CS 188: Artificial Intelligence

Midterm Review

Instructors: Saagar Sanghavi – UC Berkeley

(Slides Credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, Satish Rao, Ketrina Yim, and many others)

Midterm: Topics in Scope

- Utilities and Rationality, MEU Principle
- Search and Planning
- Constraint Satisfaction Programming
- Game Trees, Minimax, Pruning, Expectimax
- Probabilistic Inference, Bayesian Networks, Variable Elimination, D-Separation, Sampling
- Markov Models, HMMs, Viterbi Algorithm, Particle Filtering, Dynamic Bayes Nets

Agents and environments

- An agent *perceives* its environment through *sensors* and *acts* upon it through *actuators* (or *effectors*, depending on whom you ask)
- The *agent function* maps percept sequences to actions
- It is generated by an *agent program* running on a *machine*

The task environment - PEAS

Performance measure

-1 per step; + 10 food; +500 win; -500 die;+200 hit scared ghost

Environment

Pacman dynamics (incl ghost behavior)

Actuators

Left Right Up Down or NSEW

Sensors

Entire state is visible (except power pellet duration)

Agent design

- The environment type largely determines the agent design
 - *Partially observable* => agent requires *memory* (internal state)
 - Stochastic => agent may have to prepare for contingencies
 - Multi-agent => agent may need to behave randomly
 - *Static* => agent has time to compute a rational decision
 - *Continuous time* => continuously operating *controller*
 - Unknown physics => need for exploration
 - Unknown perf. measure => observe/interact with human principal

Utilities and Rationality

- Utility: map state of world to real value
- Rational Preferences

Orderability: $(A > B) \lor (B > A) \lor (A \sim B)$ Transitivity: $(A > B) \land (B > C) \Rightarrow (A > C)$ Continuity: $(A > B > C) \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$ Substitutability: $(A \sim B) \Rightarrow [p, A; \ 1-p, C] \sim [p, B; \ 1-p, C]$ Monotonicity: $(A > B) \Rightarrow [p, A; \ 1-p, B] \geq [q, A; \ 1-q, B]$

$$U(A) \ge U(B) \Leftrightarrow A \ge B$$

$$U([p_1, S_1; \dots; p_n, S_n]) = p_1 U(S_1) + \dots + p_n U(S_n)$$

Maximize Your Expected Utility

Search Problems

Search Problems

- A search problem consists of:
 - A state space

A successor function (with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

State Space Graphs vs. Search Trees

Each NODE in in the search tree is an entire PATH in the state space graph.

We construct only what we need on demand

General Tree Search

```
function TREE-SEARCH( problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end
```

- Important ideas:
 - Fringe
 - Expansion
 - Exploration strategy
- Main question: which fringe nodes to explore?

Depth-First Search

Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe is a FIFO queue

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)

Search Heuristics

• A heuristic is:

- A function that *estimates* how close a state is to a goal
- Designed for a particular search problem
- Pathing?
- Examples: Manhattan distance, Euclidean distance

Greedy Search

Greedy Search

- Expand the node that seems closest...
 - Move to smallest heuristic value

○ No. Resulting path to Bucharest is not the shortest!

A* Search

Combining UCS and Greedy

Example: Teg Grenager

When should A* terminate?

• Should we stop when we enqueue a goal?

○ No: only stop when we dequeue a goal

Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) iff:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ the true cost to a nearest goal

• Examples:

• Coming up with admissible heuristics is most of what's involved in using A* in practice.

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available

Inadmissible heuristics are often useful too

Graph Search

Graph Search Pseudo-Code

Consistency of Heuristics

○ Main idea: estimated heuristic costs ≤ actual costs

Admissibility: heuristic cost ≤ actual cost to goal

$$h(v) \le h^*(v)$$
 for all $v \in V$

Underestimate the true cost to the goal!

○ Consistency: heuristic "arc" cost ≤ actual cost for each arc

$$h(u) - h(v) \le d(u, v)$$
 for all $(u, v) \in E$

Underestimate the weight of every edge!

Consequences of consistency:

• The f value along a path never decreases

$$h(A) \le cost(A \text{ to } C) + h(C)$$

○ A* graph search is optimal

Optimality of A* Search

- With a admissible heuristic, Tree A* is optimal.
- With a consistent heuristic, Graph A* is optimal.
 - With h=0, the same proof shows that UCS is optimal.

Constraint Satisfaction Problems

Constraint Satisfaction Problems

N variables domain D constraints

states
partial assignment

goal test
complete; satisfies constraints

successor function assign an unassigned variable

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering -> better branching factor!
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraints
 - o "Incremental goal test"
- Depth-first search with these two improvements is called *backtracking search* (not the best name)
- Can solve n-queens for $n \approx 25$

Backtracking Example

Backtracking Search

```
function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking(\{\}, asp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do
if value is consistent with assignment given Constraints[csp] then
add \{var = value\} \text{ to assignment}
result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
if result \neq failure then return result
remove \{var = value\} \text{ from } assignment
return failure
```

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

[Demo: coloring -- forward checking]

Filtering: Constraint Propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

• An arc $X \rightarrow Y$ is consistent iff for *every* x in the tail there is *some* y in the head which could be assigned without violating a constraint

Forward checking?

Enforcing consistency of arcs pointing to each new assignment

Enforcing Arc Consistency in a CSP

```
function AC-3( csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\} local variables \{queue, a\} queue of arcs, initially all the arcs in csp while queue is not empty do (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue) if \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) then for each X_k in \text{NEIGHBORS}[X_i] do add (X_k, X_i) to queue

function \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) returns true iff succeeds removed \leftarrow false for each x in \text{DOMAIN}[X_i] do if no value y in \text{DOMAIN}[X_j] allows (x, y) to satisfy the constraint X_i \leftrightarrow X_j then delete x from \text{DOMAIN}[X_i]; removed \leftarrow true return removed
```

- Runtime: $O(n^2d^3)$, can be reduced to $O(n^2d^2)$
- ... but detecting all possible future problems is NP-hard why?

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
- Higher k more expensive to compute
- (You need to know the k=2 case: arc consistency)

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - 0 ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the *least* constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?
- Combining these ordering ideas makes
 1000 queens feasible

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints

- Operators *reassign* variable values
- No fringe! Live on the edge.
- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - \circ I.e., hill climb with h(x) = total number of violated constraints

Hill Climbing

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- \circ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i), X_i)
- o Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²) (why?)

Game Playing: Search with other agents

Adversarial Search

Adversarial Game Trees

Minimax Values

States Under Agent's Control:

States Under Opponent's Control:

Terminal States:

$$V(s) = \text{known}$$

Minimax Implementation (Dispatch)

```
def value(state):
    if the state is terminal: return the state's utility
    if the next agent is MAX: return max-value(state)
    if the next agent is MIN: return min-value(state)

def max-value(state):
    initialize v = -∞
    for each successor of state:
    v = max(v, value(successor))
    return v

def min-value(state):
    initialize v = +∞
    for each successor of state:
    v = min(v, value(successor))
    return v
```

Game Tree Pruning

Alpha-Beta Implementation

α: MAX's best option on path to rootβ: MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

```
\begin{aligned} &\text{def min-value(state }, \alpha, \beta): \\ &\text{initialize } v = +\infty \\ &\text{for each successor of state:} \\ &v = \min(v, \text{value(successor, } \alpha, \beta)) \\ &\text{if } v \leq \alpha \text{ return } v \\ &\beta = \min(\beta, v) \\ &\text{return } v \end{aligned}
```

Alpha-Beta Example

Alpha-Beta Quiz 2

• What if the game is not zero-sum, or has multiple players?

• Terminals have utility tuples

• Node values are also utility tuples

Each player maximizes its own component

 Can give rise to cooperation and competition dynamically...

Chance Nodes

- We don't know what the result of an action will be:
 - Explicit randomness: rolling dice
 - Unpredictable opponents
 - Actions can fail
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes: calculate expected utilities

Expectimax Pseudocode

```
def value(state):
                   if the state is a terminal state: return the state's utility
                   if the next agent is MAX: return max-value(state)
                   if the next agent is EXP: return exp-value(state)
def max-value(state):
                                                            def exp-value(state):
                                                                initialize v = 0
    initialize v = -\infty
                                                                for each successor of state:
   for each successor of state:
       v = max(v, value(successor))
                                                                   probability(successor)
    return v
                                                                    v += p * value(successor)
                                                                return v
```

Bayesian Networks

Conditional Probabilities

Bayes Rule

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Conditional Independence

X and Y are independent iff

$$\forall x, y \ P(x, y) = P(x)P(y)$$

$$X \perp \!\!\! \perp Y$$

- Given Z, we say X and Y are conditionally independent iff $\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \!\!\! \perp Y|Z$
- (Conditional) independence is a property of a distribution

Bayesian Networks

- A directed acyclic graph (DAG), one node per random variable
- A conditional probability table (CPT) for each node
 - \circ Probability of X, given a combination of values for parents. $P(X|a_1 \ldots a_n)$
- Bayes nets implicitly encode joint distributions as a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Independence Assumptions

 Definition: Each node, given its parents, is conditionally independent of all its non-descendants in the graph

Each node, given its MarkovBlanket, is conditionally independent of all other nodes in the graph

MarkovBlanket refers to the parents, children, and children's other parents.

Inference by Enumeration

• General case:

 \circ Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ Q Query* variables: Q All variables $H_1 \dots H_r$

We want:

$$P(Q|e_1 \dots e_k)$$

 Step 1: Select the entries consistent with the evidence

 Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference on Bayes Nets

$$P(L) = ?$$

Inference by Enumeration
 Variable Elimination

$$=\sum_t\sum_r P(L|t)P(r)P(t|r)$$
 Join on r Soin on t Eliminate r

Marginalizing Early (Variable Elimination)

Variable Elimination

P(R)

()	
T	L
+r	0.1
-r	0.9

P(T|R)

+r	+t	8.0
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P(L|T)

\		
+t	+1	0.3
+t	-	0.7
-t	+1	0.1
-t	-1	0.9

Join R

P(R,T)

	,	
+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

P(L|T)

\ /		
+t	+	0.3
+t	-1	0.7
-t	+1	0.1
-t	-	0.9

Sum out R

+t	0.17
-t	0.83

P(L|T)

- (-1	,	
+t	+	0.3
+t	7	0.7
-t	+1	0.1
-t	-	0.9

Join T

P(T,L)

+t	+1	0.051
+t	-1	0.119
-t	+1	0.083
-t	-1	0.747

Sum out T

+1	0.134
-1	0.866

General Variable Elimination

- Query: $P(Q|E_1 = e_1, ..., E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - O Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

$$^{\dagger} * \square = \square \times \frac{1}{Z}$$

Independence Assumptions in a Bayes Net

• Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

 Important for modeling: understand assumptions made when choosing a Bayes net graph

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain A -> B -> C where B is unobserved (either direction)
 - Common cause A <- B -> C where B is unobserved
 - Common effect (aka v-structure)
 A -> B <- C where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment

Active Triples

Inactive Triples

D-Separation

- Query: $X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- ullet Check all (undirected!) paths between X_i and X_j
 - If one or more active paths, then independence not guaranteed

$$X_i \stackrel{\searrow}{\searrow} X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Otherwise (i.e. if all paths are inactive),
 then independence is guaranteed

$$X_i \perp \!\!\!\perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Another Perspective: Bayes Ball

An undirected path is active if a Bayes ball travelling along it never encounters the "stop" symbol: —>

If there are no active paths from X to Y when $\{Z_1, \ldots, Z_k\}$ are shaded, then $X \perp\!\!\!\perp Y \mid \{Z_1, \ldots, Z_k\}$.

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Approximate Inference: Sampling

Prior Sampling

 \circ For i = 1, 2, ..., n in topological order

 \circ Sample x_i from $P(X_i \mid Parents(X_i))$

 \circ Return $(x_{1}, x_{2}, ..., x_{n})$

Rejection Sampling

○ Input: evidence instantiation
○ For i = 1, 2, ..., n in topological order

○ Sample x_i from $P(X_i \mid Parents(X_i))$ ○ If x_i not consistent with evidence
○ Reject: return – no sample is generated in this cycle
○ Return $(x_1, x_2, ..., x_n)$

Likelihood Weighting

Gibbs Sampling

• Step 1: Fix evidence

$$\circ R = +r$$

- Step 2: Initialize other variables
 - Random¹v

- Steps 3: Repeat:
 - Choose a non-evidence variable X
 - Resample X from P(X | MarkovBlanket(X))

Sample from P(S|+c,-w,+r)

Sample from P(C|+s,-w,+r)

Sample from P(W|+s,+c,+r)

Hidden Markov Models

Markov Chains (Review from EE 16A, CS 70)

• Value of X at a given time is called the **state**

P(X ₀)		
sun	rain	
1	0.0	

$$P(X_1)$$

$$P(X_t|X_{t-1})$$

$$P(X_t) = ?$$

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

State Transition Diagram (Flow Graph)

State Trellis

Mini-Forward Algorithm

• Question: What's P(X) on some day t?

$$P(x_1) = known$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$
Forward simulation

Stationary Distribution

• For most chains:

- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution

Stationary distribution:

- The distribution we end up with is called the stationary distribution P_{∞} of the chain
- It satisfies $P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$

Hidden Markov Models

- Markov chains not so useful for most agents
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - o Underlying Markov chain over states X_i
 - You observe outputs (effects) at each time step

Inference tasks

Prediction: $P(X_{t+k} | e_{1:t})$

Filtering: $P(X_t | e_{1:t})$

Smoothing: $P(X_k | e_{1:t})$, k < t

Explanation: $P(X_{1:t} | e_{1:t})$

Inference: Find State Given Evidence

- \circ We are given evidence at each time and want to know $\ P(X_t|e_{1:t})$
- Idea: start with $P(X_1)$ and derive $P(X_t \mid e_{1:t})$ in terms of $P(X_{t-1} \mid e_{1:t-1})$
- Two steps: Passage of time + Incorporate Evidence $P(X_{t+1} \mid e_{1:t})$

Forward Algorithm

- Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

• We update for evidence:

$$P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

• The forward algorithm does both at once

Most likely explanation = most probable path

State trellis: graph of states and transitions over time

- Each arc represents some transition $X_{t-1} \rightarrow X_t$
- Each arc has weight $P(x_t \mid x_{t-1}) P(e_t \mid x_t)$ (arcs to initial states have weight $P(x_0)$)
- The **product** of weights on a path is proportional to that state seq's probability
- Forward algorithm: sums of paths
- **Viterbi algorithm:** best paths
 - Dynamic Programming: solve subproblems, combine them as you go along

Forward / Viterbi Algorithms

Forward Algorithm (Sum)

For each state at time *t*, keep track of the *total probability of all paths* to it

$$f_t[x_t] = P(x_t, e_{1:t})$$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) f_{t-1}[x_{t-1}]$$

Viterbi Algorithm (Max)

For each state at time *t*, keep track of the *maximum probability of any path* to it

$$m_{t}[x_{t}] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_{t}, e_{1:t})$$
$$= P(e_{t}|x_{t}) \max_{x_{t-1}} P(x_{t}|x_{t-1}) m_{t-1}[x_{t-1}]$$

Viterbi Algorithm Pseudocode

```
function VITERBI(O, S, \Pi, Y, A, B) : X
       for each state i = 1, 2, \dots, K do
              T_1[i,1] \leftarrow \pi_i \cdot B_{iy_1}
              T_2[i,1] \leftarrow 0
       end for
       for each observation j=2,3,\ldots,T do
              for each state i = 1, 2, \dots, K do
                     T_1[i,j] \leftarrow \max_k \left(T_1[k,j-1] \cdot A_{ki} \cdot B_{iy_j}
ight)
                     T_2[i,j] \leftarrow rg \max_{l} \left( T_1[k,j-1] \cdot A_{ki} \cdot B_{iy_j} 
ight)
              end for
       end for
       z_T \leftarrow rg \max_{k} \left( T_1[k,T] 
ight)
       x_T \leftarrow s_{z_T}
       for j=T,T-1,\ldots,2 do
              z_{i-1} \leftarrow T_2[z_i,j]
              x_{j-1} \leftarrow s_{z_{i-1}}
       end for
       return X
end function
```

```
Observation Space O = \{o_1, o_2, \dots, o_N\}

State Space S = \{s_1, s_2, \dots, s_K\}

Initial probabilities \Pi = (\pi_1, \pi_2, \dots, \pi_K)

Observations Y = (y_1, y_2, \dots, y_T)

Transition Matrix A \in \mathbb{R}^{K \times K}

Emission Matrix B \in \mathbb{R}^{K \times N}
```

Matrix $T_1[i, j]$ stores probabilities of most likely path so far with $x_j = s_i$

Matrix $T_2[i, j]$ stores x_{j-1} of most likely path so far with $x_i = s_i$

Particle Filtering: Approximate Inference on HMMs

• Particles: track samples of states rather than an explicit distribution

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time *t* can condition on those from *t-1*

Dynamic Bayes nets are a generalization of HMMs

