CS 188: Artificial Intelligence Bayesian Networks

Instructor: Saagar Sanghavi — UC Berkeley

[Slides credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, Satish Rao, and many others]

Recall: Random Variables

- Recall: random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot?
 - D = How long will it take to drive to work?
- Capital letters: Random variables
- Lowercase letters: values that the R.V. can take
 - $\circ \quad r \in \{+r, -r\}$
 - $\circ \quad t \in \{+t, -t\}$
 - $\circ \quad d \in [0,\infty)$

Probability Distributions

- Associate a probability with each value
 - Temperature:

• Weather:

P(T)			
T P			
hot	0.5		
cold 0.5			

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Joint Distributions

• A *joint distribution* over a set of random variables: specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

• Must obey:
$$P(x_1, x_2, \dots, x_n) \ge 0$$
 (non-negativity)
 $\sum_{(x_1, x_2, \dots, x_n)} P(x_1, x_2, \dots, x_n) = 1$ (normalization)

 $X_1, X_2, \ldots X_n$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding P(T)

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{s} P(t,s)$$

$$P(s) = \sum_{t} P(t, s)$$

P(I)			
Т	Р		
hot	0.5		
cold 0.5			

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Conditional Probabilities

0	 Bayes Rule 				
$P(a b) = \frac{P(a,b)}{P(b)}$					
P(T,W)					
	Т	W	Р		
	hot	sun	0.4		
	hot	rain	0.1		
	cold	sun	0.2		
	cold	rain	0.3		

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$
$$= P(W = s, T = c) + P(W = r, T = c)$$
$$= 0.2 + 0.3 = 0.5$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

= $\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$
= $\frac{0.2}{0.2 + 0.3} = 0.4$ $P(W|T = c)$

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

=
$$\frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

=
$$\frac{0.3}{0.2 + 0.3} = 0.6$$

WPsun0.4rain0.6

Normalization Trick

To Normalize

• (Dictionary) To bring or restore to a normal condition

• Procedure:

- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z

• Example

All entries sum to ONE

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes *beliefs to be updated*

 \circ P(W)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

 \circ P(W)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

 \circ P(W)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

 $\circ P(W)?$

P(sun)=.3+.1+.1+.15=.65

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

 $\circ P(W)?$

P(sun)=.3+.1+.1+.15=.65 P(rain)=1-.65=.35

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

• P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

 \circ P(W | winter, hot)?

P(sun|winter,hot)~.1 P(rain|winter,hot)~.05

	0	P(W	winter,	hot)?
--	---	-----	---------	-------

P(sun|winter,hot)~.1 P(rain|winter,hot)~.05 P(sun|winter,hot)=2/3 P(rain|winter,hot)=1/3

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Bayes Rule

Bayes' Rule

• Two ways to factor a joint distribution over two variables:

P(x,y) = P(x|y)P(y) = P(y|x)P(x)

• Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often, one conditional is tricky but the other one is simple

Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

• Example:

• M: meningitis, S: stiff neck

$$\begin{array}{c} P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01 \end{array} \begin{array}{c} \mbox{Example} \\ \mbox{givens} \end{array}$$

 $P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$ \circ Note: posterior probability of meningitis still very small

• Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

 \circ What is P(W | dry)?

Quiz: Bayes' Rule

\circ What is P(W | dry)?

 $P(sun|dry) \sim P(dry|sun)P(sun) = .9^*.8 = .72$ $P(rain|dry) \sim P(dry|rain)P(rain) = .3^*.2 = .06$ P(sun|dry)=12/13P(rain|dry)=1/13

Independence

Independence

• Two variables are *independent* if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution *factors* into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

• We write:

$X \! \perp \!\!\!\perp Y$

- Independence is a simplifying *modeling assumption*
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

P(T)		
Т	Р	
hot	0.5	
cold	0.5	

$P_{1}(T,$	W)
------------	----

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(V	V)	
W	Р	
sun	0.6	
rain	0.4	

$P_{2}(T,$	W)
------------	----

Т	W	Ρ
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Example: Independence

• N fair, independent coin flips:

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

- The same independence holds if I don't have a cavity:
 P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
- Equivatent statements: Cavity) = P(Catch | Cavity)
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

[•] P(+catch | +toothache, +cavity) = P(+catch | +cavity)

- Unconditional (absolute) independence very rare (why?)
- *Conditional independence* is our most basic and robust form of knowledge about uncertain environments.

 $X \perp \!\!\!\perp Y | Z$

• X is conditionally independent of Y given Z

if and x, y, z if P(x, y|z) = P(x|z)P(y|z)

or,
$$e \forall x, y, z : P(x|z, y) = P(x|z)$$

- Unconditional (absolute) independence very rare (why?)
- *Conditional independence* is our most basic and robust form of knowledge about uncertain environments.
- \circ (X is conditionally independent of Y) given Z

$$\text{if ar}_{\forall x, y, z}^{A} \stackrel{\text{only}}{:} \stackrel{\text{if}}{:} P(x, y|z) = P(x|z)P(y|z) \qquad P(x|z, y) = \frac{P(x, z, y)}{P(z, y)}$$
$$= \frac{P(x, y|z)P(z)}{P(y|z)P(z)}$$
$$\text{or, } e\forall x, y, z : P(x|z, y) = P(x|z) \qquad = \frac{P(x|z)P(y|z)P(z)}{P(y|z)P(z)}$$

 $X \perp \!\!\!\perp Y | Z$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

• What about this domain:

• Fire

- Smoke
- Alarm

Conditional Independence and the Chain Rule

• Chain rule: $P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$

- Trivial decomposition:
 - P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)
- With assumption of conditional independence:
 - P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

• Bayesian Networks/graphical models help us express conditional independence assumptions

Bayesian Networks: The Big Picture

Bayesian Networks: The Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- **Bayesian Networks:** a technique for describing complex joint distributions (models) using simple, local distributions (conditional probability tables, or CPTs)
 - More properly called **graphical models**
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions

Bayes Net: DAG + CPTs

Example Bayes Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

Example: Coin Flips

• N independent coin flips X_1 X_2 ... X_n

• No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence

• Model 2: rain may cause traffic R

R

Example: Alarm Network

• Variables

- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Example: Alarm Network

Example: Humans

- G: human's goal / human's reward parameters
- S: state of the physical world
- A: human's action

Example: Traffic II

• Variables

- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Bayesian Network Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combined $\dot{P}(X|a_1 \dots a_n)^{s'}$ values

- CPT: conditional probability table
- Description of a potentially "causal" process

A Bayes net = *Topology* (*graph*) + *Local Conditional Probabilities*

Probabilities in BNs

- Bayes' nets **implicitly** encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

 $P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

• Example:

P(+cavity, +catch, -toothache)

Probabilities in BNs

 \circ Why are we guaranteed that setting

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

• Chain rule (valid for all distributions):

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$$

• <u>Assume</u> conditional independences:

$$P(x_i|x_1,\ldots,x_{i-1}) = P(x_i|parents(X_i))$$

$$\rightarrow \quad \text{Conseque} P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | \text{parents}(X_i))$$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

P(h, h, t, h) = P(h)P(h)P(t)P(h)

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

Example: Alarm Network

E	P(E)
+e	0.002
-е	0.998

В	E	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

P(M|A)P(J|A)P(A| B,E)P(E)P(B)

Example: Traffic

Causal direction

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

• Reverse causality?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

• When Bayes' nets reflect the true causal patterns:

- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts

• BNs need not actually be causal

- Sometimes no causal net exists over the domain (especially if variables are missing)
- E.g. consider the variables *Traffic* and *Drips*
- End up with arrows that reflect correlation, not causation

• What do the arrows really mean?

- Topology may happen to encode causal structure
- Topology really encodes conditional independence

 $P(x_i|x_1,\ldots,x_{i-1}) = P(x_i|parents(X_i))$

Inference with Bayesian Networks

Inference

 Inference: calculating some useful quantity from a joint probability distribution

- Examples:
 - Posterior probability $P(Q|E_1 = e_1, \dots E_k = e_k)$
 - Most likely explanation: argmax_q $P(Q = q | E_1 = e_1...)$

Inference by Enumeration

Inference by Enumeration in Bayes' Net

=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(-a|

Inference by Enumeration

Example: Traffic Domain

P(R)		
+r	0.1	
-r	0.9	

P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r +t 0.1			
-r -t 0.9			

P(L T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-1	0.9

Inference by Enumeration: Procedural Outline

- Track objects called **factors**
- Initial factors are local CPTs (one per node)

P(.	R)
+r	0.1

P(L T)			
	+t	+	0.3
	+t	-	0.7
	-t	+	0.1
	-t	-1	0.9

D(T | m)

• Any known values are selected 0.1

09

• E.g. if we know

, the initial factors are

$$L = +\ell$$

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R

 $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$

Example: Multiple Joins

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- $\circ \operatorname{Exa}P(R,T)$

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inf by Enumeration)

P(L|T)

Recall: Inference by Enumeration

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

P(L|T)

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration slow?
 - You join up the whole joint distribution before you sum out the hidden variables

Idea: interleave joining and marginalizing!

- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration

Traffic Domain

Marginalizing Early (Variable Elimination)

Marginalizing Early! (aka VE)

Evidence

• If evidence, start with factors that select that evidence

• No evidence uses these initial factors:

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:

• That 's it!

Inference by Enumeration

Variable Elimination

General Variable Elimination

• Query:
$$P(Q|E_1 = e_1, ..., E_k = e_k)$$

- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Example

 $P(B|j,m) \propto P(B,j,m)$

P(B) $P(E)$ $P(A B,E)$ $P(j A)$ $P(m A)$
--

$$\begin{split} P(B|j,m) &\propto P(B,j,m) \\ &= \sum_{e,a} P(B,j,m,e,a) \\ &= \sum_{e,a}^{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a) \\ &= \sum_{e}^{e,a} P(B)P(e)\sum_{a} P(a|B,e)P(j|a)P(m|a) \\ &= \sum_{e}^{e} P(B)P(e)f_{1}(j,m|B,e) \\ &= P(B)\sum_{e} P(e)f_{1}(j,m|B,e) \\ &= P(B)f_{2}^{e}(j,m|B) \end{split}$$

marginal can be obtained from joint by summing out

В

Α

Μ

use Bayes' net joint distribution expression

use $x^*(y+z) = xy + xz$

joining on a, and then summing out gives f_1

use
$$x^*(y+z) = xy + xz$$

joining on e, and then summing out gives f_2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Example

P(B)	P(E)	P(j,m B,E)
------	------	------------

Example

Another Variable Elimination Example

Query: $P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$

Start by inserting evidence, which gives the following initial factors:

 $P(Z), P(X_1|Z), P(X_2|Z), P(X_3|Z), P(y_1|X_1), P(y_2|X_2), P(y_3|X_3)$

Eliminate X_1 , this introduces the factor $f_1(y_1|Z) = \sum_{x_1} P(x_1|Z)P(y_1|x_1)$, and we are left with:

 $P(Z), P(X_2|Z), P(X_3|Z), P(y_2|X_2), P(y_3|X_3), f_1(y_1|Z)$

Eliminate X_2 , this introduces the factor $f_2(y_2|Z) = \sum_{x_2} P(x_2|Z)P(y_2|x_2)$, and we are left with:

$$P(Z), P(X_3|Z), P(y_3|X_3), f_1(y_1|Z), f_2(y_2|Z)$$

Eliminate Z, this introduces the factor $f_3(y_1, y_2, X_3) = \sum_z P(z)P(X_3|z)f_1(y_1|Z)f_2(y_2|Z)$, and we are left with: little z little z

$$P(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3), f_3(y_1, y_2, X_3)$$

Normalizing over X_3 gives $P(X_3|y_1, y_2, y_3) = f_4(y_1, y_2, y_3, X_3) / \sum_{x_3} f_4(y_1, y_2, y_3, x_3)$

Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X₃ respectively).

Variable Elimination Ordering

For the query P(X_n | y₁,...,y_n) work through the following two different orderings as done in previous slide: Z, X₁, ..., X_{n-1} and X₁, ..., X_{n-1}, Z. What is the size of the maximum factor generated for each of the orderings?

• In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 No!

Worst Case Complexity?

• CSP:

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_6 \lor x$

• If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

"Easy" Structures: Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 Try it!!

Bayes Nets

Probabilistic Inference

• Enumeration (exact, exponential complexity)

• Variable elimination (exact, worst-case

exponential complexity, often better)

• Probabilistic inference is NP-complete

Conditional Independences

Sampling

• Learning from data