CS 188: Artificial Intelligence
Special Topics: NLP/CV/RL
Instructor: Nicholas Tomlin

[Slides courtesy of Dan Klein, Abigail See, Greg Durrett, Yejin Choi, John DeNero, Eric Wallace, Kevin Lin, Fei-Fei Li, Sergey Levine, Pieter Abbeel, and many others]
What tasks do we care about?

- Object detection and classification
- Semantic segmentation
- Image captioning
- Visual question answering
- Video classification and understanding
- Image generation
- ...

...
Image Classification

cat
dog
horse
person
airplane
house
...

[Image of a cat]
Beyond Image Classification

Classification
- CAT
 - No spatial extent

Semantic Segmentation
- GRASS, CAT, TREE, SKY
 - No objects, just pixels

Object Detection
- DOG, DOG, CAT
 - Multiple Object

Instance Segmentation
- DOG, DOG, CAT
 - This image is CC0 public domain
<table>
<thead>
<tr>
<th>TEXT PROMPT</th>
<th>an armchair in the shape of an avocado, an armchair imitating an avocado.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI-GENERATED IMAGES</td>
<td></td>
</tr>
</tbody>
</table>
Recall: MNIST Digit Classification

Task specification:
- Input features: binary pixel values
- Output: a digit classification (0-9)

Issues with Naïve Bayes classifier:
- Can overfit to individual pixels
- Not robust to scaling, movement left/right, etc.
Convolutional Neural Networks

- **Image**: 28 x 28
- **Convolution**: padding = 1, kernel = 3x3, stride = 1 + ReLU
- **Max pooling**: Kernel = 2x2, Stride = 2
- **Convolution**: padding = 1, kernel = 3x3, stride = 1 + ReLU
- **Max pooling**: Kernel = 2x2, Stride = 2
- **Flatten**: 3136 x 128
- **Output**: 128 x 10
Convolution in 1D

- Basic idea: define a new function by averaging over a sliding window
- Example in one dimension: smoothing
Convolution in 1D

- Moving average:

\[c[i] = \frac{1}{2r + 1} \sum_{j=i-r}^{i+r} a[j] \]

- Convolution: same idea but with weighted average

\[(a \ast b)[i] = \sum_{j} a[j] \cdot b[i - j] \]

called a filter
Convolution in 1D

- Filters in one dimension:
 - Box filter: $[... , 0, 0, 1, 1, 1, 1, 0, 0,...]/5$
 - Gaussian filter: $[... , 0, 0, 1, 4, 6, 4, 1, 0, 0,...]/16$
Filters in two dimensions: same idea but apply over a square patch of inputs (often 3x3 or 5x5)

Applications:
- Blurring
- Sharpening
- Feature detection
- ...
Convolutional Neural Networks

- Key idea: learn the filter weights via backprop
Benchmarking on ImageNet

- 2010: Lin et al
- 2011: Sanchez & Perronnin
- 2012: Krizhevsky et al (AlexNet)
- 2013: Zeiler & Fergus
- 2014: Simonyan & Zisserman (VGG)
- 2014: Szegedy et al (GoogLeNet)
- 2015: He et al (ResNet)
- 2016: Shao et al
- 2017: Hu et al (SENNet)
- Human

First CNN-based winner: 152 layers, 152 layers, 152 layers

Layers:
- shallow
- 8 layers
- 19 layers
- 22 layers
- 3.6
- 3
- 2.3
- 5.1
ResNet (He, et al. 2015)

- **Key idea:**
 - Want deeper networks with more parameters, but training signal becomes weak
 - Add “skip” connections between layers so that there are shorter paths between early parameters and the final loss function

- **ResNet:**
 - 152-layer model for ImageNet
 - Massive improvement over all previous CNN-based classification models circa 2015
Image Classification

cat
dog
horse
person
airplane
house
...

The diagram shows a cat, which is classified under different categories.
Image Captioning

a cat standing on a desk
Input: Image I
Output: Sequence $y = y_1, y_2, ..., y_T$

Encoder: $h_0 = f_w(z)$
where z is spatial CNN features
$f_w(\cdot)$ is an MLP

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c)$
where context vector c is often $c = h_0$

Image Captioning with RNNs + Attention

This entire process is differentiable.
- model chooses its own attention weights. No attention supervision is required.

Image Captioning with Transformers

Input: Image \(I \)

Output: Sequence \(y = y_1, y_2, \ldots, y_T \)

Encoder: \(c = T_w(z) \)
where \(z \) is spatial CNN features
\(T_w(\cdot) \) is the transformer encoder

Extract spatial features from a pretrained CNN

Features: \(H \times W \times D \)

Decoder: \(y_t = T_D(y_{0:t-1}, c) \)
where \(T_D(\cdot) \) is the transformer decoder

```
<table>
<thead>
<tr>
<th>y_0</th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
<th>y_4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>person</td>
<td>wearing</td>
<td>hat</td>
<td>[END]</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>y_0</th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
<th>y_4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Transformer decoder

```
<table>
<thead>
<tr>
<th>y_0</th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>[START]</td>
<td>person</td>
<td>wearing</td>
<td>hat</td>
</tr>
</tbody>
</table>
```

Transformer encoder
Image Captioning with Vision Transformers

Need to learn these tokens
Representation Learning

1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations

2. Attach a shallow network on the feature extractor; train the shallow network on the target task with small amount of labeled data
Representation Learning: SimCLR

(a) Original (b) Crop and resize (c) Crop, resize (and flip) (d) Color distort. (drop)
(e) Color distort. (jitter)

(f) Rotate \{90°, 180°, 270°\} (g) Cutout (h) Gaussian noise (i) Gaussian blur
(j) Sobel filtering
Representation Learning: SimCLR

(a) Original (b) Crop and resize (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate \{90^\circ, 180^\circ, 270^\circ\} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering
Key idea: take N images, make 2N augmented versions, and then try to learn all the pairwise matchings.
Key idea: treat latent space in image as a sequence of patches and learn to predict future patches from previous ones.
Autoencoders

Ideally they are identical. \(x \approx x' \)

An compressed low dimensional representation of the input.
Denoising Autoencoder

Original input

Partially destroyed input

Input

Reconstructed input

\[x \approx x' \]

Encoder \(g_\phi \)

Decoder \(f_\theta \)

Bottleneck!

An compressed low dimensional representation of the input.
Variational Autoencoder

- **Input**
- **Probabilistic Encoder**
 - $q_\phi(z|x)$
 - Mean: μ
 - Std. dev: σ
 - $z = \mu + \sigma \odot \epsilon$
 - $\epsilon \sim \mathcal{N}(0, I)$
- **Sampled latent vector**
- **Probabilistic Decoder**
 - $p_\theta(x|z)$
- **Reconstructed input**

Ideally they are identical.

$x \approx x'$

An compressed low dimensional representation of the input.

https://lilianweng.github.io/posts/2018-08-12-vae/
Generative Adversarial Networks

Idea: Train a **network** to guess which images are real and which are fake!

This model can then serve as a loss function for the generator!
Generative Adversarial Networks

1. get a “True” dataset $D_T = \{(x_i)\}$
2. get a generator $G_\theta(z)$
3. sample a “False” dataset D_F: $z \sim p(z)$, $x = G(z)$
4. update $D_\phi(x) = p_\phi(y|x)$ using D_T and D_F (1 SGD step)
5. use $D(x)$ to update $G(z)$ (1 SGD step)

“classic” GAN 2-player game:

$$
\min_G \max_D V(D, G) = E_{x \sim p_{\text{data}}(x)}[\log D(x)] + E_{z \sim p(z)}[\log(1 - D(G(z)))]
$$

$$
\approx \frac{1}{N} \sum_{i=1}^{N} \log D(x_i), \quad x_i \in D_T \\
\approx \frac{1}{N} \sum_{j=1}^{N} \log(1 - D(x_j)), \quad x_j = G(z_j)
$$
Diffusion Models
CLIP and DALL-E

1. Contrastive pre-training

2. Create dataset classifier from label text

3. Use for zero-shot prediction