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Q1. HMMs
Consider a process where there are transitions among a finite set of states 𝑠1,⋯ , 𝑠𝑘 over time steps 𝑖 = 1,⋯ , 𝑁 . Let the random
variables 𝑋1,⋯ , 𝑋𝑁 represent the state of the system at each time step and be generated as follows:

• Sample the initial state 𝑠 from an initial distribution 𝑃1(𝑋1), and set 𝑖 = 1

• Repeat the following:
1. Sample a duration 𝑑 from a duration distribution𝑃𝐷 over the integers {1,⋯ ,𝑀}, where𝑀 is the maximum duration.
2. Remain in the current state 𝑠 for the next 𝑑 time steps, i.e., set

𝑥𝑖 = 𝑥𝑖+1 = ⋯ = 𝑥𝑖+𝑑−1 = 𝑠 (1)
3. Sample a successor state 𝑠′ from a transition distribution 𝑃𝑇 (𝑋𝑡|𝑋𝑡−1 = 𝑠) over the other states 𝑠′ ≠ 𝑠 (so there are

no self transitions)
4. Assign 𝑖 = 𝑖 + 𝑑 and 𝑠 = 𝑠′.

This process continues indefinitely, but we only observe the first 𝑁 time steps.
(a) Assuming that all three states 𝑠1, 𝑠2, 𝑠3 are different, what is the probability of the sample sequence 𝑠1, 𝑠1, 𝑠2, 𝑠2, 𝑠2, 𝑠3, 𝑠3?

Write an algebraic expression. Assume 𝑀 ≥ 3.

At each time step 𝑖 we observe a noisy version of the state 𝑋𝑖 that we denote 𝑌𝑖 and is produced via a conditional distribution
𝑃𝐸(𝑌𝑖|𝑋𝑖).

(b) Only in this subquestion assume that 𝑁 > 𝑀 . Let 𝑋1,⋯ , 𝑋𝑁 and 𝑌1,⋯ , 𝑌𝑁 random variables defined as above. What
is the maximum index 𝑖 ≤ 𝑁 − 1 so that 𝑋1 ⟂⟂ 𝑋𝑁 |𝑋𝑖, 𝑋𝑖+1,⋯ , 𝑋𝑁−1 is guaranteed?

(c) Only in this subquestion, assume the max duration 𝑀 = 2, and 𝑃𝐷 uniform over {1, 2} and each 𝑥𝑖 is in an alphabet
{𝑎, 𝑏}. For (𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5) draw a Bayes Net over these 10 random variables with the property
that removing any of the edges would yield a Bayes net inconsistent with the given distribution.
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(d) In this part we will explore how to write the described process as an HMM with an extended state space. Write the states
𝑧 = (𝑠, 𝑡) where 𝑠 is a state of the original system and 𝑡 represents the time elapsed in that state. For example, the state
sequence 𝑠1, 𝑠1, 𝑠1, 𝑠2, 𝑠3, 𝑠3 would be represented as (𝑠1, 1), (𝑠1, 2), (𝑠1, 3), (𝑠2, 1), (𝑠3, 1), (𝑠3, 2).
Answer all of the following in terms of the parameters 𝑃1(𝑋1), 𝑃𝐷(𝑑), 𝑃𝑇 (𝑋𝑗+1|𝑋𝑗), 𝑃𝐸(𝑌𝑖|𝑋𝑖), 𝑘 (total number of pos-
sible states), 𝑁 , and 𝑀 (max duration).

(i) What is 𝑃 (𝑍1)?

𝑃 (𝑥1, 𝑡1) =

(ii) What is 𝑃 (𝑍𝑖+1|𝑍𝑖)? Hint: You will need to break this into cases where the transition function will behave differ-
ently.

𝑃 (𝑋𝑖+1, 𝑡𝑖+1 ∣ 𝑋𝑖, 𝑡𝑖) =

(iii) What is 𝑃 (𝑌𝑖|𝑍𝑖)?

𝑃 (𝑌𝑖 ∣ 𝑋𝑖, 𝑡𝑖) =

(e) In this question we explore how to write an algorithm to compute 𝑃 (𝑋𝑁 |𝑦1,⋯ , 𝑦𝑁 ) using the particular structure of this
process.
Write 𝑃 (𝑋𝑡|𝑦1,⋯ , 𝑦𝑡−1) in terms of other factors. Construct an answer by checking the correct boxes below:

𝑃 (𝑋𝑡|𝑦1,⋯ , 𝑦𝑡−1) = (i) (ii) (iii)

(i) # ∑𝑘
𝑖=1

∑𝑀
𝑑=1

∑𝑀
𝑑′=1

# ∑𝑘
𝑖=1

∑𝑀
𝑑=1

# ∑𝑘
𝑖=1

# ∑𝑀
𝑑=1

(ii) # 𝑃 (𝑍𝑡 = (𝑋𝑡, 𝑑)|𝑍𝑡−1 = (𝑠𝑖, 𝑑))
# 𝑃 (𝑋𝑡|𝑋𝑡−1 = 𝑠𝑖)

# 𝑃 (𝑋𝑡|𝑋𝑡−1 = 𝑠𝑑)
# 𝑃 (𝑍𝑡 = (𝑋𝑡, 𝑑′)|𝑍𝑡−1 = (𝑠𝑖, 𝑑))

(iii) # 𝑃 (𝑍𝑡−1 = (𝑠𝑑 , 𝑖)|𝑦1,⋯ , 𝑦𝑡−1)
# 𝑃 (𝑋𝑡−1 = 𝑠𝑑|𝑦1,⋯ , 𝑦𝑡−1)

# 𝑃 (𝑍𝑡−1 = (𝑠𝑖, 𝑑)|𝑦1,⋯ , 𝑦𝑡−1)
# 𝑃 (𝑋𝑡−1 = 𝑠𝑖|𝑦1,⋯ , 𝑦𝑡−1)
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Q2. HMMs: Help Your House Help You
Imagine you have a smart house that wants to track your location within itself so it can turn on the lights in the room you are in
and make you food in your kitchen. Your house has 4 rooms (𝐴,𝐵, 𝐶,𝐷) in the floorplan below (A is connected to B and D, B
is connected to A and C, C is connected to B and D, and D is connected to A and C):

A
B D

C

At the beginning of the day (𝑡 = 0), your probabilities of being in each room are 𝑝𝐴, 𝑝𝐵 , 𝑝𝐶 , and 𝑝𝐷 for rooms A, B, C, and D,
respectively, and at each time 𝑡 your position (following a Markovian process) is given by 𝑋𝑡. At each time, your probability
of staying in the same room is 𝑞0, your probability of moving clockwise to the next room is 𝑞1, and your probability of moving
counterclockwise to the next room is 𝑞−1 = 1 − 𝑞0 − 𝑞1.

(a) Initially, assume your house has no way of sensing where you are. What is the probability that you will be in room D at
time 𝑡 = 1?

# 𝑞0𝑝𝐷 # 𝑞0𝑝𝐷 + 𝑞1𝑝𝐴 + 𝑞−1𝑝𝐶 + 2𝑞1𝑝𝐵 # 𝑞0𝑝𝐷 + 𝑞1𝑝𝐴 + 𝑞−1𝑝𝐶

# 𝑞0𝑝𝐷 + 𝑞−1𝑝𝐴 + 𝑞1𝑝𝐶 # 𝑞1𝑝𝐴 + 𝑞1𝑝𝐶 + 𝑞0𝑝𝐷 # None of these

Now assume your house contains a sensor 𝑀𝐴 that detects motion (+𝑚) or no motion (-𝑚) in room A. However, the sensor is
a bit noisy and can be tricked by movement in adjacent rooms, resulting in the conditional distributions for the sensor given in
the table below. The prior distribution for the sensor’s output is also given.

𝑀𝐴 𝑃 (𝑀𝐴
| 𝑋 = 𝐴) 𝑃 (𝑀𝐴

| 𝑋 = 𝐵) 𝑃 (𝑀𝐴
| 𝑋 = 𝐶) 𝑃 (𝑀𝐴

| 𝑋 = 𝐷)

+𝑚𝐴 1 − 2𝛾 𝛾 0.0 𝛾

−𝑚𝐴 2𝛾 1 − 𝛾 1.0 1 − 𝛾

𝑀𝐴 𝑃 (𝑀𝐴)

+𝑚𝐴 0.5
−𝑚𝐴 0.5

(b) You decide to help your house to track your movements using a particle filter with three particles. At time 𝑡 = 𝑇 , the parti-
cles are at 𝑋0 = 𝐴,𝑋1 = 𝐵,𝑋2 = 𝐷. What is the probability that the particles will be resampled as 𝑋0 = 𝑋1 = 𝑋2 = 𝐴
after time elapse? Select all terms in the product.

□ 𝑞0 □ 𝑞20 □ 𝑞30 □ 𝑞1 □ 𝑞21 □ 𝑞31 □ 𝑞−1 □ 𝑞2−1 □ 𝑞3−1 # None of these

(c) Assume that the particles are actually resampled after time elapse as 𝑋0 = 𝐷,𝑋1 = 𝐵,𝑋2 = 𝐶 , and the sensor observes
𝑀𝐴 = −𝑚𝐴. What are the particle weights given the observation?

Particle Weight
𝑋0 = D # 𝛾 # 1 − 𝛾 # 1 − 2𝛾 # 0.0 # 1.0 # 2𝛾 # None of these
𝑋1 = B # 𝛾 # 1 − 𝛾 # 1 − 2𝛾 # 0.0 # 1.0 # 2𝛾 # None of these
𝑋2 = C # 𝛾 # 1 − 𝛾 # 1 − 2𝛾 # 0.0 # 1.0 # 2𝛾 # None of these

Now, assume your house also contains sensors 𝑀𝐵 and 𝑀𝐷 in rooms B and D, respectively, with the conditional distributions
of the sensors given below and the prior equivalent to that of sensor 𝑀𝐴.
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𝑀𝐵 𝑃 (𝑀𝐵
| 𝑋 = 𝐴) 𝑃 (𝑀𝐵

| 𝑋 = 𝐵) 𝑃 (𝑀𝐵
| 𝑋 = 𝐶) 𝑃 (𝑀𝐵

| 𝑋 = 𝐷)

+𝑚𝐵 𝛾 1 − 2𝛾 𝛾 0.0
−𝑚𝐵 1 − 𝛾 2𝛾 1 − 𝛾 1.0

𝑀𝐷 𝑃 (𝑀𝐷
| 𝑋 = 𝐴) 𝑃 (𝑀𝐷

| 𝑋 = 𝐵) 𝑃 (𝑀𝐷
| 𝑋 = 𝐶) 𝑃 (𝑀𝐷

| 𝑋 = 𝐷)

+𝑚𝐷 𝛾 0.0 𝛾 1 − 2𝛾

−𝑚𝐷 1 − 𝛾 1.0 1 − 𝛾 2𝛾

(d) Again, assume that the particles are actually resampled after time elapse as 𝑋0 = 𝐷,𝑋1 = 𝐵,𝑋2 = 𝐶 . The sensor
readings are now 𝑀𝐴 = −𝑚𝐴,𝑀𝐵 = −𝑚𝐵 ,𝑀𝐷 = +𝑚𝐷. What are the particle weights given the observations?

Particle Weight

𝑋0 = D # 𝛾2 − 2𝛾3 # 3 − 2𝛾 # 0.0 # 𝛾 − 𝛾2 + 𝛾3

# 1 − 3𝛾 + 2𝛾2 # 2 − 𝛾 # 1 − 2𝛾 + 𝛾2 # None of these

𝑋1 = B # 𝛾2 − 2𝛾3 # 3 − 2𝛾 # 0.0 # 𝛾 − 𝛾2 + 𝛾3

# 1 − 3𝛾 + 2𝛾2 # 2 − 𝛾 # 1 − 2𝛾 + 𝛾2 # None of these

𝑋2 = C # 𝛾2 − 2𝛾3 # 3 − 2𝛾 # 0.0 # 𝛾 − 𝛾2 + 𝛾3

# 1 − 3𝛾 + 2𝛾2 # 2 − 𝛾 # 1 − 2𝛾 + 𝛾2 # None of these

The sequence of observations from each sensor are expressed as the following: 𝑚𝐴
0∶𝑡 are all measurements 𝑚𝐴

0 , 𝑚
𝐴
1 ,… , 𝑚𝐴

𝑡 from
sensor 𝑀𝐴, 𝑚𝐵

0∶𝑡 are all measurements 𝑚𝐵
0 , 𝑚

𝐵
1 ,… , 𝑚𝐵

𝑡 from sensor 𝑀𝐵 , and 𝑚𝐷
0∶𝑡 are all measurements 𝑚𝐷

0 , 𝑚
𝐷
1 ,… , 𝑚𝐷

𝑡 from
sensor 𝑀𝐷. Your house can get an accurate estimate of where you are at a given time 𝑡 using the forward algorithm. The forward
algorithm update step is shown here:

𝑃 (𝑋𝑡 | 𝑚
𝐴
0∶𝑡, 𝑚

𝐵
0∶𝑡, 𝑚

𝐷
0∶𝑡) ∝ 𝑃 (𝑋𝑡, 𝑚

𝐴
0∶𝑡, 𝑚

𝐵
0∶𝑡, 𝑚

𝐷
0∶𝑡) (2)

=
∑

𝑥𝑡−1

𝑃 (𝑋𝑡, 𝑥𝑡−1, 𝑚
𝐴
𝑡 , 𝑚

𝐵
𝑡 , 𝑚

𝐷
𝑡 , 𝑚

𝐴
0∶𝑡−1, 𝑚

𝐵
0∶𝑡−1, 𝑚

𝐷
0∶𝑡−1) (3)

=
∑

𝑥𝑡−1

𝑃 (𝑋𝑡 | 𝑥𝑡−1)𝑃 (𝑥𝑡−1, 𝑚𝐴
0∶𝑡−1, 𝑚

𝐵
0∶𝑡−1, 𝑚

𝐷
0∶𝑡−1) (4)
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