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Q1. Worst-Case Backtracking
Consider solving the following CSP with standard backtracking search where we enforce arc consistency of all arcs before every
variable assignment. Assume every variable in the CSP has a domain size 𝑑 > 1.

A B C

D E F

(a) For each of the variable orderings, mark the variables for which backtracking search (with arc consistency checking) could
end up considering more than one different value during the search.

(i) Ordering: 𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹

■ 𝐴 ■ 𝐵 □ 𝐶 □ 𝐷 □ 𝐸 □ 𝐹
(ii) Ordering: 𝐵,𝐷, 𝐹 , 𝐸, 𝐶,𝐴

□ 𝐴 ■ 𝐵 □ 𝐶 □ 𝐷 □ 𝐸 □ 𝐹
Since we are enforcing arc consistency before every value assignment, we will only be guaranteed that we won’t need to
backtrack when our remaining variables left to be assign form a tree structure (or a forest of trees). For the first ordering,
after we assign 𝐴 and 𝐵, the nodes 𝐶,𝐷,𝐸, 𝐹 , form a tree. For the second ordering, after we assign 𝐵, the nodes
𝐴,𝐶,𝐷,𝐸, 𝐹 form a tree.

(b) Now assume that an adversary gets to observe which variable ordering you are using, and after doing so, chooses to
add one additional binary constraint between any pair of variables in the CSP to maximize the number of backtracking
variables in the worst case. For each of the following variable orderings, select which additional binary constraint the
adversary should add. Then, mark the variables for which backtracking search (with arc consistency checking) could end
up considering more than one different value when solving the modified CSP.

(i) Ordering: 𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹
The adversary should add the additional binary constraint:

# 𝐴𝐶
# 𝐵𝐹

# 𝐴𝐸
# 𝐶𝐷

# 𝐴𝐹
# 𝐶𝐸

# 𝐵𝐷
 𝐷𝐹

When solving the modified CSP with this ordering, backtracking might occur at:

■ 𝐴 ■ 𝐵 ■ 𝐶 ■ 𝐷 □ 𝐸 □ 𝐹 By adding the edge 𝐷𝐹 , now only after we assign 𝐴,𝐵, 𝐶,𝐷, the
remaining nodes 𝐸, 𝐹 form a tree.

(ii) Ordering: 𝐵,𝐷, 𝐹 , 𝐸, 𝐶,𝐴
The adversary should add the additional binary constraint:

# 𝐴𝐶
# 𝐵𝐹

# 𝐴𝐸
# 𝐶𝐷

# 𝐴𝐹
 𝐶𝐸

# 𝐵𝐷
# 𝐷𝐹

When solving the modified CSP with this ordering, backtracking might occur at:
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□ 𝐴 ■ 𝐵 □ 𝐶 ■ 𝐷 □ 𝐸 ■ 𝐹
By adding the edge 𝐶𝐸, now only after we assign 𝐵,𝐷, 𝐹 , the remaining nodes 𝐴,𝐶,𝐸 form a tree.
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Q2. Satisfying Search
Consider a search problem (𝑆,𝐴, 𝑆𝑢𝑐𝑐, 𝑠0, 𝐺), where all actions have cost 1. 𝑆 is the set of states, 𝐴(𝑠) is the set of legal actions
from a state 𝑠, 𝑆𝑢𝑐𝑐(𝑠, 𝑎) is the state reached after taking action 𝑎 in state 𝑠, 𝑠0 is the start state, and 𝐺(𝑠) is true if and only if 𝑠
is a goal state.

Suppose we have a search problem where we know that the solution cost is exactly 𝑘, but we do not know the actual solution.
The search problems has |𝑆| states and a branching factor of 𝑏.

(a) (i) Since the costs are all 1, we decide to run breadth-first tree search. Give the tightest bound on the worst-case running
time of breadth-first tree search in terms of |𝑆|, 𝑏, and 𝑘.

The running time is 𝑂( 𝑏𝑘 ) This is the normal running time for BFS.
(ii) Unfortunately, we get an out of memory error when we try to use breadth first search. Which of the following

algorithms is the best one to use instead?
# Depth First Search
 Depth First Search limited to depth 𝑘
# Iterative Deepening
# Uniform Cost Search
Firstly, notice that depth first search limited to depth 𝑘 will find the solution, since we know that the solution is 𝑘
moves long. Depth First search would explore paths of length larger than 𝑘, which is useless computation. Iterative
Deepening would first explore paths of length 1, then 2, and so on, which is useless computation. Uniform Cost
Search is equivalent to BFS when the costs are 1, and so will probably also have an out of memory error.

Instead of running a search algorithm to find the solution, we can phrase this as a CSP:

Variables: 𝑋0, 𝑋1, 𝑋2,⋯𝑋𝑘

Domain of each variable: 𝑆, the set of all possible states

Constraints:

1. 𝑋0 is the start state, that is, 𝑋0 = 𝑠0.

2. 𝑋𝑘 must be a goal state, that is, 𝐺(𝑋𝑘) has to be true.

3. For every 0 ≤ 𝑖 < 𝑘, (𝑋𝑖, 𝑋𝑖+1) is an edge in the search graph, that is, there exists an action 𝑎 ∈ 𝐴(𝑋𝑖) such that
𝑋𝑖+1 = 𝑆𝑢𝑐𝑐(𝑋𝑖, 𝑎).

With these constraints, when we get a solution (𝑋0 = 𝑠0, 𝑋1 = 𝑠1,⋯𝑋𝑘 = 𝑠𝑘), the solution to our original search problem is
the path 𝑠0 → 𝑠1 → ⋯ → 𝑠𝑘.

(b) This is a tree-structured CSP. Illustrate this by drawing the constraint graph for 𝑘 = 3 and providing a linearization order.
(For 𝑘 = 3, the states should be named 𝑋0, 𝑋1, 𝑋2, and 𝑋3.)
𝑋0 𝑋1 𝑋2 𝑋3

Linearization Order: 𝑋0, 𝑋1, 𝑋2, 𝑋3 or 𝑋3, 𝑋2, 𝑋1, 𝑋0, although others are possible.
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(c) We can solve this CSP using the tree-structured CSP algorithm. You can make the following assumptions:

1. For any state 𝑠, computing 𝐺(𝑠) takes 𝑂(1) time.
2. Checking consistency of a single arc 𝐹 → 𝐺 takes 𝑂(𝑓𝑔) time, where 𝑓 is the number of remaining values that 𝐹

can take on and 𝑔 is the number of remaining values that 𝐺 can take on.

Remember that the search problem has a solution cost of exactly 𝑘, |𝑆| states, and a branching factor of 𝑏.

(i) Give the tightest bound on the time taken to enforce unary constraints, in terms of |𝑆|, 𝑏, and 𝑘.

The running time to enforce unary constraints is 𝑂( |𝑆| )
For the first constraint 𝑋0 = 𝑠0, we just need to change the domain of 𝑋0 to {𝑠0} For the constraint that 𝑋𝑘 is a goal
state, we need to compute 𝐺(𝑠) for all states 𝑠, which takes 𝑂(|𝑆|) time.

(ii) Give the tightest bound on the time taken to run the backward pass, in terms of |𝑆|, 𝑏, and 𝑘.

The running time for the backward pass is 𝑂( 𝑘|𝑆|2 )

The backward pass simply enforces the consistency of 𝑘 arcs, each of which takes 𝑂(|𝑆|2) time, for a total of
𝑂(𝑘|𝑆|2) time.

(iii) Give the tightest bound on the time taken to run the forward pass, in terms of |𝑆|, 𝑏, and 𝑘.

The running time for the forward pass is 𝑂( 𝑘|𝑆| )
The forward pass assigns values to variables in order, and then enforces consistency of an arc so that the values for
the next variable are all legal. When enforcing the consistency of 𝑋𝑖+1 → 𝑋𝑖, 𝑋𝑖 has already been assigned, so the
time taken is 𝑂(|𝑆| ⋅ 1) = 𝑂(|𝑆|). This is done for each of the 𝑘 arcs, for a total of 𝑂(𝑘|𝑆|) time.
We would also accept 𝑂(𝑘𝑏), on the basis that after assigning a variable to 𝑋𝑖, you only need to restrict 𝑋𝑖+1 to the
𝑏 possible values that follow 𝑋𝑖.

(d) Suppose 𝑠0 → 𝑠1 → ⋯ → 𝑠𝑘 is a solution to the search problem. Mark all of the following options that are guaranteed
to be true after enforcing unary constraints and running arc consistency.
■ The remaining values of 𝑋𝑖 will be 𝑠𝑖 and possibly other values.
□ The remaining values of 𝑋𝑖 will be 𝑠𝑖 and nothing else.
□ A solution can be found by setting each 𝑋𝑖 to any of the remaining states in its domain.
■ A solution can be found by executing the forward pass of the tree-structured CSP algorithm.
□ None of the above
After enforcing unary constraints and running arc consistency, since this is a tree-structured CSP, we are guaranteed that
all remaining values are part of some solution, but not necessarily all solutions. In addition, since arc consistency only
eliminates impossible values, all the 𝑠𝑖 values will still be present (since they are part of the solution 𝑠0 → 𝑠1 → ⋯ → 𝑠𝑘).
Thus, 𝑋𝑖 will have 𝑠𝑖 and other values (corresponding to other solutions). However, we cannot set each 𝑋𝑖 to any of
the remaining states in its domain, if we set 𝑋1 to a state 𝑠′ and 𝑋2 to 𝑠′′, while we know there is some solution where
𝑋1 = 𝑠′, and some (possibly different) solution where 𝑋2 = 𝑠′′, we are not guaranteed that there is a solution where
𝑋1 = 𝑠′ and 𝑋2 = 𝑠′′.
The backward pass of the tree-structured CSP algorithm simply enforces consistency of some arcs. So, running full arc
consistency will eliminate at least all the values that the backward pass would have eliminated. So, we can run the forward
pass to find a solution.

(e) Suppose you have a heuristic ℎ(𝑠). You decide to add more constraints to your CSP (with the hope that it speeds up the
solver by eliminating many states quickly). Mark all of the following options that are valid constraints that can be added
to the CSP, under the assumption that ℎ(𝑠) is (a) any function (b) admissible and (c) consistent. Recall that the cost of
every action is 1.
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Any ℎ(𝑠) ℎ(𝑠) is admissible ℎ(𝑠) is consistent
For every 0 ≤ 𝑖 ≤ 𝑘, ℎ(𝑋𝑖) ≤ 𝑖 □ □ □
For every 0 ≤ 𝑖 ≤ 𝑘, ℎ(𝑋𝑖) ≤ 𝑘 − 𝑖 □ ■ ■
For every 0 ≤ 𝑖 < 𝑘, ℎ(𝑋𝑖+1) ≤ ℎ(𝑋𝑖) − 1 □ □ □
For every 0 ≤ 𝑖 < 𝑘, ℎ(𝑋𝑖+1) ≥ ℎ(𝑋𝑖) − 1 □ □ ■
□ None of the above

If we know nothing about the heuristic function ℎ(𝑠), none of the constraints are valid. (Indeed, it would be very strange
if we were able to write down constraints based on a function that could be anything.)
An admissible heuristic means that the value of the heuristic is an underestimate of the true cost to the goal. At variable
𝑋𝑖, we know that the cost to the goal must be 𝑘 − 𝑖, and so we can infer that ℎ(𝑋𝑖) ≤ 𝑘 − 𝑖. As a consequence, it is valid
to add the constraints ℎ(𝑋𝑖) ≤ 𝑘 − 𝑖.
Any consistent heuristic is also admissible, so a consistent heuristic also means that ℎ(𝑋𝑖) ≤ 𝑘− 𝑖 is valid. In addition, a
consistent heuristic means that the heuristic value drops by at most 1 (the cost) across an edge. Comparing 𝑋𝑖+1 and 𝑋𝑖,
the drop in heuristic value is ℎ(𝑋𝑖) − ℎ(𝑋𝑖+1). Thus, we have ℎ(𝑋𝑖) − ℎ(𝑋𝑖+1) ≤ 1, or ℎ(𝑋𝑖+1) ≥ ℎ(𝑋𝑖) − 1. Thus it is
valid to add that constraint to the CSP as well.

(f) Now suppose we only know that the solution will have ≤ 𝑘 moves. We do not need to find the optimal solution - we only
need to find some solution of cost ≤ 𝑘. Mark all of the following options such that if you make single change described
in that line it will correctly modify the CSP to find some solution of cost ≤ 𝑘. Remember, the CSP can only have unary
and binary constraints.
■ Remove the constraints “(𝑋𝑖, 𝑋𝑖+1) is an edge in the search graph”. Instead, add the constraints “(𝑋𝑖, 𝑋𝑖+1) is an

edge in the search graph, OR 𝑋𝑖 = 𝑋𝑖+1”.
□ Remove the constraints “(𝑋𝑖, 𝑋𝑖+1) is an edge in the search graph”. Instead, add the constraints “(𝑋𝑖, 𝑋𝑖+1) is an edge
in the search graph, AND 𝑋𝑖 = 𝑋𝑖+1”.
□ Remove the constraint “𝑋𝑘 is a goal state.” Instead, add the constraint “For every 0 ≤ 𝑖 ≤ 𝑘, 𝑋𝑖 is a goal state”.
Remove the constraint “𝑋𝑘 is a goal state.” Instead, add the constraint “There is some 𝑖, 0 ≤ 𝑖 ≤ 𝑘, such that 𝑋𝑖 is a goal
state”.
□ None of the above

If we say (𝑋𝑖, 𝑋𝑖+1) is an edge AND 𝑋𝑖 = 𝑋𝑖+1, we are forcing all of the variables to be the same state 𝑠0 (since they all have
to be equal to each other), so that cannot be right.

If we say (𝑋𝑖, 𝑋𝑖+1) is an edge OR 𝑋𝑖 = 𝑋𝑖+1, then basically the constraint says that transitions have to be made, but we can
also choose to not make a transition from 𝑖 → 𝑖 + 1 (in which case we would have 𝑋𝑖 = 𝑋𝑖+1). This is exactly what we want
- this will allow us to make only as many transitions as necessary, and then all the remaining “extra” states can be set to the
previous state to satisfy the constraints.

It does not make sense to say that every state is a goal state - for example, the start state 𝑋0 = 𝑠0 is usually not a goal state.

Saying that there is some 𝑖 such that 𝑋𝑖 is a goal state would work. It is not a unary or binary constraint (it is a constraint on
all of the variables). Because of the ambiguity in question statement regarding acceptable constraints, this option was ignored.
(Either filled in or blank was accepted.)
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