$\begin{array}{c} CS~188 \\ Summer~2024 \end{array}$

Regular Discussion 7 Solutions

1 HMMs

Consider the following Hidden Markov Model. O_1 and O_2 are supposed to be shaded.

W_1	$P(W_1)$
0	0.3
1	0.7

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	a	0.9
0	b	0.1
1	a	0.5
1	b	0.5

Suppose that we observe $O_1 = a$ and $O_2 = b$. Using the forward algorithm, compute the probability distribution $P(W_2|O_1 = a, O_2 = b)$ one step at a time.

(a) Compute $P(W_1, O_1 = a)$.

$$P(W_1, O_1 = a) = P(W_1)P(O_1 = a|W_1)$$

 $P(W_1 = 0, O_1 = a) = (0.3)(0.9) = 0.27$
 $P(W_1 = 1, O_1 = a) = (0.7)(0.5) = 0.35$

(b) Using the previous calculation, compute $P(W_2, O_1 = a)$.

$$\begin{array}{l} P(W_2,O_1=a) = \sum_{w_1} P(w_1,O_1=a) P(W_2|w_1) \\ P(W_2=0,O_1=a) = (0.27)(0.4) + (0.35)(0.8) = 0.388 \\ P(W_2=1,O_1=a) = (0.27)(0.6) + (0.35)(0.2) = 0.232 \end{array}$$

(c) Using the previous calculation, compute $P(W_2, O_1 = a, O_2 = b)$.

$$\begin{split} &P(W_2,O_1=a,O_2=b) = P(W_2,O_1=a)P(O_2=b|W_2)\\ &P(W_2=0,O_1=a,O_2=b) = (0.388)(0.1) = 0.0388\\ &P(W_2=1,O_1=a,O_2=b) = (0.232)(0.5) = 0.116 \end{split}$$

(d) Finally, compute $P(W_2|O_1=a,O_2=b)$.

```
Renormalizing the distribution above, we have P(W_2 = 0 | O_1 = a, O_2 = b) = 0.0388/(0.0388 + 0.116) \approx 0.25 P(W_2 = 1 | O_1 = a, O_2 = b) = 0.116/(0.0388 + 0.116) \approx 0.75
```

Q2. HMMs

Consider a process where there are transitions among a finite set of states s_1, \dots, s_k over time steps $i = 1, \dots, N$. Let the random variables X_1, \dots, X_N represent the state of the system at each time step and be generated as follows:

- Sample the initial state s from an initial distribution $P_1(X_1)$, and set i=1
- Repeat the following:
 - 1. Sample a duration d from a duration distribution P_D over the integers $\{1, \dots, M\}$, where M is the maximum duration.
 - 2. Remain in the current state s for the next d time steps, i.e., set

$$x_i = x_{i+1} = \dots = x_{i+d-1} = s$$
 (1)

- 3. Sample a successor state s' from a transition distribution $P_T(X_t|X_{t-1}=s)$ over the other states $s' \neq s$ (so there are no self transitions)
- 4. Assign i = i + d and s = s'.

This process continues indefinitely, but we only observe the first N time steps.

(a) Assuming that all three states s_1, s_2, s_3 are different, what is the probability of the sample sequence $s_1, s_1, s_2, s_2, s_3, s_3$? Write an algebraic expression. Assume $M \geq 3$.

$$p_1(s_1)p_D(2)p_T(s_2|s_1)p_D(3)p(s_3|s_2)(1-p_D(1))$$
(2)

At each time step i we observe a noisy version of the state X_i that we denote Y_i and is produced via a conditional distribution $P_E(Y_i|X_i)$.

- (b) Only in this subquestion assume that N>M. Let X_1, \dots, X_N and Y_1, \dots, Y_N random variables defined as above. What is the maximum index $i \leq N-1$ so that $X_1 \perp \!\!\! \perp X_N | X_i, X_{i+1}, \dots, X_{N-1}$ is guaranteed? i=N-M
- (c) Only in this subquestion, assume the max duration M = 2, and P_D uniform over $\{1,2\}$ and each x_i is in an alphabet $\{a,b\}$. For $(X_1,X_2,X_3,X_4,X_5,Y_1,Y_2,Y_3,Y_4,Y_5)$ draw a Bayes Net over these 10 random variables with the property that removing any of the edges would yield a Bayes net inconsistent with the given distribution.

```
\begin{array}{l} (X1) \ {\rm at} \ (0,0) \ X1; \ (X2) \ {\rm at} \ (2,-2) \ X2; \ (X3) \ {\rm at} \ (4,0) \ X3; \ (X4) \ {\rm at} \ (6,-2) \ X4; \ (X5) \ {\rm at} \ (8,0) \ X5; \ (Y1) \ {\rm at} \ (0,-4)Y1; \\ (Y2) \ {\rm at} \ (2,-4)Y2; \ (Y3) \ {\rm at} \ (4,-4)Y3; \ (Y4) \ {\rm at} \ (6,-4)Y4; \ (Y5) \ {\rm at} \ (8,-4)Y5; \ (X1) \ - \ (X2); (X2) \ - \ (X3); (X3) \ - \ (X4); (X4) \ - \ (X5); (X1) \ - \ (Y1); (X2) \ - \ (Y2); (X3) \ - \ (Y3); (X4) \ - \ (Y4); (X5) \ - \ (Y5); (X1) \ - \ (X3); (X2) \ - \ (X4); (X3) \ - \ (X5); \end{array}
```

(d) In this part we will explore how to write the described process as an HMM with an extended state space. Write the states z = (s, t) where s is a state of the original system and t represents the time elapsed in that state. For example, the state sequence $s_1, s_1, s_1, s_2, s_3, s_3$ would be represented as $(s_1, 1), (s_1, 2), (s_1, 3), (s_2, 1), (s_3, 1), (s_3, 2)$. Answer all of the following in terms of the parameters $P_1(X_1), P_D(d), P_T(X_{j+1}|X_j), P_E(Y_i|X_i), k$ (total number of possible states), N and M (max duration).

(i) What is $P(Z_1)$?

$$P(x_1, t) = \begin{cases} P_1(x_1) & \text{if } t = 1\\ 0 & \text{o.w.} \end{cases}$$
 (3)

(ii) What is $P(Z_{i+1}|Z_i)$? Hint: You will need to break this into cases where the transition function will behave differently.

$$P(X_{i+1}, t_{i+1}|X_i, t_i) = \begin{cases} P_D(d \ge t_i + 1|d \ge t_i) & \text{when } X_{i+1} = X_i \text{ and } t_{i+1} = t_i + 1 \text{ and } t_{i+1} \le M \\ P_T(X_{i+1}|X_i)P_D(d = t_i|d \ge t_i) & \text{when } X_{i+1} \ne X_i \text{ and } t_{i+1} = 1 \\ 0 & \text{o.w.} \end{cases}$$

Where $P_D(d \ge t_i + 1 | d \ge t_i) = P_D(d \ge t_i + 1) / P_D(d \ge t_i)$.

Being in X_i, t_i , we know that d was drawn $d \ge t_i$. Conditioning on this fact, we have two choices, if $d > t_i$ then the next state is $X_{i+1} = X_i$, and if $d = t_i$ then $X_{i+1} \ne X_i$ drawn from the transition distribution and $t_{i+1} = 1$. (4)

(iii) What is
$$P(Y_i|Z_i)$$
?
 $p(Y_i|X_i, t_i) = P_E(Y_i|X_i)$

(e) In this question we explore how to write an algorithm to compute $P(X_N|y_1,\dots,y_N)$ using the particular structure of this process.

Write $P(X_t|y_1,\dots,y_{t-1})$ in terms of other factors. Construct an answer by checking the correct boxes below:

$$P(X_t|y_1, \cdots, y_{t-1}) = \underline{\qquad (i)} \underline{\qquad (ii)} \underline{\qquad (iii)}$$

$$(i) \bullet \sum_{i=1}^k \sum_{d=1}^M \sum_{d'=1}^M \\ \bigcirc \sum_{i=1}^k \sum_{d=1}^M \\ \bigcirc \sum_{d=1}^M \\ \bigcirc \sum_{d=1}^M \\ \bigcirc P(Z_t = (X_t, d)|Z_{t-1} = (s_i, d))$$

$$\bigcirc P(X_t|X_{t-1} = s_d)$$

(iv) Now we would like to include the evidence y_t in the picture. What would be the running time of each update of the **whole table** $P(X_t|y_1,\dots,y_t)$?. Assume tables corresponding to any factors used in (i), (ii) have already been computed.

 $\bigcap P(X_{t-1} = s_i | y_1, \cdots, y_{t-1})$

$$\bigcirc O(k^2) \qquad \qquad \bigcirc O(k^2M^2)$$

$$\bigcirc O(k^2M) \qquad \qquad \bigcirc O(kM)$$

Note: Computing $P(X_N|y_1,\dots,y_N)$ will take time $N\times$ your answer in (iv).

Just the running time for filtering when the state space is the space of pairs (x_i, t_i) ,

Given $B_{t-1}(z)$, the step $p(z_t|y_1,\dots,y_{t-1})$ can be done in time kM. (size of the statespace for z).

The computation to include the y_t evidence can be done in O(1) per z_t .

Therefore each update to the table per evidence point will take $(Mk)^2$. So it is $O((Mk)^2)$.

Using N steps, the whole algorithm will take $O(Nk^2M^2)$ to compute $P(X_N|Y_1,\cdots,Y_N)$.

(v) Describe an update rule to compute $P(X_t|y_1,\dots,y_{t-1})$ that is faster than the one you discovered in parts (i), (ii), (iii). Specify its running time. Hint: Use the structure of the transitions $Z_{t-1} \to Z_t$.

Answer is $O(k^2M + kM)$.

 $\bigcap P(X_{t-1} = s_d | y_1, \cdots, y_{t-1})$

The answer from the previous section is:

$$P(X_t|y_1,\dots,y_{t-1}) = \sum_{i=1}^k \sum_{d=1}^M \sum_{d'=1}^M P(Z_t = (X_t, d')|Z_{t-1} = (s_i, d)) P(Z_{t-1} = (s_i, d)|y_1,\dots,y_{t-1})$$
 (5)

To compute this value we only really need to loop through those transitions $P(Z_t = (X_t, d')|Z_{t-1} = (s_i, d))$ that can happen with nonzero probability.

For all $X_t = s$ we need to sum over all factors of the form $P(Z_t = (s, d')|Z_{t-1} = (s_i, d))P(X_{t-1} = s_i|y_i, \dots, y_{t-1})$. For a fixed s the factor $P(Z_t = (X_t, d')|Z_{t-1} = (s_i, d))$ can be nonzero only when $s_i = s$ and d' = d+1 (M tuples). And when $s_i \neq s$ and d' = 1 and $d = 1, \dots, M$ (kM tuples).

Since this needs to be performed for all k possible values of s, the answer to update the whole table is $O(k^2M + kM)$.