
CS 188 Introduction to Artificial Intelligence
Summer 2023 Note 4
These lecture notes are heavily based on notes originally written by Nikhil Sharma.

Local Search
As a final topic of interest, backtracking search is not the only algorithm that exists for solving constraint
satisfaction problems. Another widely used algorithm is local search, for which the idea is childishly simple
but remarkably useful. Local search works by iterative improvement - start with some random assignment to
values then iteratively select a random conflicted variable and reassign its value to the one that violates the
fewest constraints until no more constraint violations exist (a policy known as the min-conflicts heuristic).
Under such a policy, constraint satisfaction problems like N-queens becomes both very time efficient and
space efficient to solve. For example, in following example with 4 queens, we arrive at a solution after only
2 iterations:

In fact, local search appears to run in almost constant time and have a high probability of success not only
for N-queens with arbitrarily large N, but also for any randomly generated CSP! However, despite these
advantages, local search is both incomplete and suboptimal and so won’t necessarily converge to an optimal
solution. Additionally, there is a critical ratio around which using local search becomes extremely expensive:

The figure above shows the one dimensional plot of an objective function on the state space. For that
function we wish to find the state that corresponds to the highest objective value. The basic idea of local

CS 188, Summer 2023, Note 4 1



search algorithms is that from each state they locally move towards states that have a higher objective value
until a maximum (hopefully the global) is reached.

We will be covering three such algorithms, hill-climbing, simulated annealing and genetic algorithms. All
these algorithms are also used in optimization tasks to either maximize or minimize an objective function.

Hill-Climbing Search
The hill-climbing search algorithm (or steepest-ascent) moves from the current state towards a neighboring
state that increases the objective value. The algorithm does not maintain a search tree but only the states and
the corresponding values of the objective. The “greediness" of hill-climbing makes it vulnerable to being
trapped in local maxima (see figure 4.1), as locally those points appear as global maxima to the algorithm,
and plateaux (see figure 4.1). Plateaux can be categorized into “flat" areas at which no direction leads to
improvement (“flat local maxima") or flat areas from which progress can be slow (“shoulders"). Variants of
hill-climbing, like stochastic hill-climbing which selects an action randomly among the uphill moves, have
been proposed . This version of hill-climbing has been shown in practice to converge to higher maxima at
the cost of more iterations.

CS 188, Summer 2023, Note 4 2



The pseudocode of hill-climbing can be seen above. As the name suggests the algorithm iteratively moves to
a state with higher objective value until no such progress is possible. Hill-climbing is incomplete. Random-
Restart hill-climbing on the other hand, that conducts a number of hill-climbing searches each time from
a randomly chosen initial state, is trivially complete as at some point the randomly chosen initial state will
coincide with the global maximum.

Simulated Annealing Search
The second local search algorithm we will cover is simulated annealing. Simulated annealing aims to
combine random walk (randomly moves to nearby states) and hill-climbing to obtain a complete and efficient
search algorithm. In simulated annealing we allow moves to states that can decrease the objective. More
specifically, the algorithm at each state chooses a random move. If the move leads to higher objective it is
always accepted. If on the other hand it leads to smaller objectives then the move is accepted with some
probability. This probability is determined by the temperature parameter, which initially is high (more “bad"
moves allowed) and gets decreased according to some schedule. If temperature is decreased slowly enough
then the simulated annealing algorithm will reach the global maximum with probability approaching 1.

CS 188, Summer 2023, Note 4 3



Genetic Algorithms (Optional)
Finally, we present genetic algorithms which are a variant of local beam search and are also extensively
used in many optimization tasks. Genetic algorithms begin as beam search with k randomly initialized
states called the population. States (or individuals) are represented as a string over a finite alphabet. To
understand the topic better let’s revisit the 8 Queens problem presented in class. For the 8 Queens problem
we can represent each of the eight individuals with a number that ranges from 1−8 representing the location
of each Queen in the column (column (a) in Fig. 4.6). Each individual is evaluated using an evaluation
function (fitness function) and they are ranked according to the values of that function. For the 8 Queens
problem this is the number of non-attacking pairs of queens.

The probability of choosing a state to “reproduce" is propositional to the value of that state. We proceed to
select pairs of states to reproduce according to these probabilities (column (c) in Fig. 4.6). Offsprings are
generated by crossing over the parent strings at the crossover point. That crossover point is chosen randomly
for each pair. Finally, each offspring is susceptible to some random mutation with independent probability.
The pseudocode of the genetic algorithm can be seen in the following picture.

CS 188, Summer 2023, Note 4 4



Genetic algorithms try to move uphill while exploring the state space and exchanging information between
threads. Their main advantage is the use of crossovers since this allows for large blocks of letters, that have
evolved and lead to high valuations, to be combined with other such blocks and produce a solution with high
total score.

CS 188, Summer 2023, Note 4 5


