CS 188 Summer 2024

Regular Discussion 7

1 HMMs

Consider the following Hidden Markov Model. O_1 and O_2 are supposed to be shaded.

			V	V_t	W_{t+1}	$P(W_{t+1} W_t)$	W_t	O_t	$P(O_t W_t)$
	W_1	$P(W_1)$	(0	0	0.4	0	a	0.9
	0	0.3	(0	1	0.6	0	b	0.1
	1	0.7		1	0	0.8	1	a	0.5
$\left(O_{2} \right)$	L	I]		1	1	0.2	1	b	0.5

Suppose that we observe $O_1 = a$ and $O_2 = b$. Using the forward algorithm, compute the probability distribution $P(W_2|O_1 = a, O_2 = b)$ one step at a time.

(a) Compute $P(W_1, O_1 = a)$.

(b) Using the previous calculation, compute $P(W_2, O_1 = a)$.

(c) Using the previous calculation, compute $P(W_2, O_1 = a, O_2 = b)$.

(d) Finally, compute $P(W_2|O_1 = a, O_2 = b)$.

Q2. HMMs

Consider a process where there are transitions among a finite set of states s_1, \dots, s_k over time steps $i = 1, \dots, N$. Let the random variables X_1, \dots, X_N represent the state of the system at each time step and be generated as follows:

- Sample the initial state s from an initial distribution $P_1(X_1)$, and set i = 1
- Repeat the following:
 - 1. Sample a duration d from a duration distribution P_D over the integers $\{1, \dots, M\}$, where M is the maximum duration.
 - 2. Remain in the current state s for the next d time steps, i.e., set

$$x_i = x_{i+1} = \dots = x_{i+d-1} = s \tag{1}$$

- 3. Sample a successor state s' from a transition distribution $P_T(X_t|X_{t-1} = s)$ over the other states $s' \neq s$ (so there are no self transitions)
- 4. Assign i = i + d and s = s'.

This process continues indefinitely, but we only observe the first N time steps.

(a) Assuming that all three states s_1, s_2, s_3 are different, what is the probability of the sample sequence $s_1, s_1, s_2, s_2, s_2, s_3, s_3$? Write an algebraic expression. Assume $M \ge 3$.

At each time step i we observe a noisy version of the state X_i that we denote Y_i and is produced via a conditional distribution $P_E(Y_i|X_i)$.

- (b) Only in this subquestion assume that N > M. Let X_1, \dots, X_N and Y_1, \dots, Y_N random variables defined as above. What is the maximum index $i \le N 1$ so that $X_1 \perp \!\!\!\perp X_N | X_i, X_{i+1}, \dots, X_{N-1}$ is guaranteed?
- (c) Only in this subquestion, assume the max duration M = 2, and P_D uniform over $\{1, 2\}$ and each x_i is in an alphabet $\{a, b\}$. For $(X_1, X_2, X_3, X_4, X_5, Y_1, Y_2, Y_3, Y_4, Y_5)$ draw a Bayes Net over these 10 random variables with the property that removing any of the edges would yield a Bayes net inconsistent with the given distribution.

- (d) In this part we will explore how to write the described process as an HMM with an extended state space. Write the states z = (s,t) where s is a state of the original system and t represents the time elapsed in that state. For example, the state sequence s₁, s₁, s₂, s₃, s₃ would be represented as (s₁, 1), (s₁, 2), (s₁, 3), (s₂, 1), (s₃, 1), (s₃, 2). Answer all of the following in terms of the parameters P₁(X₁), P_D(d), P_T(X_{j+1}|X_j), P_E(Y_i|X_i), k (total number of possible states), N and M (max duration).
 - (i) What is $P(Z_1)$?

 $P(x_1, t_1) =$

(ii) What is $P(Z_{i+1}|Z_i)$? Hint: You will need to break this into cases where the transition function will behave differently.

 $P(X_{i+1}, t_{i+1} \mid X_i, t_i) =$

(iii) What is $P(Y_i|Z_i)$?

 $P(Y_i \mid X_i, t_i) =$

(e) In this question we explore how to write an algorithm to compute $P(X_N|y_1, \dots, y_N)$ using the particular structure of this process.

Write $P(X_t|y_1, \dots, y_{t-1})$ in terms of other factors. Construct an answer by checking the correct boxes below:

	$P(X_t y_1,\cdots,y_{t-1}) = _$	(i)	(ii)	(iii)
(i) ○ ○	$\frac{\sum_{i=1}^{k} \sum_{d=1}^{M} \sum_{d'=1}^{M}}{\sum_{i=1}^{k} \sum_{d=1}^{M}}$	0 0	$\frac{\sum_{i=1}^{k}}{\sum_{d=1}^{M}}$	
(ii) () ()	$P(Z_t = (X_t, d) Z_{t-1} = (s_i, d))$ $P(X_t X_{t-1} = s_i)$	0	$P(X_t X_t)$ $P(Z_t = ($	$ z_{t-1} = s_d)$ $ Z_{t}, d') Z_{t-1} = (s_i, d))$
(iii) () ()	$P(Z_{t-1} = (s_d, i) y_1, \cdots, y_{t-1})$ $P(X_{t-1} = s_d y_1, \cdots, y_{t-1})$	\bigcirc	$P(Z_{t-1} = P(X_{t-1} =$	$= (s_i, d) y_1, \cdots, y_{t-1})$ = $s_i y_1, \cdots, y_{t-1})$

(iv) Now we would like to include the evidence y_t in the picture. What would be the running time of each update of the whole table $P(X_t|y_1, \dots, y_t)$?. Assume tables corresponding to any factors used in (i), (ii), (iii) have already been computed.

$$\bigcirc O(k^2) \qquad \bigcirc O(k^2M^2) \\ \bigcirc O(k^2M) \qquad \bigcirc O(kM)$$

Note: Computing $P(X_N|y_1, \dots, y_N)$ will take time $N \times$ your answer in (iv).

(v) Describe an update rule to compute $P(X_t|y_1, \dots, y_{t-1})$ that is faster than the one you discovered in parts (i), (ii), (iii). Specify its running time. Hint: Use the structure of the transitions $Z_{t-1} \rightarrow Z_t$.