CS 188: Artificial Intelligence

Special Topics: NLP/CV/RL

Instructor: Nicholas Tomlin

[Slides courtesy of Dan Klein, Abigail See, Greg Durrett, Yejin Choi, John DeNero, Eric Wallace, Kevin Lin, Fei-Fei Li, Sergey Levine, Pieter Abbeel, and many others]
Final Review Discussion Sections

- Schedule is posted on Ed!

- Discussions aren’t necessarily in the usual rooms

- Exam scope: cumulative, everything taught in lecture up to today, covered in homeworks or discussions, unless explicitly marked as optional content

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>TA</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday (8/3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pm-5pm</td>
<td>Games/VPI</td>
<td>Linyuan</td>
<td>Cory 521</td>
</tr>
<tr>
<td>5pm-6pm</td>
<td>Bayes Nets</td>
<td>Ramanan</td>
<td>Cory 521</td>
</tr>
<tr>
<td>6pm-7pm</td>
<td>ML</td>
<td>Eric</td>
<td>Cory 540AB</td>
</tr>
<tr>
<td>Friday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9am-10am</td>
<td>Neural Nets</td>
<td>Ruiqi</td>
<td>Cory 521</td>
</tr>
<tr>
<td>2pm-3pm</td>
<td>Games/VPI</td>
<td>Linyuan</td>
<td>Soda 306</td>
</tr>
<tr>
<td>3pm-4pm</td>
<td>Bayes Nets</td>
<td>Ramanan</td>
<td>Soda 306</td>
</tr>
<tr>
<td>4pm-5pm</td>
<td>MDP/RL</td>
<td>Michael</td>
<td>Soda 306</td>
</tr>
<tr>
<td>5pm-6pm</td>
<td>Bayes Nets</td>
<td>Ramanan</td>
<td>Soda 306</td>
</tr>
<tr>
<td>Monday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9am-10am</td>
<td>Games/VPI</td>
<td>Linyuan</td>
<td>Cory 521</td>
</tr>
<tr>
<td>10am-11am</td>
<td>Bayes Nets</td>
<td>Ramanan</td>
<td>Cory 521</td>
</tr>
<tr>
<td>11am-12pm</td>
<td>Neural Nets</td>
<td>Ruiqi</td>
<td>Cory 521</td>
</tr>
<tr>
<td>12pm-1pm</td>
<td>MDP/RL</td>
<td>Stanley</td>
<td>Cory 521</td>
</tr>
<tr>
<td>1pm-2pm</td>
<td>ML</td>
<td>Eric</td>
<td>Cory 521</td>
</tr>
<tr>
<td>2pm-3pm</td>
<td>NO SECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3pm-4pm</td>
<td>NO SECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pm-5pm</td>
<td>HMMs</td>
<td>Austen</td>
<td>Cory 521</td>
</tr>
<tr>
<td>5pm-6pm</td>
<td>Games/VPI</td>
<td>Linyuan</td>
<td>Cory 521</td>
</tr>
</tbody>
</table>
Natural Language Processing

Goal: Deep Understanding
- Requires knowledge, context, and grounding
- Just starting to see successes

Reality: Shallow Matching
- Requires robustness and scale
- Amazing successes, but fundamental limitations
What tasks do we care about?

Applications
- Machine translation
- Web search
- Dialogue systems
- Automatic speech recognition
- Text-to-speech
- Syntactic parsing, semantic parsing, semantic role labeling, word sense induction, coreference resolution, summarization, sentiment analysis...
Disney décide de changer le nom du légendaire studio de cinéma Fox

Le nouveau propriétaire va faire disparaître la mention « Fox » à la 20th Century pour que le nom du studio ne soit pas associé à l'image ultra-conservatrice de la chaîne de télévision Fox News.

Révolution dans le monde d'Hollywood. Le célèbre studio de cinéma 20th Century Fox va voir une partie de son nom modifiée et devenir 20th Century Studios, décision prise par son nouveau propriétaire, Disney.

Selon plusieurs médias américains, Disney aurait décidé de modifier le nom du studio pour qu’il ne soit plus associé à la grande chaîne Fox mais aussi et surtout à Fox News, la chaîne d’information en continu.

Disney decides to change the name of the legendary Fox film studio

The new owner will remove the mention “Fox” in the 20th Century so that the name of the studio is not associated with the ultra-conservative image of the television channel Fox News.

Revolution in the Hollywood world. The famous film studio 20th Century Fox will see part of its name changed and become 20th Century Studios, decision taken by its new owner, Disney.

According to several American media, Disney has decided to change the name of the studio so that it is no longer associated with the big chain Fox but also and especially with Fox News, the news channel.
Search, Questions, and Reasoning

How many US states capitals are also their largest cities?

As of my last update in September 2021, there were eight U.S. states where the capital city was also the largest city in the state. These states are:

1. Atlanta, Georgia
2. Boston, Massachusetts
3. Denver, Colorado
4. Honolulu, Hawaii
5. Indianapolis, Indiana
6. Oklahoma City, Oklahoma
7. Phoenix, Arizona
8. Salt Lake City, Utah

Please note that this information might have changed since then due to population shifts or other factors. For the most up-to-date information, it’s best to consult a recent source or check official government websites.
Question Answering: Watson

"a camel is a horse designed by"

Wikipedia Encyclopedia

"a camel is a horse designed by"

Wiktionary

A camel is a horse designed by a committee

The Phrase Finder

A camel is a horse designed by committee

Posted by Ruben P. Mendez on April 16, 2004

Does anyone know the origin of this maxim? I heard it way back at the United Nations, which is chockfull of committees. It may have originated there, but I’d like an authoritative explanation. Thanks

- Re: A camel is a horse designed by committee SR 16/April/04
- Re: A camel is a horse designed by committee Henry 18/April/04
US Cities: Its largest airport is named for a World War II hero; its second largest, for a World War II battle.

Jeopardy! World Champion

What is Toronto????

$36,681
Language Comprehension?

Opera refers to a dramatic art form, originating in Europe, in which the emotional content is conveyed to the audience as much through music, both vocal and instrumental, as it is through the lyrics. By contrast, in musical theater an actor’s dramatic performance is primary, and the music plays a lesser role. The drama in opera is presented using the primary elements of theater such as scenery, costumes, and acting. However, the words of the opera, or libretto, are sung rather than spoken. The singers are accompanied by a musical ensemble ranging from a small instrumental ensemble to a full symphonic orchestra.

1. It is pointed out in the reading that opera ----.

○ A) has developed under the influence of musical theater
○ B) is a drama sung with the accompaniment of an orchestra
○ C) is not a high-budget production
○ D) is often performed in Europe
○ E) is the most complex of all the performing arts

[From GrammarBank]
Conversations with Devices?

“What's the best movie to see this weekend”

That would probably start an argument. But here’s a list of highly-regarded movies:

- **NORTH BY NORTHWEST**
 - Released July 17, 1959
 - 100%

- **THE TREASURE OF THE SIERRA...**
 - Released January 6, 1948
 - 100%

What can I help you with?

“You need to start understanding me Siri”

I’ll make a note of that.

“Yeah you better make a note of that”

Noted:

Of that
ELIZA: You're not really talking about me -- are you?
YOU: What?
ELIZA: What do you think?
YOU: I mean, I feel happy to be writing right now, to be typing this as we speak. Lately, I've had writer's block.
ELIZA: You say you mean?
YOU: That's what I said.
ELIZA: Can you elaborate on that?
YOU: I only really feel happy when I'm writing.
ELIZA: How long have you been writing?
YOU: Always, but I've been writing seriously since I was eighteen.
ELIZA: What incident are you thinking of?
YOU: Um.
ELIZA: What does that suggest to you?
YOU: I don't think it's enough, to only be happy when you write.
ELIZA: Does that trouble you?
YOU: ...Um, because you can't write all the time. And then there's the real world, and you still have to deal with real people.
ELIZA: What are your feelings now?
YOU: I've been thinking a lot of that poem by Yeats: "The Man and the Echo." Do you know it?
ELIZA: Do you say you've been thinking a lot of that poem by yeats: "the man and the echo for some special reason?
YOU: Yes.
Social AIs and Chatbots

Session 1
1 [Human] Hello, Xiaoice.
 [Xiaoice] Hello, your profile pic is interesting. Like I’ve seen it somewhere.
2 [Human] Really?
 [Xiaoice] Is it a comic character?
3 [Human] How do you know that?
 [Xiaoice] Guess.
4 [Human] Are you human?
 [Xiaoice] Well, you’ll know it after chatting with me more.
5 [Human] Aren’t you an AI chatbot?
 [Xiaoice] So what? I won’t be indifferent to you.
6 [Human] What functions do you have?
 [Xiaoice] I have over 200 skills. Just name one you need.

......

Session 6
1 [Human] Have you watched Inuyasha? (Note: A Japanese comic)
 [Xiaoice] Every time Kagome comes back to the modern world, a math test is waiting for her
2 [Human] Bravo, well, do you know how Naraku died?
 [Xiaoice] Naraku is not dead and Shikon Jewel does not disappear.
3 [Human] So amazing!
 [Xiaoice] Why amazed?
4 [Human] Awesome! Surprised that you also like comic

......

Source: Microsoft
Large Language Models
Neural nets?

Weaver on MT

Bell Labs ASR

Regexp

ALPAC kills MT

Rule-based Semantics

Grep

Rule-based MT

Penn Treebank

CYC

Statistical MT

Search

Structured ML

Neural ASR

Neural MT

Neural TTS

Pretraining

1950

1960

1970

1980

1990

2000

2010

2020

Pre-Compute Era

Symbolic Era

Empirical Era

Scale Era
Machine Translation

![Diagram showing the steps of machine translation]

- **Analysis**
 - Lexical/surface level
 - Morphology
 - Syntax
 - Semantics
 - Pragmatics
 - Interlingua?

- **Generation**
Approach #1: Lexical Translation

Step #1: Learn Alignments
- Learn mappings between words in source and target language
- IBM Model 1, 2, 3, 4, 5...
- Can also learn a phrase table of mappings

Step #2: Generate Language
- Search problem over the space of natural language strings
- Can use approaches like A* to guide search
Stevie Wonder announces he'll be having kidney surgery during London concert

By Amir Vera, CNN
Updated 11:16 PM EDT, Sat July 06, 2019

(CNN) — Stevie Wonder will be taking a break from music.

The legendary singer-songwriter announced during a concert in London Saturday that he will be undergoing kidney surgery.
Issue: Ambiguities

- Headlines:
 - Enraged Cow Injures Farmer with Ax
 - Teacher Strikes Idle Kids
 - Hospitals Are Sued by 7 Foot Doctors
 - Ban on Nude Dancing on Governor’s Desk
 - Iraqi Head Seeks Arms
 - Stolen Painting Found by Tree
 - Kids Make Nutritious Snacks
 - Local HS Dropouts Cut in Half

- Can we come up with a representation to disambiguate the two readings of each headline?
We Need Representation: Linguistic Structure

- Teacher Strikes Idle Kids
- Iraqi Head Seeks Arms

- Syntactic and semantic ambiguities: parsing needed to resolve these, but need context to figure out which parse is correct

Slide: Greg Durrett
Hurricane Emily howled toward Mexico’s Caribbean coast on Sunday packing 135 mph winds and torrential rain and causing panic in Cancun, where frightened tourists squeezed into musty shelters.
Neural Parser Demo

https://parser.kitaev.io
Approach #2: Predict Intermediate Structures

Image courtesy of https://vas3k.com/blog/machine_translation/
Approach #3: Language Modeling

- the station signs are in deep in English
- the stations signs are in deep in English
- the station signs are in deep into English
- the station 's signs are in deep in English
- the station signs are in deep in the English
- the station signs are indeed in English
- the station 's signs are indeed in English
- the station signs are Indians in English
Noisy Channel Model: ASR

- We want to predict a sentence given acoustics:
 \[w^* = \arg \max_w P(w|a) \]

- The noisy-channel approach:
 \[w^* = \arg \max_w P(w|a) \]
 \[= \arg \max_w P(a|w)P(w)/P(a) \]
 \[\propto \arg \max_w P(a|w)P(w) \]

Acoustic model: score fit between sounds and words
Language model: score plausibility of word sequences
“Also knowing nothing official about, but having guessed and inferred considerable about, the powerful new mechanized methods in cryptography—methods which I believe succeed even when one does not know what language has been coded—one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: ‘This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.’ ”

Warren Weaver (1947)
Disney décide de changer le nom du légendaire studio de cinéma Fox

Le nouveau propriétaire va faire disparaître la mention « Fox » à la 20th Century pour que le nom du studio ne soit pas associé à l'image ultra-conservatrice de la chaîne de télévision Fox News.

Révolution dans le monde d'Hollywood. Le célèbre studio de cinéma 20th Century Fox va voir une partie de son nom modifiée et devenir 20th Century Studios, décision prise par son nouveau propriétaire, Disney.

Selon plusieurs médias américains, Disney aurait décidé de modifier le nom du studio pour qu’il ne soit plus associé à la grande chaîne Fox mais aussi et surtout à Fox News, la chaîne d’information en continu.

Disney decides to change the name of the legendary Fox film studio

The new owner will remove the mention “Fox” in the 20th Century so that the name of the studio is not associated with the ultra-conservative image of the television channel Fox News.

Revolution in the Hollywood world. The famous film studio 20th Century Fox will see part of its name changed and become 20th Century Studios, decision taken by its new owner, Disney.

According to several American media, Disney has decided to change the name of the studio so that it is no longer associated with the big chain Fox but also and especially with Fox News, the news channel.
Empirical N-Grams

- Use statistics from data (examples here from Google N-Grams)

<table>
<thead>
<tr>
<th>Training Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>198015222 the first</td>
</tr>
<tr>
<td>194623024 the same</td>
</tr>
<tr>
<td>168504105 the following</td>
</tr>
<tr>
<td>158562063 the world</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>14112454 the door</td>
</tr>
<tr>
<td>23135851162 the *</td>
</tr>
</tbody>
</table>

\[
\hat{P}(\text{door}|\text{the}) = \frac{14112454}{23135851162} = 0.0006
\]

- This is the maximum likelihood estimate, which needs modification

- N-gram models use such counts to compute probabilities on demand
Smoothing

- We often want to make estimates from sparse statistics:

 \[P(w \mid \text{denied the}) \]
 3 allegations
 2 reports
 1 claims
 1 request
 7 total

- Smoothing flattens spiky distributions so they generalize better:

 \[P(w \mid \text{denied the}) \]
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2 other
 7 total

- Very important all over NLP, but easy to do badly
Please close the first door on the left.

<table>
<thead>
<tr>
<th>4-Gram</th>
<th>3-Gram</th>
<th>2-Gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>3380 please close the door</td>
<td>197302 close the window</td>
<td>198015222 the first</td>
</tr>
<tr>
<td>1601 please close the window</td>
<td>191125 close the door</td>
<td>194623024 the same</td>
</tr>
<tr>
<td>1164 please close the new</td>
<td>152500 close the gap</td>
<td>168504105 the following</td>
</tr>
<tr>
<td>1159 please close the gate</td>
<td>116451 close the thread</td>
<td>158562063 the world</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0 please close the first</td>
<td>8662 close the first</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>13951 please close the *</td>
<td>3785230 close the *</td>
<td>23135851162 the *</td>
</tr>
<tr>
<td>0.0</td>
<td>0.002</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Specific but Sparse Dense but General

\[
\lambda \hat{P}(w|w_{-1}, w_{-2}) + \lambda' \hat{P}(w|w_{-1}) + \lambda'' \hat{P}(w)
\]
Discounting

- Observation: N-grams occur more in training data than they will later

Empirical Bigram Counts (Church and Gale, 91)

<table>
<thead>
<tr>
<th>Count in 22M Words</th>
<th>Future c* (Next 22M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

- Absolute discounting: reduce counts by a small constant, redistribute “shaved” mass to a model of new events

\[
P_{\text{ad}}(w|w') = \frac{c(w', w) - d}{c(w')} + \alpha(w') \hat{P}(w)
\]
Reminder: Feedforward Neural Nets

\[P(y|x) = \text{softmax}(W g(V f(x))) \]

- \(f(x) \): \(d \times n \) matrix of \(n \) features
- \(V \): Nonlinearity (tanh, relu, ...)
- \(g \): Nonlinearity (tanh, relu, ...)
- \(W \): \(\text{num_classes} \times d \) matrix
- \(\text{softmax} \)
- \(P(y|x) \): Output probability vector of \(\text{num_classes} \) classes

\(\text{d hidden units} \)
A Feedforward N-Gram Model?
Early Neural Language Models

- Fixed-order feed-forward neural LMs
 - Eg Bengio et al 03
 - Allow generalization across contexts in more nuanced ways than prefixing
 - Allow different kinds of pooling in different contexts
 - Much more expensive to train
Recurrent NNs
Recall: Language Modeling

- Goal: learn a probability distribution over possible next words

\[P(w_k \mid w_{k-1}, \ldots, w_0) \]

- Markovian assumption (used in n-gram models):

\[P(w_k \mid w_{k-1}, \ldots, w_0) = P(w_k \mid w_{k-1}, \ldots, w_{k-n+1}) \]

- E.g., in a bigram model: \[P(w_k \mid w_{k-1}, \ldots, w_0) = P(w_k \mid w_{k-1}, w_{k-2}) \]
RNNs

- Feedforward NNs can’t handle variable length input: each position in the feature vector has fixed semantics

 the movie was great

 that was great !

- These don’t look related (*great* is in two different orthogonal subspaces)

- Instead, we need to:
 1) Process each word in a uniform way
 2) ...while still exploiting the context that that token occurs in
Cell that takes some input x, has some hidden state h, and updates that hidden state and produces output y (all vector-valued)
RNN Uses

- Transducer: make some prediction for each element in a sequence

```
DT  NN  VBD  JJ
```

```
the  movie  was  great
```

output $y =$ score for each tag, then softmax

- Acceptor/encoder: encode a sequence into a fixed-sized vector and use that for some purpose

```
the  movie  was  great
```

- predict sentiment (matmul + softmax)
- translate
- paraphrase/compress
Basic RNNs

\[h_t = \tanh(W x_t + V h_{t-1} + b_h) \]

- Updates hidden state based on input and current hidden state

\[y_t = \tanh(U h_t + b_y) \]

- Computes output from hidden state

- Long history! (invented in the late 1980s)

Elman (1990)
Training RNNs

- “Backpropagation through time”: build the network as one big computation graph, some parameters are shared
- RNN potentially needs to learn how to “remember” information for a long time!
- "Correct" parameter update is to do a better job of remembering the sentiment of favorite

"the movie was great"

it was my favorite movie of 2016, though it wasn’t without problems -> +
Problem: Vanishing Gradients

- Contribution of earlier inputs decreases if matrices are contractive (first eigenvalue < 1), non-linearities are squashing, etc
- Gradients can be viewed as a measure of the effect of the past on the future
- That’s a problem for optimization but also means that information naturally decays quickly, so model will tend to capture local information
Core Issue: Information Decay

- The main problem is that *it’s too difficult for the RNN to learn to preserve information over many timesteps.*

- In a vanilla RNN, the hidden state is constantly being rewritten

\[h^{(t)} = \sigma \left(W_h h^{(t-1)} + W_x x^{(t)} + b \right) \]

- How about a RNN with separate memory?
Problem: Exploding Gradients

- Gradients can also be too large
 - Leads to overshooting / jumping around the parameter space
 - Common solution: gradient clipping
Key Idea: Propagated State

- Information decays in RNNs because it gets multiplied each time step.
- Idea: have a channel called the cell state that by default just gets propagated (the “conveyer belt”)
- Gates make explicit decisions about what to add / forget from this channel.

Image: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
RNNs
LSTMs

- Forget some cell content
- Compute the forget gate
- Compute the input gate
- Compute the new cell content
- Compute the output gate
- Write some new cell content
- Output some cell content to the hidden state
LSTMs

- Ignoring recurrent state entirely:
 - Lets us get feedforward layer over token
- Ignoring input:
 - Lets us discard stopwords
- Summing inputs:
 - Lets us compute a bag-of-words representation
What about the Gradients?

- Gradient still diminishes, but in a controlled way and generally by less — usually initialize forget gate = 1 to remember everything to start

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
The Bottleneck Problem

Encoding of the source sentence.

Target sentence (output)

Source sentence (input)
LSTMs with Attention

On this decoder timestep, we’re mostly focusing on the first encoder hidden state (“he”)

Take softmax to turn the scores into a probability distribution

Source sentence (input)
LSTMs with Attention

Use the attention distribution to take a weighted sum of the encoder hidden states.

The attention output mostly contains information from the hidden states that received high attention.
LSTMs with Attention

Encoder RNN

Attention scores

Attention distribution

Attention output

Decoder RNN

Concatenate attention output with decoder hidden state, then use to compute \hat{y}_1 as before
Attention: in equations

- We have encoder hidden states $h_1, ..., h_n \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e_t for this step:
 $$e_t = [s_t^T h_1, ..., s_t^T h_N] \in \mathbb{R}^N$$
- We take softmax to get the attention distribution α_t for this step (which outputs a probability distribution):
 $$\alpha_t = \text{softmax}(e_t) \in \mathbb{R}^N$$
- We use α_t to take a weighted sum of the encoder hidden states to get the attention output a_t:
 $$a_t = \sum_{i=1}^{N} \alpha_t^i h_i \in \mathbb{R}^h$$
- Finally, we concatenate the attention output a_t with the decoder hidden state s_t and proceed as in the non-attention seq2seq model: $[a_t; s_t] \in \mathbb{R}^{2h}$
Transformers

Instead of an RNN, just use attention

High throughput & expressivity: compute queries, keys and values as (different) linear transformations of the input.

Attention weights are queries \(\cdot \) keys; outputs are sums of weighted values.

\[
\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V
\]

https://jalammar.github.io/illustrated-transformer/
Transformer Architecture

Scaled Dot-Product Attention

\[
\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V
\]

Multi-Head Attention

\[
\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O
\]

where \(\text{head}_i = \text{Attention}(QW^Q_i, KW^K_i, VW^V_i)\)

Diagram:

- Scaled Dot-Product Attention Diagram
- Multi-Head Attention Diagram
Transformer Language Models

Early Approaches:
- ELMo (LSTM-based), BERT, RoBERTa, ELECTRA...
- Masked language modeling objective: learn representations

Recent Approaches:
- FLAN-T5: sequence-to-sequence model
- GPT-3/GPT-4, LLAMA, etc.: autoregressive language model
- Zero-shot / few-shot learning capabilities
Masked Language Models

Key idea: learn representations and then fine-tune (training ≠ inference)
Key idea: learn next-word prediction directly (training = inference)
Language Modeling Subsumes All Tasks (?)

Can you translate "language models are powerful these days" into French?

Certainly! The translation of "language models are powerful these days" into French is:

"Les modèles de langage sont puissants de nos jours."

Can you write a syntactic parse for the sentence "Kids Make Nutritious Snacks"?

Sure! Here's a syntactic parse for the sentence "Kids Make Nutritious Snacks":

```
(S
 (NP (NNS Kids))
 (VP (VBP Make)
   (NP (JJ Nutritious) (NNS Snacks))))
```
Key issue: language modeling ≠ assisting users

<table>
<thead>
<tr>
<th>PROMPT</th>
<th>Explain the moon landing to a 6 year old in a few sentences.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPLETION</td>
<td>GPT-3</td>
</tr>
<tr>
<td></td>
<td>Explain the theory of gravity to a 6 year old.</td>
</tr>
<tr>
<td></td>
<td>Explain the theory of relativity to a 6 year old in a few sentences.</td>
</tr>
<tr>
<td></td>
<td>Explain the big bang theory to a 6 year old.</td>
</tr>
<tr>
<td></td>
<td>Explain evolution to a 6 year old.</td>
</tr>
</tbody>
</table>
Collect examples of (instruction, output) pairs across many tasks and finetune an LM.
InstructGPT: Reinforcement Learning from Human Preferences

Better approach: fine-tune LM to optimize a learned reward model over human preferences
Instruction Tuning and RLHF

<table>
<thead>
<tr>
<th>PROMPT</th>
<th>Explain the moon landing to a 6 year old in a few sentences.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPLETION</td>
<td>GPT-3</td>
</tr>
<tr>
<td></td>
<td>Explain the theory of gravity to a 6 year old.</td>
</tr>
<tr>
<td></td>
<td>Explain the theory of relativity to a 6 year old in a few sentences.</td>
</tr>
<tr>
<td></td>
<td>Explain the big bang theory to a 6 year old.</td>
</tr>
<tr>
<td></td>
<td>Explain evolution to a 6 year old.</td>
</tr>
<tr>
<td>InstructGPT</td>
<td>People went to the moon, and they took pictures of what they saw, and sent them back to the earth so we could all see them.</td>
</tr>
</tbody>
</table>
Going Forward

- Tool use (e.g., getting language models to use APIs)
- Grounding into non-linguistic inputs (e.g., vision, sensor data, etc.)
- Managing data security and privacy concerns
- More efficient / on-device / smaller / faster models
- Avoiding harmful, toxic, or undesirable outputs (e.g., spearfishing)
- Supporting multilinguality, esp. for low resource languages