CS 188: Artificial Intelligence

 Bayesian Networks

Instructor: Saagar Sanghavi - UC Berkeley
[Slides credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, Satish Rao, and many others]

Recall: Random Variables

- Recall: random variable is some aspect of the world about which we (may) have uncertainty
- $R=$ Is it raining?
- $\mathrm{T}=\mathrm{Is}$ it hot?
- $\mathrm{D}=$ How long will it take to drive to work?
- Capital letters: Random variables
- Lowercase letters: values that the R.V. can take
- $r \in\{+r,-r\}$
- $t \in\{+t,-t\}$
- $d \in[0, \infty)$

Probability Distributions

- Associate a probability with each value
- Temperature:
$P(T)$

T	P
hot	0.5
cold	0.5

- Weather:

Joint Distributions

- A joint distribution over a set of random variables:

$$
X_{1}, X_{2}, \ldots X_{n}
$$

specifies a real number for each assignment (or outcome):

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)
\end{aligned}
$$

- Must obey: $P\left(x_{1}, x_{2}, \ldots x_{n}\right) \geq 0 \quad$ (non-negativity)

$$
\sum_{\left(x_{1}, x_{2}, \ldots x_{n}\right)} P\left(x_{1}, x_{2}, \ldots x_{n}\right)=1 \quad \text { (normalization) }
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d ?
- For all but the smallest distributions, impractical to write out!

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding
$P(T, W)$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$P(T)$	
T	P
hot	0.5
cold	0.5
$P(W)$	

$$
P(s)=\sum_{t} P(t, s)
$$

W	P
sun	0.6
rain	0.4

$$
P\left(X_{1}=x_{1}\right)=\sum_{x_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

Conditional Probabilities

- Bayes Rule

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
\begin{gathered}
P(W=s \mid T=c)=\frac{P(W=s, T=c)}{P(T=c)}=\frac{0.2}{0.5}=0.4 \\
=P(W=s, T=c)+P(W=r, T=c) \\
=0.2+0.3=0.5
\end{gathered}
$$

Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
\begin{aligned}
P(W=s \mid T=c) & =\frac{P(W=s, T=c)}{P(T=c)} \\
& =\frac{P(W=s, T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.2}{0.2+0.3}=0.4 \\
P(W=r \mid T=c) & =\frac{P(W=r, T=c)}{P(T=c)} \\
& =\frac{P(W \mid T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.3}{0.2+0.3}=0.6
\end{aligned} \quad \begin{array}{|c|c|}
\hline \mathrm{W} & \mathrm{P} \\
\hline \text { sun } & 0.4 \\
\hline \text { rain } & 0.6 \\
\hline
\end{array}
$$

Normalization Trick

$P(T, W)$			SELECT the joint probabilities matching the evidence	$P(c, W)$			NORMALIZE the selection (make it sum to one)	$P(W \mid T=c)$	
T	W	P							
hot	sun	0.4		T	W	P		W	P
hot	rain	0.1		cold	sun	0.2		sun	0.4
cold	sun	0.2		cold	rain	0.3		rain	0.6
cold	rain	0.3							

To Normalize

- (Dictionary) To bring or restore to a nomal condition
- Procedure:
- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z
- Example

W	P			
sun	0.2			
Normalize				
$\mathrm{Z}=0.5$			W	P
:---:	:---:	:---:		
sun	0.4			
rain	0.6			

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- Probabilities change with new evidence:
- $\mathrm{P}($ on time \mid no accidents, 5 a.m. $)=0.95$
- $\mathrm{P}($ on time \mid no accidents, 5 a.m., raining $)=0.80$
- Observing new evidence causes beliefs to be updated

Inference by Enumeration

- $\mathrm{P}(\mathrm{W})$?

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- $\mathrm{P}(\mathrm{W})$?

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- $\mathrm{P}(\mathrm{W})$?

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- $\mathrm{P}(\mathrm{W})$?

$$
P(\text { sun })=.3+.1+.1+.15=.65
$$

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- $\mathrm{P}(\mathrm{W})$?
$P($ sun $)=.3+.1+.1+.15=.65$
$P($ rain $)=1-.65=.35$

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- $\mathrm{P}(\mathrm{W}$ | winter, hot)?

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- $\mathrm{P}(\mathrm{W} \mid$ winter, hot $)$?

P(sun|winter,hot)~. 1
P(rain|winter,hot)~. 05

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- $\mathrm{P}(\mathrm{W}$ I winter, hot $)$?

P(sun|winter,hot)~. 1
P(rain|winter,hot)~. 05
$P($ sun \mid winter,hot $)=2 / 3$
$P($ rain \mid winter, hot $)=1 / 3$

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:
- Step 1: Select the entries consistent with the evidence
- Step 2: Sum out H to get joint of Query and evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}}_{X_{1}, X_{2}, \ldots X_{n}})
$$

- We want:

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 3: Normalize

$$
\begin{gathered}
\times \frac{1}{Z} \\
z=\sum_{z} P\left(Q, e_{1} \cdots e_{k}\right) \\
P\left(Q \mid Q_{1}, \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
\end{gathered}
$$

Bayes Rule

Bayes' Rule

- Two ways to factor a joint distribution over two variables:

$$
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)
$$

- Dividing, we ort•

$$
P(x \mid y)=\frac{P(y \mid x)}{P(y)} P(x)
$$

- Why is this at all helpful?
- Lets us build one conditional from its reverse
- Often, one conditional is tricky but the other one is simple

Inference with Bayes' Rule

- Example: Diagnostic probability from causal probability:

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

- Example:
- M: meningitis, S: stiff neck

$$
\left.\begin{array}{l}
P(+m)=0.0001 \\
P(+s \mid+m)=0.8 \\
P(+s \mid-m)=0.01
\end{array}\right\} \begin{aligned}
& \text { Example } \\
& \text { givens }
\end{aligned}
$$

$P(+m \mid+s)=\frac{P(+s \mid+m) P(+m)}{P(+s)}=\frac{P(+s \mid+m) P(+m)}{P(+s \mid+m) P(+m)+P(+s \mid-m) P(-m)}=\frac{0.8 \times 0.0001}{0.8 \times 0.0001+0.01 \times 0.999}$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

O Given:	$P(W)$		$P(D \mid W)$		
			D	W	P
	R	P	wet	sun	0.1
	sun	0.8	dry	sun	0.9
	rain	0.2	wet	rain	0.7
			dry	rain	0.3

- What is $\mathrm{P}(\mathrm{W} \mid$ dry $)$?

Quiz: Bayes' Rule

- Given:

\circ What is $\mathrm{P}(\mathrm{W} \mid$ dry $)$?
$\mathrm{P}($ sun \mid dry $) \sim \mathrm{P}($ dry \mid sun $) \mathrm{P}($ sun $)=.9^{*} .8=.72$
$P($ rain \mid dry $) \sim P($ dry \mid rain $) P($ rain $)=.3^{*} .2=.06$
$P($ sun \mid dry $)=12 / 13$
$P($ rain \mid dry $)=1 / 13$

Independence

Independence

- Two variables are independent if:

$$
\forall x, y: P(x, y)=P(x) P(y)
$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$
\forall x, y: P(x \mid y)=P(x)
$$

- We write:

$$
X \Perp Y
$$

- Independence is a simplifying modeling assumption

- Empirical joint distributions: at best "close" to independent
- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?

Example: Independence?

Example: Independence

- N fair, independent coin flips:

$P\left(X_{1}\right)$		$P\left(X_{2}\right)$		$P\left(X_{n}\right)$			
H	0.5						
T	0.5				\quad	H	0.5
:---	:---	:---					
T	0.5	$\quad \cdots$	H	0.5			
:---:	:---:						
T	0.5						

Conditional Independence

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- $\mathrm{P}(+$ catch $\mid+$ toothache, cavity $)=\mathrm{P}(+$ catch \mid + cavity $)$
- The same independence holds if I don't have a cavity:
- $\mathrm{P}(+$ catch $\mathrm{I}+$ toothache, - cavity $)=\mathrm{P}(+$ catch \mid-cavity $)$
- Catch is conditionally independent of Toothache given Cavity:

- $\mathrm{P}($ Toothache \mid Catch , Cavity $)=\mathrm{P}($ Toothache \mid Cavity $)$
- $\mathrm{P}($ Toothache, Catch \| Cavity $)=\mathrm{P}($ Toothache \| Cavity $) \mathrm{P}($ Catch \| Cavity $)$
- One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$
X \Perp Y \mid Z
$$

or, $\mathrm{e} \forall x, y, z: \bar{P}(x \mid z, y)=P(x \mid z)$

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- (X is conditionally independent of Y) given Z

$$
X \Perp Y \mid Z
$$

$$
\begin{array}{rlrl}
\text { if ar } \forall x, y, z, z: P(x, y \mid z) & =P(x \mid z) P(y \mid z) & P(x \mid z, y) & =\frac{P(x, z, y)}{P(z, y)} \\
& =\frac{P(x, y \mid z) P(z)}{P(y \mid z) P(z)} \\
\text { or, } \mathrm{e} \forall x, y, z: P(x \mid z, y)=P(x \mid z) & & =\frac{P(x \mid z) P(y \mid z) P(z)}{P(y \mid z) P(z)}
\end{array}
$$

Conditional Independence

- What about this domain:
- Traffic
- Umbrella
- Raining

Conditional Independence

- What about this domain:
- Fire
- Smoke
- Alarm

Conditional Independence and the Chain Rule

- Chain rule:

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots
$$

- Trivial decomposition:
$P($ Traffic, Rain, Umbrella $)=$ P (Rain) P (Traffic \mid Rain) P (Umbrella|Rain, Traffic)
- With assumption of conditional independence:

$P($ Traffic, Rain, Umbrella $)=$ P (Rain) P (Traffic \mid Rain $) P($ Umbrella|Rain)
- Bayesian Networks/graphical models help us express conditional independence assumptions

Bayesian Networks: The Big Picture

Bayesian Networks: The Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayesian Networks: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probability tables, or CPTs)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions

Bayes Net: DAG + CPTs

Example Bayes Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- MAY indicate influence between variables
- Formally: encode conditional independence (more later)
- For now: arrows mean that there may be a causal relationship between the two variables

Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence

Example: Traffic

- Variables:
- R: It rains
- T: There is traffic

- Model 1: independence

- Model 2: rain may cause traffic

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Example: Humans

- G: human's goal / human's reward parameters
- S: state of the physical world
- A:human's action

Example: Traffic II

- Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Bayesian Network Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each comt $\dot{P}\left(\dot{X} \mid a_{1}^{-\varepsilon} \ldots a_{n}\right)^{s^{\prime}}$ values

- CPT: conditional probability table
- Description of a potentially "causal" process

A Bayes net $=$ Topology $($ graph $)+$ Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- Example:

$$
P(+ \text { cavity },+ \text { catch, -toothache })
$$

Probabilities in BNs

- Why are we guaranteed that setting

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

results in a proper joint distribution?

- Chain rule (valid for all distributions):

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right) \\
& P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
\end{aligned}
$$

- Assume conditional independences:

$$
\rightarrow \quad \text { Conseque } P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- Not every BN can represent every joint distribution
- The topology enforces certain conditional independencies

Example: Coin Flips

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

$$
P(+r,-t)=P(+r) P(-t \mid+r)=1 / 4^{* 1} / 4
$$

Example: Alarm Network

E	$P(E)$
$+e$	0.002
$-e$	0.998

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

P(M|A)P(J|
A)P(A|

B,E)P(E)P(B)

Example: Traffic

- Causal direction

$P(T, R)$		
+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

- Reverse causality?

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain (especially if
 variables are missing)
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independence

$$
P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

Inference with Bayesian Networks

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
- Posterior probability

$$
P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)
$$

- Most likelv explanation: $\operatorname{argmax}_{q} P\left(Q=q \mid E_{1}=e_{1} \ldots\right)$

Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:
- We want:
* Works fine with multiple query variables, too

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 1: Select the entries consistent with the evidence

- Step 2: Sum out H to get joint of Query and evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}}_{X_{1}, X_{2}, \ldots X_{n}})
$$

- Step 3: Normalize

$$
\begin{gathered}
\times \frac{1}{Z} \\
\begin{array}{c}
z=\sum_{\substack{2}} P\left(Q, e_{1} \cdots e_{k}\right) \\
P\left(Q \mid e_{1}, \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
\end{array} \\
\hline
\end{gathered}
$$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy

$$
\begin{aligned}
& \text { ○ Given unlimited time, inference in BNs is easy } \\
& \begin{aligned}
P(B \mid+j,+m) & \propto B P(B,+j,+m) \\
& =\sum_{e, a} P(B, e, a,+j,+m) \\
& =\sum_{e, a} P(B) P(e) P(a \mid B, e) P(+j \mid a) P(+m \mid a)
\end{aligned} \\
& =P(B) P(+e) P(+a \mid B,+e) P(+j \mid+a) P(+m \mid+a)+P(B) P(+e) P(-a \mid B,+e) P(+j \mid-a) P(+m \mid-a) \\
& P(B) P(-e) P(+a \mid B,-e) P(+j \mid+a) P(+m \mid+a)+P(B) P(-e) P(-a \mid B,-e) P(+j \mid-a) P(+m \mid-a)
\end{aligned}
$$

Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:

- We want:
* Works fine with multiple query

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 1: Select the entries consistent with the evidence

- Step 2: Sum out H to get joint of Query and evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}}_{V})
$$

- Sum out hidden variables $, X_{2}, \ldots X_{n}$
- Step 3: Normalize

$$
\begin{gathered}
\times \frac{1}{Z} \\
z=\sum_{q} P\left(Q, e_{1} \cdots e_{k}\right) \\
P\left(Q \mid e_{1} \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
\end{gathered}
$$

Example: Traffic Domain

- Random Variables
- R: Raining
- T: Traffic
\circ L: Late for class!
$P(L)=$?
$P(R)$

$+r$	0.1
$-r$	0.9

$$
\begin{aligned}
& =\sum_{r, t} P(r, t, L) \\
& =\sum_{r, t} P(r) P(t \mid r) P(L \mid t)
\end{aligned}
$$

$P(T \mid R)$

$+r$	$+t$	0.8
$+r$	$-t$	0.2
$-r$	$+t$	0.1
$-r$	$-t$	0.9

$P(L \mid T)$		
+t	+1	0.3
+t	-	0.7
-t	+1	0.1
-t	-I	0.9

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)
$P(R)$

$+r$	0.1
$-r$	0.9

$P(L \mid T)$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

- E.g. if we know
the initial factors are

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
- Just like a database join
- Get all factors over the joining variable
- Build a new factor over the union of the variables involved

- Example: Join on R
$P(R) \times P(T \mid R)$

Example: Multiple Joins

Example: Multiple Joins

$P(R)$

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
- Shrinks a factor to a smaller one
- A projection operation
- Exa $P(R, T)$

$+r$	$+t$	0.08
$+r$	$-t$	0.02
$-r$	$+t$	0.09
$-r$	$-t$	0.81

$\operatorname{sum} R$

\square | $P(T)$ | |
| :---: | :---: |
| +t | 0.17 |
| -t | 0.83 |

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inf by Enumeration)

$$
\begin{aligned}
& P(R) \\
& P(T \mid R) \\
& P(L \mid T)
\end{aligned}
$$

Recall: Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:
- We want:
* Works fine with
multiple query

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 1: Select the entries consistent with the evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}}_{X_{1}, X_{2}, \ldots X_{n}})
$$

- Step 2: Sum out H to get joint of Query and evidence

- Step 3: Normalize

$$
\begin{gathered}
X \\
Z=\sum_{q} P\left(Q, e_{1} \cdots e_{k}\right) \\
P\left(Q \mid e_{1} \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
\end{gathered}
$$

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

$$
P(R)
$$

- Compute joint
$P(R, T, L)$
- Sum out hidden variables $P(L)$
- [Step 3: Normalize]
$P(L \mid T)$

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration slow?
- You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration

Traffic Domain

Marginalizing Early (Variable Elimination)

Marginalizing Early! (aka VE)

$P(R)$			
$P \left\lvert\,$$+r$ 0.1\right.			
$-r$		0.9	
:---:			

(L)
$P(L)$

+1	0.134
-1	0.866

Evidence

- If evidence, start with factors that select that evidence
- No evidence uses these initial factors:
$P(R)$

$+r$	0.1
$-r$	0.9

$P(\Gamma \mid R)$

$+r$	$+t$	0.8
$+r$	$-t$	0.2
$-r$	$+t$	0.1
$-r$	$-t$	0.9

$P(L \mid T)$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

- Computing
, the initial factors become:

$$
P(L \mid+r)
$$

Evidence II

- Result will be a selected joint of query and evidence
- E.g. for $\mathrm{P}(\mathrm{L} \mid+\mathrm{r})$, we would end up with:

$P(+r, L)$			Normalize	$P(L \mid+r)$	
+r	+1	0.026		+1	0.26
+r	-I	0.074		-1	0.74

- To get our answer, just normalize this!
- That's it!

Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:
- Step 1: Select the entries consistent with the evidence
- Step 2: Sum out H to get joint of Query and evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q} \begin{array}{c}
\text { Compute joint } \\
Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}
\end{array})
$$

- Sum out hidden variables $X_{1}, X_{2}, \ldots X_{n}$
- We want:

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 3: Normalize

$$
\begin{gathered}
\times \frac{1}{Z} \\
z=\sum_{z} P\left(Q, e_{1} \cdots e_{k}\right) \\
P\left(Q \mid Q_{1}, \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
\end{gathered}
$$

Variable Elimination

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:
* Works fine with
- We want: multiple query variables, too

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 1: Select the entries consistent with the evidence

- Step 2: Sum out H to get joint of Query and evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}})
$$

- Interleave joining and summing out $X_{1}, X_{2}, \ldots X_{n}$
- Step 3: Normalize

$$
\begin{gathered}
\times \frac{1}{Z} \\
\begin{array}{c}
z=\sum_{Z} P\left(Q, e_{1} \cdots e_{k}\right) \\
P\left(Q \mid e_{1}, \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
\end{array} \\
\hline
\end{gathered}
$$

General Variable Elimination

- Query: $\quad P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
- Pick a hidden variable H
- Join all factors mentioning H
- Eliminate (sum out) H
- Join all remaining factors and normalize

Example

$$
P(B \mid j, m) \propto P(B, j, m)
$$

$P(B)$	$P(E)$	$P(A \mid B, E)$	$P(j \mid A)$	$P(m \mid A)$

$$
P(B \mid j, m) \propto P(B, j, m)
$$

$$
\begin{aligned}
& =\sum_{e, a} P(B, j, m, e, a) \\
& =\sum_{e, a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\sum_{e}^{e} P(B) P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P\left(f^{e}(B)\right. \\
& =\sum_{e}^{e} P(B) P(e) f_{1}(j, m \mid B, e) \\
& =P(B) \sum_{e} P(e) f_{1}(j, m \mid B, e) \\
& =P(B) f_{2}^{2}(j, m \mid B)
\end{aligned}
$$

marginal can be obtained from joint by summing out use Bayes' net joint distribution expression use $x^{*}(y+z)=x y+x z$
use $x^{*}(y+z)=x y+x z$
joining on e, and then summing out gives f_{2}

$$
=\sum_{e}^{\overline{e, a}} P(B) P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P(m \mid a) \quad \text { joining on } \mathrm{a} \text {, and then summing out gives } \mathrm{f}_{1}
$$

All we are doing is exploiting $u w y+u w z+u x y+u x z+v w y+v w z+v x y+v x z=(u+v)(w+x)(y+z)$ to improve computational efficiency!

Example

$$
P(B \mid j, m) \propto P(B, j, m)
$$

$$
P(B) \quad P(E) \quad P(A \mid B, E) \quad P(j \mid A) \quad P(m \mid A)
$$

Choose A

$$
\begin{aligned}
& P(A \mid B, E) \\
& P(j \mid A) \\
& P(m \mid A) \\
& \quad \begin{array}{r}
P(B) \\
P
\end{array} P(j, m, A \mid B, E) \quad P(E) \quad P(j, m \mid B, E)
\end{aligned}
$$

Example

$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

Choose E

$\begin{array}{ccc}P(E) \\ P(j, m \mid B, E) & \boxed{\times} & P(j, m, E \mid B)\end{array} \quad \square \quad P(j, m \mid B)$

$P(B) \quad P(j, m \mid B)$
Finish with B

$$
\begin{gathered}
P(B) \\
P(j, m \mid B)
\end{gathered} \stackrel{\times}{ } P(j, m, B) \stackrel{\text { Normalize }}{ } P(B \mid j, m)
$$

Another Variable Elimination Example

$$
\text { Query: } P\left(X_{3} \mid Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{3}=y_{3}\right)
$$

Start by inserting evidence, which gives the following initial factors:

$$
P(Z), P\left(X_{1} \mid Z\right), P\left(X_{2} \mid Z\right), P\left(X_{3} \mid Z\right), P\left(y_{1} \mid X_{1}\right), P\left(y_{2} \mid X_{2}\right), P\left(y_{3} \mid X_{3}\right)
$$

Eliminate X_{1}, this introduces the factor $f_{1}\left(y_{1} \mid Z\right)=\sum_{x_{1}} P\left(x_{1} \mid Z\right) P\left(y_{1} \mid x_{1}\right)$, and we are left with:

$$
P(Z), P\left(X_{2} \mid Z\right), P\left(X_{3} \mid Z\right), P\left(y_{2} \mid X_{2}\right), P\left(y_{3} \mid X_{3}\right), f_{1}\left(y_{1} \mid Z\right)
$$

Eliminate X_{2}, this introduces the factor $f_{2}\left(y_{2} \mid Z\right)=\sum_{x_{2}} P\left(x_{2} \mid Z\right) P\left(y_{2} \mid x_{2}\right)$, and we are left with:

$$
P(Z), P\left(X_{3} \mid Z\right), P\left(y_{3} \mid X_{3}\right), f_{1}\left(y_{1} \mid Z\right), f_{2}\left(y_{2} \mid Z\right)
$$

Eliminate Z, this introduces the factor $f_{3}\left(y_{1}, y_{2}, X_{3}\right)=\sum_{z} P(z) P\left(X_{3} \mid z\right) f_{1}\left(y_{1} \mid Z\right) f_{2}\left(y_{2} \mid Z\right)$, and we are left with:
little z little z

$$
P\left(y_{3} \mid X_{3}\right), f_{3}\left(y_{1}, y_{2}, X_{3}\right)
$$

No hidden variables left. Join the remaining factors to get:

$$
f_{4}\left(y_{1}, y_{2}, y_{3}, X_{3}\right)=P\left(y_{3} \mid X_{3}\right), f_{3}\left(y_{1}, y_{2}, X_{3}\right)
$$

Normalizing over X_{3} gives $P\left(X_{3} \mid y_{1}, y_{2}, y_{3}\right)=f_{4}\left(y_{1}, y_{2}, y_{3}, X_{3}\right) / \sum_{x_{3}} f_{4}\left(y_{1}, y_{2}, y_{3}, x_{3}\right)$

Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X_{3} respectively).

Variable Elimination Ordering

- For the query $\mathrm{P}\left(\mathrm{X}_{\mathrm{n}} \mid \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ work through the following two different orderings as done in previous slide: $Z, X_{1}, \ldots, X_{n-1}$ and $X_{1}, \ldots, X_{n-1}, Z$. What is the size of the maximum factor generated for each of the orderings?
- Answer: 2^{n} versus 2 Y
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
- E.g., previous slide's example 2^{n} vs. 2
- Does there always exist an ordering that only results in small factors?
- No!

Worst Case Complexity?

- CSP:
$\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(x_{2} \vee x_{5} \vee x_{7}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(\neg x_{5} \vee x_{6} \vee \neg x_{7}\right) \wedge\left(\neg x_{5} \vee \neg x_{6} \vee x_{7}\right)$

$$
\begin{aligned}
& P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=0.5 \\
& Y_{1}=X_{1} \vee X_{2} \vee \neg X_{3} \\
& \ldots \\
& Y_{8}=\neg X_{5} \vee X_{6} \vee X_{7} \\
& Y_{1,2}=Y_{1} \wedge Y_{2} \\
& Y_{7,8}=Y_{7} \wedge Y_{8} \\
& Y_{1,2,3,4}=Y_{1,2} \wedge Y_{3,4} \\
& Y_{5,6,7,8}=Y_{5,6} \wedge Y_{7,8} \\
& Z=Y_{1,2,3,4} \wedge Y_{5,6,7,8}
\end{aligned}
$$

- If we can answer $\mathrm{P}(\mathrm{z})$ equal to zero or not, we answered whether the 3-SAT problem has a solution.

"Easy" Structures: Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
- Try it!!

Bayes Nets

Representation
Probabilistic Inference

- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Probabilistic inference is NP-complete
- Conditional Independences
- Sampling
- Learning from data

