
CS 188: Artificial Intelligence

Special Topics: NLP/CV/RL

Instructor: Nicholas Tomlin
[Slides courtesy of Dan Klein, Abigail See, Greg Durrett, Yejin Choi, John DeNero,
Eric Wallace, Kevin Lin, Fei-Fei Li, Sergey Levine, Pieter Abbeel, and many others]

Final Review Discussion Sections

§ Schedule is posted on Ed!

§ Discussions aren’t necessarily in
the usual rooms

§ Exam scope: cumulative,
everything taught in lecture up to
today, covered in homeworks or
discussions, unless explicitly
marked as optional content

Natural Language Processing

Goal: Deep Understanding
§ Requires knowledge, context, and

grounding

§ Just starting to see successes

Reality: Shallow Matching
§ Requires robustness and scale

§ Amazing successes, but

fundamental limitations

NLP

grep

What tasks do we care about?

Applications
§ Machine translation
§ Web search
§ Dialogue systems

§ Automatic speech recognition
§ Text-to-speech

§ Syntactic parsing, semantic parsing, semantic role labeling, word sense
induction, coreference resolution, summarization, sentiment analysis…

Machine Translation

Google Translate 2020

Search, Questions, and Reasoning

Jeopardy!

Images: Jeopardy Productions

Question Answering: Watson

Question Answering: Watson

Slide: Yejin Choi

Watson

Language Comprehension?

[From GrammarBank]

Conversations with Devices?

Slide: Yejin Choi

ELIZA

Social AIs and Chatbots

XiaoIce, developed
by Microsoft

Source: Microsoft

Large Language Models

Neural ASR

Regexps

Search

NLP History

1950 1960 1970 1980 1990 2000 2010 2020

Neural nets?

Weaver on MT

Bell Labs ASR

ALPAC kills MT Rule-based MT

Neural MT
Penn Treebank Structured ML

Statistical MT Neural TTS

Pretraining

Rule-based
Semantics

CYC

Pre-Compute Era Symbolic Era Empirical Era Scale Era

Grep

Machine Translation

Approach #1: Lexical Translation

Step #1: Learn Alignments
§ Learn mappings between words in source and target language

§ IBM Model 1, 2, 3, 4, 5...

§ Can also learn a phrase table of mappings

Step #2: Generate Language
§ Search problem over the space of natural language strings

§ Can use approaches like A* to guide search

Issue: Ambiguities

Issue: Ambiguities

§ Headlines:
§ Enraged Cow Injures Farmer with Ax

§ Teacher Strikes Idle Kids

§ Hospitals Are Sued by 7 Foot Doctors

§ Ban on Nude Dancing on Governor’s Desk

§ Iraqi Head Seeks Arms

§ Stolen Painting Found by Tree

§ Kids Make Nutritious Snacks

§ Local HS Dropouts Cut in Half

§ Can we come up with a representation to
disambiguate the two readings of each headline?

We Need Representation: Linguistic Structure

Slide: Greg Durrett

Example: Syntactic Analysis

Hurricane Emily howled toward Mexico 's Caribbean coast on Sunday
packing 135 mph winds and torrential rain and causing panic in Cancun,
where frightened tourists squeezed into musty shelters .

Accuracy: 95+

Neural Parser Demo

https://parser.kitaev.io

Approach #2: Predict Intermediate Structures

Image courtesy of https://vas3k.com/blog/machine_translation/

Approach #3: Language Modeling

the station signs are in deep in english -14732

the stations signs are in deep in english -14735

the station signs are in deep into english -14739

the station 's signs are in deep in english -14740

the station signs are in deep in the english -14741

the station signs are indeed in english -14757

the station 's signs are indeed in english -14760

the station signs are indians in english -14790

Noisy Channel Model: ASR
§We want to predict a sentence given acoustics:

§The noisy-channel approach:

Acoustic model: score fit between
sounds and words

Language model: score
plausibility of word sequences

Noisy Channel Model: Translation
“Also knowing nothing official about, but having guessed and
inferred considerable about, the powerful new mechanized
methods in cryptography—methods which I believe succeed
even when one does not know what language has been
coded—one naturally wonders if the problem of translation
could conceivably be treated as a problem in cryptography.
When I look at an article in Russian, I say: ‘This is really
written in English, but it has been coded in some strange
symbols. I will now proceed to decode.’ ”

 Warren Weaver (1947)

Machine Translation

Google Translate 2020

Empirical N-Grams

§ Use statistics from data (examples here from Google N-Grams)

§ This is the maximum likelihood estimate, which needs modification

§ N-gram models use such counts to compute probabilities on demand

198015222 the first
194623024 the same
168504105 the following
158562063 the world
…
14112454 the door

23135851162 the *

Tr
ai

ni
ng

 C
ou

nt
s

Smoothing
§ We often want to make estimates from sparse statistics:

§ Smoothing flattens spiky distributions so they generalize better:

§ Very important all over NLP, but easy to do badly

P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request
 7 total

al
le

ga
tio

ns

ch
ar

ge
s

m
ot

io
n

be
ne

fit
s

…
al

le
ga

tio
ns

re
po

rts

cl
ai

m
s

ch
ar

ge
s

re
qu
es
t

m
ot

io
n

be
ne

fit
s

…

al
le

ga
tio

ns

re
po

rts

cl
ai
m
s

re
qu
es
t

P(w | denied the)
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2 other
 7 total

Back-off
Please close the first door on the left.

3380 please close the door

1601 please close the window

1164 please close the new

1159 please close the gate

…

0 please close the first

13951 please close the *

198015222 the first

194623024 the same

168504105 the following

158562063 the world

…

…

23135851162 the *

197302 close the window

191125 close the door

152500 close the gap

116451 close the thread

…

8662 close the first

3785230 close the *

0.0 0.002 0.009

Specific but Sparse Dense but General

4-Gram 3-Gram 2-Gram

Discounting
§ Observation: N-grams occur more in training data than they will later

§Absolute discounting: reduce counts by a small constant, redistribute

“shaved” mass to a model of new events

Count in 22M Words Future c* (Next 22M)

1 0.45
2 1.25
3 2.24
4 3.23
5 4.21

Empirical Bigram Counts (Church and Gale, 91)

Reminder: Feedforward Neural Nets

A Feedforward N-Gram Model?

Early Neural Language Models

Bengio et al 03

§ Fixed-order feed-forward

neural LMs

§ Eg Bengio et al 03

§ Allow generalization across
contexts in more nuanced ways
than prefixing

§ Allow different kinds of pooling
in different contexts

§ Much more expensive to train

Recurrent NNs

Recall: Language Modeling

§ Goal: learn a probability distribution over possible next words

! "! "!"#, … , "$

§ Markovian assumption (used in n-gram models):

! "! "!"#, … , "$ = !("! ∣ "!"#	, … , "!"&'#)

§ E.g., in a bigram model: ! "! "!"#, … , "$ = P(w% ∣ "!"#, "!"&)

RNNs

General RNN Approach

RNN Uses

Basic RNNs

Training RNNs

Problem: Vanishing Gradients

§ Contribution of earlier inputs decreases if matrices are contractive (first

eigenvalue < 1), non-linearities are squashing, etc

§ Gradients can be viewed as a measure of the effect of the past on the future

§ That’s a problem for optimization but also means that information naturally

decays quickly, so model will tend to capture local information

Core Issue: Information Decay

Problem: Exploding Gradients

§ Gradients can also be too large

§ Leads to overshooting / jumping
around the parameter space

§ Common solution: gradient clipping

Key Idea: Propagated State

§ Information decays in RNNs because it gets multiplied each time step

§ Idea: have a channel called the cell state that by default just gets
propagated (the “conveyer belt”)

§ Gates make explicit decisions about what to add / forget from this channel

Image: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell State Gating

RNNs

LSTMs

LSTMs

LSTMs

What about the Gradients?

The Bottleneck Problem

LSTMs with Attention

LSTMs with Attention

LSTMs with Attention

Attention: in equations

§ We have encoder hidden states ℎ!, … , ℎ" ∈ ℝ#
§ On timestep &, we have decoder hidden state '$ ∈ ℝ#
§ We get the attention scores ($ for this step:

($ = '$%ℎ!, … , '$%ℎ& ∈ ℝ&
§ We take softmax to get the attention distribution *$ for this step (which outputs a

probability distribution):
*$ = softmax ($ ∈ ℝ&

§ We use *$ to take a weighted sum of the encoder hidden states to get the attention output
2$:

2$ =	4
'(!

&
*'$ℎ' ∈ ℝ#

§ Finally, we concatenate the attention output 2$ with the decoder hidden state '$ and
proceed as in the non-attention seq2seq model: 2$; '$ ∈ ℝ)#

Transformers

Instead of an RNN, just use attention

High throughput & expressivity: compute

queries, keys and values as (different)

linear transformations of the input.

Attention weights are queries • keys;

outputs are sums of weighted values.

https://jalammar.github.io/illustrated-transformer/

Transformer Architecture

Transformer Language Models

Early Approaches:
§ ELMo (LSTM-based), BERT, RoBERTa, ELECTRA…
§ Masked language modeling objective: learn representations

Recent Approaches:
§ FLAN-T5: sequence-to-sequence model
§ GPT-3/GPT-4, LLAMA, etc.: autoregressive language model
§ Zero-shot / few-shot learning capabilities

Masked Language Models

Key idea: learn representations and then fine-tune (training ≠ inference)

Autoregressive Language Models

Key idea: learn next-word prediction directly (training = inference)

Language Modeling Subsumes All Tasks (?)

Instruction Tuning and RLHF

Key issue: language modeling ≠ assisting users

FLAN-T5

Collect examples of (instruction, output) pairs across many tasks and finetune an LM

InstructGPT: Reinforcement Learning from Human Preferences

Better approach: fine-tune LM to optimize a learned reward model over human preferences

Instruction Tuning and RLHF

Going Forward

§ Tool use (e.g., getting language models to use APIs)
§ Grounding into non-linguistic inputs (e.g., vision, sensor data, etc.)
§ Managing data security and privacy concerns
§ More efficient / on-device / smaller / faster models
§ Avoiding harmful, toxic, or undesirable outputs (e.g., spearfishing)
§ Supporting multilinguality, esp. for low resource languages

