Q1. Bayes Nets: Variable Elimination

(a) Using the Bayes’ Net and conditional probability tables above, calculate the following quantities:

(i) \(P(+b | +a) = \)

(ii) \(P(+a, +b) = \)

(iii) \(P(+a | +b) = \)

(b) Now we are going to consider variable elimination in the Bayes’ Net above.

(i) Assume we have the evidence +c and wish to calculate \(P(E | +c) \). What factors do we have initially?

(ii) If we eliminate variable B, we create a new factor. What probability does that factor correspond to?

(iii) What is the equation to calculate the factor we create when eliminating variable B?

(iv) After eliminating variable B, what are the new set of factors? As in (ii), write the probabilities that the factors represent. For each factor, also provide its size.

(v) Now assume we have the evidence −c and are trying to calculate \(P(A | −c) \). What is the most efficient elimination ordering? If more than one ordering is most efficient, provide any one of them.

(vi) Once we have run variable elimination and have \(f(A, −c) \) how do we calculate \(P(+a | −c) \)?
Q2. Bayes Nets and Joint Distributions

(a) Write down the joint probability distribution associated with the following Bayes Net. Express the answer as a product of terms representing individual conditional probabilities tables associated with this Bayes Net:

(b) Draw the Bayes net associated with the following joint distribution:

\[P(A) \cdot P(B) \cdot P(C|A, B) \cdot P(D|C) \cdot P(E|B, C) \]

(c) Do the following products of factors correspond to a valid joint distribution over the variables A, B, C, D? (Circle FALSE or TRUE.)

(i) FALSE TRUE \[P(A) \cdot P(B) \cdot P(C|A) \cdot P(C|B) \cdot P(D|C) \]

(ii) FALSE TRUE \[P(A) \cdot P(B|A) \cdot P(C) \cdot P(D|B, C) \]

(iii) FALSE TRUE \[P(A) \cdot P(B|A) \cdot P(C) \cdot P(C|A) \cdot P(D) \]

(iv) FALSE TRUE \[P(A|B) \cdot P(B|C) \cdot P(C|D) \cdot P(D|A) \]
(d) What factor can be multiplied with the following factors to form a valid joint distribution? (Write “none” if the given set of factors can’t be turned into a joint by the inclusion of exactly one more factor.)

(i) \(P(A) \cdot P(B|A) \cdot P(C|A) \cdot P(E|B, C, D) \)

(ii) \(P(D) \cdot P(B) \cdot P(C|D, B) \cdot P(E|C, D, A) \)

(e) Answer the next questions based off of the Bayes Net below:

All variables have domains of \{-1, 0, 1\}

(i) Before eliminating any variables or including any evidence, how many entries does the factor at G have?

(ii) Now we observe \(e = 1 \) and want to query \(P(D|e = 1) \), and you get to pick the first variable to be eliminated.

- Which choice would create the largest factor \(f_1 \)?

- Which choice would create the smallest factor \(f_1 \)?
Q3. Probability and Bayes Nets

(a) A, B, and C are random variables with binary domains. How many entries are in the following probability tables and what is the sum of the values in each table? Write a “?” in the box if there is not enough information given.

<table>
<thead>
<tr>
<th>Table</th>
<th>Size</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(A, B</td>
<td>C))</td>
<td></td>
</tr>
<tr>
<td>(P(A</td>
<td>+b, +c))</td>
<td></td>
</tr>
<tr>
<td>(P(+a</td>
<td>B))</td>
<td></td>
</tr>
</tbody>
</table>

(b) Circle true if the following probability equalities are valid and circle false if they are invalid (leave it blank if you don’t wish to risk a guess). Each True/False question is worth 1 points. Leaving a question blank is worth 0 points. **Answering incorrectly is worth –1 points.**

No independence assumptions are made.

(i) [true or false] \(P(A, B) = P(A|B)P(A) \)

(ii) [true or false] \(P(A|B)P(C|B) = P(A, C|B) \)

(iii) [true or false] \(P(B, C) = \sum_{a \in A} P(B, C|A) \)

(iv) [true or false] \(P(A, B, C, D) = P(C)P(D|C)P(A|C, D)P(B|A, C, D) \)

(c) Space Complexity of Bayes Nets

Consider a joint distribution over \(N \) variables. Let \(k \) be the domain size for all of these variables, and let \(d \) be the maximum indegree of any node in a Bayes net that encodes this distribution.

(i) What is the space complexity of storing the entire joint distribution? Give an answer of the form \(O(\cdot) \).

(ii) Draw an example of a Bayes net over four binary variables such that it takes less space to store the Bayes net than to store the joint distribution.

(iii) Draw an example of a Bayes net over four binary variables such that it takes more space to store the Bayes net than to store the joint distribution.