),X.)

« /N7 \

o Assign forward: Fori=1:n, assign X, consistently with Pa

o Runtime: O(n d2) (why?)

Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have been reduced
thereafter (because Y’s children were processed before Y)

(AHBHCNDHENFE

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we'll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

@ O,

o Conditioning: instantiate a variable, prune its neighbors' domains

O—c
@‘@'é“@ L€

o Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining
constraint graph is a tree

o Cutset size c gives runtime O((d¢) (n-c) d2), very fast for small c

Cutset Conditioning

Choose a cutset

9‘@‘3

Instantiate the cutset 4

[]
[(all possiblt.a ways)]
[Compute residual CSP]
()
[] £

for each assignment

b
A
oM

l

4—

Solve the residual CSPs
(tree structured)

Cutset Quiz

o Find the smallest cutset for the graph below.

Tree Decomposition™

= l|dea: create a tree-structured graph of mega-variables
= Each mega-variable encodes part of the original CSP
= Subproblems overlap to ensure consistent solutions @

slen paleys | uo eaiby
sJieA paseys | uo saiby
sJeA paJseys | uo saiby

{(WA=r,SA=g,NT=b), {(NT=r,SA=g,Q=b), Agree: (M1,M2) €
(V\§A=b,SA=r,NT=g), (N}T=b,SA=g,Q=r), {((WA=g,5A=g,NT=g), (NT=g,SA=g,Q=g)), ...}

