
CS 188: Artificial Intelligence

Special Topics: NLP/CV/RL

Instructor: Nicholas Tomlin
[Slides courtesy of Dan Klein, Abigail See, Greg Durrett, Yejin Choi, John DeNero, 
Eric Wallace, Kevin Lin, Fei-Fei Li, Sergey Levine, Pieter Abbeel, and many others]



Final Review Discussion Sections

§ Schedule is posted on Ed! 

§ Discussions aren’t necessarily in 
the usual rooms

§ Exam scope: cumulative, 
everything taught in lecture up to 
today, covered in homeworks or 
discussions, unless explicitly 
marked as optional content



Natural Language Processing

Goal: Deep Understanding
§ Requires knowledge, context, and 

grounding

§ Just starting to see successes

Reality: Shallow Matching
§ Requires robustness and scale

§ Amazing successes, but 

fundamental limitations 

NLP

grep



What tasks do we care about?

Applications
§ Machine translation
§ Web search
§ Dialogue systems

§ Automatic speech recognition
§ Text-to-speech

§ Syntactic parsing, semantic parsing, semantic role labeling, word sense 
induction, coreference resolution, summarization, sentiment analysis…



Machine Translation

Google Translate 2020



Search, Questions, and Reasoning



Jeopardy!

Images: Jeopardy Productions



Question Answering: Watson



Question Answering: Watson

Slide: Yejin Choi



Watson



Language Comprehension?

[From GrammarBank]



Conversations with Devices?

Slide: Yejin Choi



ELIZA



Social AIs and Chatbots

XiaoIce, developed
by Microsoft

Source: Microsoft



Large Language Models



Neural ASR

Regexps

Search

NLP History

1950 1960 1970 1980 1990 2000 2010 2020

Neural nets?

Weaver on MT

Bell Labs ASR

ALPAC kills MT Rule-based MT

Neural MT
Penn Treebank Structured ML

Statistical MT Neural TTS

Pretraining

Rule-based 
Semantics

CYC

Pre-Compute Era Symbolic Era Empirical Era Scale Era

Grep



Machine Translation



Approach #1: Lexical Translation

Step #1: Learn Alignments
§ Learn mappings between words in source and target language

§ IBM Model 1, 2, 3, 4, 5...

§ Can also learn a phrase table of mappings

Step #2: Generate Language
§ Search problem over the space of natural language strings

§ Can use approaches like A* to guide search



Issue: Ambiguities



Issue: Ambiguities

§ Headlines:
§ Enraged Cow Injures Farmer with Ax

§ Teacher Strikes Idle Kids

§ Hospitals Are Sued by 7 Foot Doctors

§ Ban on Nude Dancing on Governor’s Desk

§ Iraqi Head Seeks Arms

§ Stolen Painting Found by Tree

§ Kids Make Nutritious Snacks

§ Local HS Dropouts Cut in Half

§ Can we come up with a representation to 
disambiguate the two readings of each headline?



We Need Representation: Linguistic Structure

Slide: Greg Durrett



Example: Syntactic Analysis

Hurricane Emily howled toward Mexico 's Caribbean coast on Sunday 
packing 135 mph winds and torrential rain and causing panic in Cancun, 
where frightened tourists squeezed into musty shelters .

Accuracy: 95+



Neural Parser Demo

https://parser.kitaev.io



Approach #2: Predict Intermediate Structures

Image courtesy of https://vas3k.com/blog/machine_translation/



Approach #3: Language Modeling

the station signs are in deep in english   -14732

the stations signs are in deep in english   -14735

the station signs are in deep into english  -14739

the station 's signs are in deep in english  -14740

the station signs are in deep in the english  -14741

the station signs are indeed in english   -14757

the station 's signs are indeed in english   -14760

the station signs are indians in english   -14790



Noisy Channel Model: ASR
§We want to predict a sentence given acoustics:

§The noisy-channel approach:

Acoustic model: score fit between 
sounds and words

Language model: score 
plausibility of word sequences



Noisy Channel Model: Translation
“Also knowing nothing official about, but having guessed and 
inferred considerable about, the powerful new mechanized 
methods in cryptography—methods which I believe succeed 
even when one does not know what language has been 
coded—one naturally wonders if the problem of translation 
could conceivably be treated as a problem in cryptography.  
When I look at an article in Russian, I say: ‘This is really 
written in English, but it has been coded in some strange 
symbols. I will now proceed to decode.’  ” 

                                          Warren Weaver (1947)



Machine Translation

Google Translate 2020



Empirical N-Grams

§ Use statistics from data (examples here from Google N-Grams)

§ This is the maximum likelihood estimate, which needs modification

§ N-gram models use such counts to compute probabilities on demand

198015222 the first
194623024 the same
168504105 the following
158562063 the world
…
14112454 the door
-----------------
23135851162 the *
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Smoothing
§ We often want to make estimates from sparse statistics:

§ Smoothing flattens spiky distributions so they generalize better:

§ Very important all over NLP, but easy to do badly

P(w | denied the)
  3 allegations
  2 reports
  1 claims
  1 request
  7 total
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P(w | denied the)
  2.5 allegations
  1.5 reports
  0.5 claims
  0.5 request
  2 other
  7 total



Back-off
Please close the first door on the left.

3380 please close the door

1601 please close the window

1164 please close the new

1159 please close the gate

…

0      please close the first

-----------------

13951 please close the *

198015222 the first

194623024 the same

168504105 the following

158562063 the world

…

…

-----------------

23135851162 the *

197302 close the window 

191125 close the door 

152500 close the gap 

116451 close the thread

…

8662     close the first

-----------------

3785230 close the *

0.0 0.002 0.009

Specific but Sparse Dense but General

4-Gram 3-Gram 2-Gram



Discounting
§  Observation: N-grams occur more in training data than they will later

§Absolute discounting: reduce counts by a small constant, redistribute 

“shaved” mass to a model of new events

Count in 22M Words Future c* (Next 22M)

1 0.45
2 1.25
3 2.24
4 3.23
5 4.21

Empirical Bigram Counts (Church and Gale, 91)



Reminder: Feedforward Neural Nets



A Feedforward N-Gram Model?



Early Neural Language Models

Bengio et al 03

§ Fixed-order feed-forward 

neural LMs

§ Eg Bengio et al 03

§ Allow generalization across 
contexts in more nuanced ways 
than prefixing

§ Allow different kinds of pooling 
in different contexts

§ Much more expensive to train



Recurrent NNs



Recall: Language Modeling

§ Goal: learn a probability distribution over possible next words

! "! "!"#, … , "$

§ Markovian assumption (used in n-gram models):

! "! "!"#, … , "$ = !("! ∣ "!"#	, … , "!"&'# )

§ E.g., in a bigram model: ! "! "!"#, … , "$ = P(w% ∣ "!"#, "!"&)



RNNs



General RNN Approach



RNN Uses



Basic RNNs



Training RNNs



Problem: Vanishing Gradients

§ Contribution of earlier inputs decreases if matrices are contractive (first 

eigenvalue < 1), non-linearities are squashing, etc

§ Gradients can be viewed as a measure of the effect of the past on the future

§ That’s a problem for optimization but also means that information naturally 

decays quickly, so model will tend to capture local information



Core Issue: Information Decay



Problem: Exploding Gradients

§ Gradients can also be too large

§ Leads to overshooting / jumping 
around the parameter space

§ Common solution: gradient clipping



Key Idea: Propagated State

§ Information decays in RNNs because it gets multiplied each time step

§ Idea: have a channel called the cell state that by default just gets 
propagated (the “conveyer belt”)

§ Gates make explicit decisions about what to add / forget from this channel

Image: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell State Gating



RNNs



LSTMs



LSTMs



LSTMs



What about the Gradients?



The Bottleneck Problem



LSTMs with Attention



LSTMs with Attention



LSTMs with Attention



Attention: in equations

§ We have encoder hidden states ℎ!, … , ℎ" ∈ ℝ#
§ On timestep &, we have decoder hidden state '$ ∈ ℝ#
§ We get the attention scores ($ for this step:

($ = '$%ℎ!, … , '$%ℎ& ∈ ℝ&
§ We take softmax to get the attention distribution *$ for this step (which outputs a 

probability distribution):
*$ = softmax ($ ∈ ℝ&

§ We use *$ to take a weighted sum of the encoder hidden states to get the attention output 
2$:

2$ =	4
'(!

&
*'$ℎ' ∈ ℝ#

§ Finally, we concatenate the attention output 2$ with the decoder hidden state '$ and 
proceed as in the non-attention seq2seq model: 2$; '$ ∈ ℝ)#



Transformers

Instead of an RNN, just use attention

High throughput & expressivity: compute 

queries, keys and values as (different) 

linear transformations of the input.

Attention weights are queries • keys; 

outputs are sums of weighted values. 

https://jalammar.github.io/illustrated-transformer/



Transformer Architecture



Transformer Language Models

Early Approaches:
§ ELMo (LSTM-based), BERT, RoBERTa, ELECTRA…
§ Masked language modeling objective: learn representations

Recent Approaches:
§ FLAN-T5: sequence-to-sequence model
§ GPT-3/GPT-4, LLAMA, etc.: autoregressive language model
§ Zero-shot / few-shot learning capabilities 



Masked Language Models

Key idea: learn representations and then fine-tune (training ≠ inference)



Autoregressive Language Models

Key idea: learn next-word prediction directly (training = inference)



Language Modeling Subsumes All Tasks (?)



Instruction Tuning and RLHF

Key issue: language modeling ≠ assisting users



FLAN-T5

Collect examples of (instruction, output) pairs across many tasks and finetune an LM



InstructGPT: Reinforcement Learning from Human Preferences

Better approach: fine-tune LM to optimize a learned reward model over human preferences 



Instruction Tuning and RLHF



Going Forward

§ Tool use (e.g., getting language models to use APIs)
§ Grounding into non-linguistic inputs (e.g., vision, sensor data, etc.)
§ Managing data security and privacy concerns
§ More efficient / on-device / smaller / faster models
§ Avoiding harmful, toxic, or undesirable outputs (e.g., spearfishing)
§ Supporting multilinguality, esp. for low resource languages


