CS 188: Artificial Intelligence

Midterm Review

Instructors: Saagar Sanghavi - UC Berkeley
(Slides Credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, Satish Rao, Ketrina Yim, and many others)

Midterm: Topics in Scope

- Utilities and Rationality, MEU Principle
- Search and Planning
- Constraint Satisfaction Programming
- Game Trees, Minimax, Pruning, Expectimax
- Probabilistic Inference, Bayesian Networks, Variable Elimination, D-Separation, Sampling
- Markov Models, HMMs, Viterbi Algorithm, Particle Filtering, Dynamic Bayes Nets

Agents and environments

- An agent perceives its environment through sensors and acts upon it through actuators (or effectors, depending on whom you ask)
- The agent function maps percept sequences to actions
- It is generated by an agent program running on a machine

The task environment - PEAS

- Performance measure
- -1 per step; + 10 food; +500 win; -500 die; +200 hit scared ghost
- Environment
- Pacman dynamics (incl ghost behavior)
- Actuators
- Left Right Up Down or NSEW

- Sensors
- Entire state is visible (except power pellet duration)

Agent design

- The environment type largely determines the agent design
- Partially observable => agent requires memory (internal state)
- Stochastic => agent may have to prepare for contingencies
- Multi-agent $=>$ agent may need to behave randomly
- Static => agent has time to compute a rational decision
- Continuous time $=>$ continuously operating controller
- Unknown physics => need for exploration
- Unknown perf. measure $=>$ observe/interact with human principal

Utilities and Rationality

- Utility: map state of world to real value
- Rational Preferences

$$
\begin{aligned}
& \text { Orderability: }(A>B) \vee(B>A) \vee(A \sim B) \\
& \text { Transitivity: }(A>B) \wedge(B>C) \Rightarrow(A>C) \\
& \text { Continuity: }(A>B>C) \Rightarrow \exists p[p, A ; 1-\mathrm{p}, C] \sim B \\
& \text { Substitutability: }(A \sim B) \Rightarrow[p, A ; 1-\mathrm{p}, C] \sim[p, B ; 1-\mathrm{p}, C] \\
& \text { Monotonicity: }(A>B) \Rightarrow \\
& \qquad \quad(p \geq q) \Leftrightarrow[p, A ; 1-\mathrm{p}, B] \geq[q, A ; 1-\mathrm{q}, B]
\end{aligned}
$$

Given Rational Preferences, Exists $U(X)$ s.t. $U(A) \geq U(B) \Leftrightarrow A \geq B$

$$
U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n^{\prime}} S_{n}\right]\right)=p_{1} U\left(S_{1}\right)+\ldots+p_{n} U\left(S_{n}\right)
$$

Maximize Your

 Expected Utility

Search Problems

Search Problems

- A search problem consists of:

- A successor function (with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

State Space Graphs vs. Search Trees

General Tree Search

```
function Tree-SEARCH(problem, strategy) returns a solution, or failure
    initialize the search tree using the initial state of problem
    loop do
        if there are no candidates for expansion then return failure
        choose a leaf node for expansion according to strategy
        if the node contains a goal state then return the corresponding solution
        else expand the node and add the resulting nodes to the search tree
    end
```

- Important ideas:
- Fringe
- Expansion
o Exploration strategy
- Main question: which fringe nodes to explore?

Depth-First Search

Depth-First Search

Strategy: expand a deepest node first

Implementation:
Fringe is a LIFO stack

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest node first Implementation:
Fringe is a FIFO queue

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Strategy: expand a cheapest node first:
Fringe is a priority queue (priority: cumulative cost)

Search Heuristics

- A heuristic is:
- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Pathing?
- Examples: Manhattan distance, Euclidean distance

Greedy Search

Greedy Search

- Expand the node that seems closest...
- Move to smallest heuristic value

- Is it optimal?

Zerind

- No. Resulting path to Bucharest is not the shortest!

A* Search

Example: Teg Grenager

When should A* terminate?

- Should we stop when we enqueue a goal?

- No: only stop when wedequeue a goal

Admissible Heuristics

- A heuristic h is admissible (optimistic) iff:

$$
0 \leq h(n) \leq h^{*}(n)
$$

where $\quad h^{*}(n)$ the true cost to a nearest goal

- Examples:

0.0
- Coming up with admissible heuristics is most of what's involved in using A^{*} in practice.

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

- Inadmissible heuristics are often useful too

Graph Search

Graph Search Pseudo-Code

```
function Graph-SEARCH(problem, fringe) return a solution, or failure
    closed }\leftarrow\mathrm{ an empty set
    fringe \leftarrow L INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node }\leftarrow\mathrm{ REMOVE-FRONT(fringe)
        if GOAL-TEST(problem, STATE[node]) then return node
        if state[node] is not in closed then
        add STATE[node] to closed
        for child-node in EXPAND(STATE[node], problem) do
            fringe }\leftarrow\operatorname{INSERT(child-node, fringe)
        end
    end
```


Consistency of Heuristics

- Main idea: estimated heuristic costs \leq actual costs
- Admissibility: heuristic cost \leq actual cost to goal
$h(v) \leq h^{*}(v)$ for all $v \in V$
Underestimate the true cost to the goal!
○ Consistency: heuristic "arc" cost \leq actual cost for each arc

$$
h(u)-h(v) \leq d(u, v) \text { for all }(u, v) \in E
$$

Underestimate the weight of every edge!

- Consequences of consistency:
- The f value along a path never decreases

$$
\mathrm{h}(\mathrm{~A}) \leq \operatorname{cost}(\mathrm{A} \text { to } \mathrm{C})+\mathrm{h}(\mathrm{C})
$$

- A* graph search is optimal

Optimality of A* Search

- With a admissible heuristic, Tree A* is optimal.
- With a consistent heuristic, Graph A* is optimal.
- With $\mathrm{h}=0$, the same proof shows that UCS is optimal.

Constraint Satisfaction Problems

Constraint Satisfaction Problems

N variables domain D constraints

states
partial assignment
goal test
complete; satisfies constraints
successor function
assign an unassigned variable

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
- Initial state: the empty assignment, \{\}
- Successor function: assign a value to an unassigned variable
- Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
- Variable assignments are commutative, so fix ordering -> better branching factor!
- I.e., [WA $=$ red then $N T=$ green] same as $[\mathrm{NT}=$ green then $\mathrm{WA}=$ red]
- Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
- I.e. consider only values which do not conflict previous assignments
- Might have to do some computation to check the constraints
- "Incremental goal test"
- Depth-first search with these two improvements is called backtracking search (not the best name)
- Can solve n -queens for $\mathrm{n} \approx 25$

Backtracking Example

Backtracking Search

```
function BACKTRACKING-SEARCH (csp) returns solution/failure
    return Recursive-Backtracking ( \(\}, s s p\) )
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
    if assiqnment is complete then return assignment
    var \(\leftarrow\) SELECT-UnASSIGNED-VARIABLE (VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES (var, assignment, csp) do
    if value is consistent with assignment given Constraints [csp] then
        add \(\{\) var \(=\) value \(\}\) to assignment
        result \(\leftarrow\) RECURSIVE-BACKTRACKING \((\) assignment, csp)
        if result \(\neq\) failure then return result
        remove \(\{\) var \(=\) value \(\}\) from assignment
return failure
```

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

- An arc $X \rightarrow Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint

Enforcing Arc Consistency in a CSP

```
function AC-3(csp) returns the CSP, possibly with reduced domains
    inputs: csp, a binary CSP with variables {\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\ldots,\mp@subsup{X}{n}{}}
    local variables queue, a queue of arcs, initially all the arcs in csp
    while queue is not empty do
        ( }\mp@subsup{X}{i}{},\mp@subsup{X}{j}{})\leftarrow\mathrm{ Remove-FIRSt(queue)
        if Remove-Inconsistent-Values( }\mp@subsup{X}{i}{},\mp@subsup{X}{j}{})\mathrm{ then
            for each }\mp@subsup{X}{k}{}\mathrm{ in NEIGHBORS[}\mp@subsup{X}{i}{}]\mathrm{ do
                add (X (X, Xi) to queue
    function Remove-Inconsistent-Values( }\mp@subsup{X}{i}{},\mp@subsup{X}{j}{})\mathrm{ returns true iff succeeds
    removed }\leftarrow\mathrm{ false
    for each }x\mathrm{ in Domain[ }\mp@subsup{X}{i}{}]\mathrm{ do
        if no value }y\mathrm{ in Domain [ }\mp@subsup{X}{j}{}]\mathrm{ allows (x,y) to satisfy the constraint }\mp@subsup{X}{i}{}\leftrightarrow\mp@subsup{X}{j}{
            then delete }x\mathrm{ from Domain [Xi]; removed }\leftarrow\mathrm{ true
    return removed
```

- Runtime: $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~d}^{3}\right)$, can be reduced to $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~d}^{2}\right)$
- ... but detecting all possible future problems is NP-hard - why?

K-Consistency

- Increasing degrees of consistency
- 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
- 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
- K-Consistency: For each k nodes, any consistent assignment to $\mathrm{k}-1$ can be extended to the $\mathrm{k}^{\text {th }}$ node.
- Higher k more expensive to compute
- (You need to know the $\mathrm{k}=2$ case: arc consistency)

Strong K-Consistency

- Strong k-consistency: also $\mathrm{k}-1, \mathrm{k}-2, \ldots 1$ consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
- Choose any assignment to any variable
- Choose a new variable
- By 2-consistency, there is a choice consistent with the first
- Choose a new variable
- By 3-consistency, there is a choice consistent with the first 2
- ...
- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
- Given a choice of variable, choose the least constraining value
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
- Take an assignment with unsatisfied constraints

- Operators reassign variable values
- No fringe! Live on the edge.
- Algorithm: While not solved,
- Variable selection: randomly select any conflicted variable
- Value selection: min-conflicts heuristic:
- Choose a value that violates the fewest constraints
- I.e., hill climb with $\mathrm{h}(\mathrm{x})=$ total number of violated constraints

Hill Climbing

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$
- Assign forward: For $i=1: n$, assign X_{i} consistently with Parent $(X$.
- Runtime: O(n d²) (why?)

Game Playing: Search with other agents

Adversarial Search

Adversarial Game Trees

Minimax Values

States Under Agent's Control:
$V(s)=\max _{s^{\prime} \in \operatorname{successors}(s)} V\left(s^{\prime}\right)$

States Under Opponent's Control:

$$
V\left(s^{\prime}\right)=\min _{s \in \text { successors }\left(s^{\prime}\right)} V(s)
$$

Terminal States:

$$
V(s)=\text { known }
$$

Minimax Implementation (Dispatch)

```
def value(state):
    if the state is terminal: return the state's utility
    if the next agent is MAX: return max-value(state)
    if the next agent is MIN: return min-value(state)
```

def max-value(state):
initialize $v=-\infty$
for each successor of state:
$v=\max (v$, value(successor)) return v
def min-value(state):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor))
return v

Game Tree Pruning

Alpha-Beta Implementation

```
\alpha:MAX's best option on path to root
\beta:MIN's best option on path to root
```

def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:

$$
\begin{aligned}
& v=\max (v \text {, value(successor, } \alpha, \beta)) \\
& \text { if } v \geq \beta \text { return } v \\
& \alpha=\max (\alpha, v)
\end{aligned}
$$

return v
def min-value(state , α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta)$)
if $v \leq \alpha$ return v
$\beta=\min (\beta, v)$
return v

Alpha-Beta Example

Alpha-Beta Quiz 2

Multi-Agent Utilities

- What if the game is not zero-sum, or has multiple players?
- Generalization of minimax:
- Terminals have utility tuples
- Node values are also utility tuples
- Each player maximizes its own component
- Can give rise to cooperation and competition dynamically...

Chance Nodes

- We don't know what the result of an action will be:
- Explicit randomness: rolling dice
- Unpredictable opponents
- Actions can fail
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play

- Max nodes as in minimax search
- Chance nodes: calculate expected utilities

Expectimax Pseudocode

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)
def max-value(state):
initialize $v=-\infty$
for each successor of state:
$v=\max (v$, value(successor))
return v
def exp-value(state):
initialize $v=0$
for each successor of state:

$$
p=
$$

probability(successor)
v += p * value(successor)
return v

Bayesian Networks

Conditional Probabilities

- Bayes Rule

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
\begin{gathered}
P(W=s \mid T=c)=\frac{P(W=s, T=c)}{P(T=c)}=\frac{0.2}{0.5}=0.4 \\
=P(W=s, T=c)+P(W=r, T=c) \\
=0.2+0.3=0.5
\end{gathered}
$$

Conditional Independence

$\bigcirc \mathrm{X}$ and Y are independent iff

$$
\forall x, y \quad P(x, y)=P(x) P(y)
$$

$$
X \Perp Y
$$

\circ Given Z , we say X and Y are conditionally independent iff

$$
\forall x, y, z \quad P(x, y \mid z)=P(x \mid z) P(y \mid z) \quad--\rightarrow \quad X \Perp Y \mid Z
$$

\circ (Conditional) independence is a property of a distribution

Bayesian Networks

- A directed acyclic graph (DAG), one node per random variable
- A conditional probability table (CPT) for each node
- Probability of X, given a combination of values for parents. $P\left(X \mid a_{1} \ldots a_{n}\right)$
- Bayes nets implicitly encode joint distributions as a product of local conditional distributions

- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

Independence Assumptions

- Definition: Each node, given its parents, is conditionally independent of all its non-descendants in the graph

Each node, given its MarkovBlanket, is conditionally independent of all other nodes in the graph

MarkovBlanket refers to the parents, children, and children's other parents.

Inference by Enumeration

- General case:
- Evidence variables: $\left.\quad E_{1} \ldots E_{k}=e_{1} \ldots e_{k}\right\} \quad X_{1}, X_{2}, \ldots X_{n}$
$\left.\begin{array}{lll}\circ & \text { Query* variable: } & Q \\ \circ & \text { Hidden variables: } & H_{1} \ldots H_{r}\end{array}\right\}$ All variables
- Step 1: Select the entries consistent with the evidence

- Step 2: Sum out H to get joint of Query and evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}}_{X_{1}, X_{2}, \ldots X_{n}})
$$

- We want:

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 3: Normalize

$$
\begin{aligned}
& 1 \\
& { }^{\times} \bar{Z} \\
& r=\sum_{\Gamma}^{r(Q}(a, a) \\
& P\left(Q \mid e_{1} \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
\end{aligned}
$$

Inference on Bayes Nets

Marginalizing Early (Variable Elimination)

Variable Elimination

Join R
$P(R)$

T	L
+r	0.1
-r	0.9

$P(T \mid R)$

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$P(L \mid T)$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

$P(R, T)$

$+r$	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

Sum out R

+t	0.17
-t	0.83

$P(L \mid T)$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

Join T

$$
P(T, L)
$$

+t	+l	0.051
+t	-l	0.119
-t	+l	0.083
-t	-l	0.747

Sum out T
(L)

+1	0.134
-1	0.866

General Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)

Independence Assumptions in a Bayes Net

- Assumptions we are required to make to define the Bayes net when given the graph:

$$
P\left(x_{i} \mid x_{1} \cdots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- Important for modeling: understand assumptions made when choosing a Bayes net graph

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables $\{Z\}$?
- Yes, if X and Y "d-separated" by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!

D-Separation

- Query: $X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}$?
- Check all (undirected!) paths between X_{i} and X_{j}
- If one or more active paths, then independence not guaranteed

$$
X_{i} \mathbb{X} X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

- Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$
X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

Another Perspective: Bayes Ball

An undirected path is active if a Bayes ball travelling along it never encounters the "stop" symbol: \rightarrow 1

If there are no active paths from X to Y when $\left\{Z_{1}, \ldots, Z_{k}\right\}$ are shaded, then $X \Perp Y \mid\left\{Z_{1}, \ldots, Z_{k}\right\}$.

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Approximate Inference: Sampling

Prior Sampling

- For $\mathrm{i}=1,2, \ldots, \mathrm{n}$ in topological order
\circ Sample x_{i} from $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{X}_{\mathrm{i}}\right)\right)$
$\bigcirc \operatorname{Return}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$

Rejection Sampling

```
O Input: evidence instantiation
\circ For i = 1, 2, .., n in topological order
    oSample x from P( (X | Parents( (X
    O If }\mp@subsup{\textrm{x}}{\textrm{i}}{}\mathrm{ not consistent with evidence
        OReject: return - no sample is generated in this cycle
OReturn ( }\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{\prime},\ldots,\mp@subsup{x}{n}{}
```


Likelihood Weighting

```
O Input: evidence instantiation
\circ}\textrm{w}=1.
O for i = 1, 2, ..., n in topological order
    o if }\mp@subsup{X}{i}{}\mathrm{ is an evidence variable
```



```
            OSet w = w * P( }\mp@subsup{\textrm{x}}{\textrm{i}}{|}| Parents(X)
        o else
            oSample }\mp@subsup{x}{i}{}\mathrm{ from P(X (X | Parents(X ( }\mp@subsup{\textrm{X}}{\textrm{i}}{}
O return ( }\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{\prime},\ldots,\mp@subsup{x}{n}{}),
```


Gibbs Sampling

- Step 1: Fix evidence
- $\mathrm{R}=+\mathrm{r}$

- Steps 3: Repeat:
- Choose a non-evidence variable X
- Resample X from P(X | MarkovBlanket(X))
- Step 2: Initialize other variables
- Randomlı

Sample from $P(S \mid+c,-w,+r) \quad$ Sample from $P(C \mid+s,-w,+r) \quad$ Sample from $P(W \mid+s,+c,+r)$

Hidden Markov Models

Markov Chains (Review from EE 16A, CS 70)

- Value of X at a given time is called the state

$\mathbf{P}\left(\mathbf{X}_{0}\right)$	
sun	rain
1	0.0

$$
P(\mathbf{X} t)=?
$$

\mathbf{X}_{t-1}	\mathbf{X}_{t}	$\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

State Transition Diagram
(Flow Graph)

State Trellis

Mini-Forward Algorithm

- Question: What's $\mathrm{P}(\mathrm{X})$ on some day t ?

$$
\begin{aligned}
P\left(x_{1}\right) & =\text { known } \\
P\left(x_{t}\right) & =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}\right) \\
& =\sum_{x_{t-1}} P(x_{t} \underbrace{\left.x_{t-1}\right) P\left(x_{t-1}\right)}_{\text {Forward simulation }}
\end{aligned}
$$

Stationary Distribution

- For most chains:
- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution
- Stationary distribution:
- The distribution we end up with is called the stationary distribution ${ }_{\infty}$ of the chain
- It satisfies

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

Hidden Markov Models

- Markov chains not so useful for most agents
- Need observations to update your beliefs
- Hidden Markov models (HMMs)
- Underlying Markov chain over states X_{i}
- You observe outputs (effects) at each time step

Inference tasks

Smoothing: $P\left(X_{k} \mid e_{1: t}\right), \mathrm{k}<\mathrm{t}$

Filtering: $P\left(X_{t} \mid \mathrm{e}_{1: t}\right)$

Explanation: $\mathrm{P}\left(\mathrm{X}_{1: t} \mid \mathrm{e}_{1: \mathrm{t}}\right)$

Inference: Find State Given Evidence

- We are given evidence at each time and want to know $P\left(X_{t} \mid e_{1: t}\right)$
- Idea: start with $P\left(X_{1}\right)$ and derive $P\left(X_{t} \mid e_{1: t}\right)$ in terms of $P\left(X_{t-1} \mid e_{1: t-1}\right)$
- Two steps: Passage of time + Incorporate Evidence

$$
P\left(X_{t+1}^{*} \mid e_{1: t}\right)
$$

Forward Algorithm

- Every time step, we start with current $\mathrm{P}(\mathrm{X} \mid$ evidence $)$
- We update for time:

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

- We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

- The forward algorithm does both at once

Most likely explanation = most probable path

- State trellis: graph of states and transitions over time

- Each arc represents some transition $X_{t-1} \rightarrow X_{t}$
- Each arc has weight $P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$ (arcs to initial states have weight $P\left(x_{0}\right)$)
- The product of weights on a path is proportional to that state seq's probability
- Forward algorithm: sums of paths
- Viterbi algorithm: best paths
- Dynamic Programming: solve subproblems, combine them as you go along

Forward / Viterbi Algorithms

Forward Algorithm (Sum) For each state at time t, keep track of the total probability of all paths to it

$$
\begin{aligned}
f_{t}\left[x_{t}\right] & =P\left(x_{t}, e_{1: t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) f_{t-1}\left[x_{t-1}\right]
\end{aligned}
$$

Viterbi Algorithm (Max)
For each state at time t, keep track of the maximum probability of any path to it

$$
\begin{aligned}
m_{t}\left[x_{t}\right] & =\max _{x_{1: t-1}} P\left(x_{1: t-1}, x_{t}, e_{1: t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) m_{t-1}\left[x_{t-1}\right]
\end{aligned}
$$

Viterbi Algorithm Pseudocode

```
function \(\operatorname{VITERBI}(O, S, \Pi, Y, A, B): X\)
    for each state \(i=1,2, \ldots, K\) do
        \(T_{1}[i, 1] \leftarrow \pi_{i} \cdot B_{i y_{1}}\)
        \(T_{2}[i, 1] \leftarrow 0\)
    end for
    for each observation \(j=2,3, \ldots, T\) do
        for each state \(i=1,2, \ldots, K\) do
        \(T_{1}[i, j] \leftarrow \max _{k}\left(T_{1}[k, j-1] \cdot A_{k i} \cdot B_{i y_{j}}\right)\)
        \(T_{2}[i, j] \leftarrow \arg \max _{k}\left(T_{1}[k, j-1] \cdot A_{k i} \cdot B_{i y_{j}}\right)\)
        end for
    end for
    \(z_{T} \leftarrow \arg \max _{k}\left(T_{1}[k, T]\right)\)
    \(x_{T} \leftarrow s_{z_{T}}\)
    for \(j=T, T-1, \ldots, 2\) do
        \(z_{j-1} \leftarrow T_{2}\left[z_{j}, j\right]\)
        \(x_{j-1} \leftarrow s_{z_{j-1}}\)
    end for
    return \(X\)
end function
```

Observation Space $O=\left\{o_{1}, o_{2}, \ldots, o_{N}\right\}$
State Space $\quad S=\left\{s_{1}, s_{2}, \ldots, s_{K}\right\}$
Initial probabilities
Observations
$\Pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{K}\right)$
$Y=\left(y_{1}, y_{2}, \ldots, y_{T}\right)$
Transition Matrix $\quad A \in \mathbb{R} K \times K$
Emission Matrix $\quad B \in \mathbb{R}^{K} \times N$

Matrix $\mathrm{T}_{1}[\mathrm{i}, \mathrm{j}]$ stores probabilities of most likely path so far with $x_{j}=s_{i}$

Matrix $\mathrm{T}_{2}[\mathrm{i}, \mathrm{j}]$ stores $x_{\mathrm{j}-1}$ of most likely path so far with $x_{i}=s_{\text {i }}$

Particle Filtering: Approximate Inference on HMMs

- Particles: track samples of states rather than an explicit distribution

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$

- Dynamic Bayes nets are a generalization of HMMs

