
CS 188: Artificial Intelligence
Constraint Satisfaction Problems

Instructor: Nicholas Tomlin

University of California, Berkeley
[These slides adapted from Dan Klein, Pieter Abbeel, and Anca Dragan]

Announcements

o Extensions
o Issues with the extension script
o We’ll be re-opening assignment submission for approved extensions
o Please don’t abuse the extension process!
o If you have questions: make a private Ed post (better than email)

o Discussion sections
o Please make sure you’re going to the right one!
o Check the SignUpGenius: if you can go to a less popular discussion section

and prefer that, get more interaction with the GSIs

o Project 1 due tomorrow, 11PM

Reminder: CSPs

o CSPs:
o Variables
o Domains
o Constraints

o Implicit (provide code to compute)
o Explicit (provide a list of all legal tuples)
o Unary / Binary / N-ary

o Goals:
o Here: find any solution
o But also: find all solutions, best solution, etc.

Backtracking Search

Improving Backtracking

o General-purpose ideas bring huge gains in
speed
o …but it’s all still NP-hard

o Filtering: can we detect inevitable failure early?

o Ordering:
o Which variable should be assigned next?
o In what order should its values be tried?

o Structure: can we exploit the structure of the
problem/constraint graph?

Reminder: Forward Checking
o Filtering: Keep track of domains for unassigned variables and cross off bad

options
o Forward checking: Cross off values that violate a constraint when added to the

existing assignment
WA

SA
NT Q

NSW
V

Reminder: Arc Consistency
o An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be

assigned without violating a constraint

Forward checking?
Enforcing consistency of arcs pointing to each new assignmentDelete from the tail!

WA SA

NT Q

NSW

V

Reminder: Arc Consistency
o A simple form of propagation makes sure all arcs are consistent:

o Important: If X loses a value, neighbors of X need to be rechecked!
o Arc consistency detects failure earlier than forward checking
o Can be run as a preprocessor or after each assignment
o What’s the downside of enforcing arc consistency? Remember: Delete

from the tail!

WA SA

NT Q

NSW

V

Ordering

Ordering: Minimum Remaining Values
o Variable Ordering: Minimum remaining values (MRV):

o Choose the variable with the fewest legal values left in its domain

o Why min rather than max?
o Also called “most constrained variable”
o “Fail-fast” ordering

Ordering: Least Constraining Value

o Value Ordering: Least Constraining Value
o Given a choice of variable, choose the least constraining

value
o I.e., the one that rules out the fewest values in the

remaining variables
o Note that it may take some computation to determine

this! (E.g., rerunning filtering)

o Why least rather than most?

o Combining these ordering ideas makes
1000 queens feasible

Structure

Problem Structure

o Extreme case: independent subproblems
o Example: Tasmania and mainland do not interact

o Independent subproblems are identifiable as
connected components of constraint graph

o Suppose a graph of n variables can be broken into
subproblems of only c variables:
o Worst-case solution cost is O((n/c)(dc)), linear in n
o E.g., n = 80, d = 2, c =20
o 280 = 4 billion years at 10 million nodes/sec
o (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

o Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
o Compare to general CSPs, where worst-case time is O(dn)

o This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs
o Algorithm for tree-structured CSPs:

o Order: Choose a root variable, order variables so that parents precede children

o Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
o Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

o Runtime: O(n d2) (why?)

Tree-Structured CSPs
o Claim 1: After backward pass, all root-to-leaf arcs are consistent
o Proof: Each X→Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

o Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
o Proof: Induction on position

o Note: we’ll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

o Conditioning: instantiate a variable, prune its neighbors' domains

o Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining
constraint graph is a tree

o Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Cutset Quiz

o Find the smallest cutset for the graph below.

Bonus: Tree Decomposition
▪ Idea: create a tree-structured graph of mega-variables
▪ Each mega-variable encodes part of the original CSP
▪ Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

 {(WA=r,SA=g,NT=b),
 (WA=b,SA=r,NT=g),
 …}

 {(NT=r,SA=g,Q=b),
 (NT=b,SA=g,Q=r),
 …}

Agree: (M1,M2) ∈
 {((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

A
gree on shared vars

NT

SA

≠
W
A

≠ ≠

Q

SA

≠
NT

≠ ≠

A
gree on shared vars

NS
W

SA

≠
Q

≠ ≠

A
gree on shared vars

V

SA

≠
NS
W

≠ ≠

Iterative Improvement

Local Search
o Tree search keeps unexplored alternatives on the fringe (ensures completeness)

o Local search: improve a single option until you can’t make it better (no fringe!)

o New successor function: local changes

o Generally much faster and more memory efficient (but incomplete and suboptimal)

Iterative Algorithms for CSPs
o Local search methods typically work with “complete” states, i.e., all variables assigned

o To apply to CSPs:
o Take an assignment with unsatisfied constraints
o Operators reassign variable values
o No fringe! Live on the edge.

o Algorithm: While not solved,
o Variable selection: randomly select any conflicted variable
o Value selection: min-conflicts heuristic:

o Choose a value that violates the fewest constraints
o I.e., hill climb with h(x) = total number of violated constraints

Example: 4-Queens

o States: 4 queens in 4 columns (44 = 256 states)
o Operators: move queen in column
o Goal test: no attacks
o Evaluation: c(n) = number of attacks

Performance of Min-Conflicts
o Given random initial state, can solve n-queens in almost constant time for

arbitrary n with high probability (e.g., n = 10,000,000)!

o The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Hill Climbing

o Simple, general idea:
o Start wherever
o Repeat: move to the best neighboring state
o If no neighbors better than current, quit

o What’s bad about this approach?

o What’s good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing
o Idea: Escape local maxima by allowing downhill moves

o But make them rarer as time goes on

30

Simulated Annealing
o Theoretical guarantee:

o Stationary distribution:

o If T decreased slowly enough,
will converge to optimal state!

o Is this an interesting guarantee?

o Sounds like magic, but reality is reality:
o The more downhill steps you need to escape a local optimum,

the less likely you are to ever make them all in a row
o People think hard about ridge operators which let you jump

around the space in better ways

Gradient Descent as Simulated Annealing

o Q: Can we do better than
randomly guessing?

o A: Yes, if the function is
continuous and differentiable.

Genetic Algorithms

o Genetic algorithms use a natural selection metaphor
o Keep best N hypotheses at each step (selection) based on a fitness function
o Also have pairwise crossover operators, with optional mutation to give variety

o Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

o Why does crossover make sense here?
o When wouldn’t it make sense?
o What would mutation be?
o What would a good fitness function be?

Bonus: Weighted CSPs

o In the real world, many constraints are soft:
o Scheduling:

o With enough people attending a meeting, no times will work
o Solution: some conflicts are more important than others, make

sacrifices where necessary
o Travel planning:

o Budget: would like to keep things cheap, but willing to spend more if
it’s worth it

o Distance: want to avoid long walks, but can make exceptions for really
interesting places

o Running example: crosswords!

o Different set of algorithms often used for WCSPs

Example Crossword

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Example Crossword

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Example Crossword

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Example Crossword

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Example Crossword

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Example Crossword

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Example Crossword

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Example Crossword

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Example Crossword

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Example Crossword

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Example Crossword

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Example Crossword

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Example Crossword

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Crosswords as a Weighted CSP

o Variables: entries in the grid
o Domains: all possible words (??)
o Constraints:

o Hard constraints: intersecting words match
o Scoring function: match the clues

o Questions:
o Where does the scoring function come from?
o What’s the search algorithm?

Scoring Function

14. Omega competitor

Scoring Function

D
om

ain

• •
 •

• •
 •

•

• •
 •

• •
 •

•

14. Omega competitor

Scoring Function

• •
 •

• •
 •

•

D
om

ain

• •
 •

• •
 •

•

14. Omega competitor

Scoring Function

D
om

ain

• •
 •

• •
 •

•

• •
 •

• •
 •

•

14. Omega competitor

Scoring Function

D
om

ain

• •
 •

• •
 •

•

• •
 •

• •
 •

•

14. Omega competitor

Scoring Function

• •
 •

• •
 •

•

D
om

ain

• •
 •

• •
 •

•

14. Omega competitor

Scoring Function

• •
 •

• •
 •

•

D
om

ain

• •
 •

• •
 •

•

14. Omega competitor

Search Algorithm for Crosswords
o Our approach:

o Use QA model to get probability distribution over answers
o Belief propagation (we’ll talk more about this later in the class)
o Initialize solution with greedy search
o Iterative improvement on individual letters

Iterative Improvement

The New York Times Crossword from Thursday, January 21, 2021. Constructed by Daniel Mauer and edited by Will Shortz.

Iterative Improvement

The New York Times Crossword from Thursday, January 21, 2021. Constructed by Daniel Mauer and edited by Will Shortz.

Iterative Improvement

The New York Times Crossword from Thursday, January 21, 2021. Constructed by Daniel Mauer and edited by Will Shortz.

Iterative Improvement

The New York Times Crossword from Thursday, January 21, 2021. Constructed by Daniel Mauer and edited by Will Shortz.

Demo

The New York Times Crossword from Saturday, May 22, 2021. Constructed by Sid Sivakumar and Matthew Stock and edited by Will Shortz.

Bonus: Fortuitous Search Errors

o Scoring function can be incorrectly
calibrated

o Example: decoding from language models
o Language models assign probabilities to strings

of words
o Decoding uses greedy or beam search
o But what if you searched over all possible

strings (exponentially many) and chose the
highest scoring one?

o Answer: you often end up generating the
empty string, or “The the the the the…”

Summary: CSPs
o CSPs are a special kind of search problem:

o States are partial assignments
oGoal test defined by constraints

o Basic solution: backtracking search

o Speed-ups:
o Ordering
o Filtering
o Structure – trees are easy!

o Local search often effective in practice

