1 HMMs

Consider the following Hidden Markov Model. O_1 and O_2 are supposed to be shaded.

![Diagram of HMM]

| W_t | $P(W_t)$ | $P(W_{t+1} | W_t)$ |
|-------|----------|-------------------|
| 0 | 0.3 | 0.4 |
| 1 | 0.7 | 0.6 |
| 1 | 1 | 0.8 |
| 1 | 1 | 0.2 |

Suppose that we observe $O_1 = a$ and $O_2 = b$.
Using the forward algorithm, compute the probability distribution $P(W_2 | O_1 = a, O_2 = b)$ one step at a time.

(a) Compute $P(W_1, O_1 = a)$.

(b) Using the previous calculation, compute $P(W_2, O_1 = a)$.

(c) Using the previous calculation, compute $P(W_2, O_1 = a, O_2 = b)$.

(d) Finally, compute $P(W_2 | O_1 = a, O_2 = b)$.
Consider a process where there are transitions among a finite set of states s_1, \ldots, s_k over time steps $i = 1, \ldots, N$. Let the random variables X_1, \ldots, X_N represent the state of the system at each time step and be generated as follows:

- Sample the initial state s from an initial distribution $P_1(X_1)$, and set $i = 1$
- Repeat the following:
 1. Sample a duration d from a duration distribution P_D over the integers $\{1, \ldots, M\}$, where M is the maximum duration.
 2. Remain in the current state s for the next d time steps, i.e., set
 \[x_i = x_{i+1} = \cdots = x_{i+d-1} = s \]
 3. Sample a successor state s' from a transition distribution $P_T(X_{i+1}|X_i = s)$ over the other states $s' \neq s$ (so there are no self transitions)
 4. Assign $i = i + d$ and $s = s'$.

This process continues indefinitely, but we only observe the first N time steps.

(a) Assuming that all three states s_1, s_2, s_3 are different, what is the probability of the sample sequence $s_1, s_1, s_2, s_2, s_3, s_3$? Write an algebraic expression. Assume $M \geq 3$.

At each time step i we observe a noisy version of the state X_i that we denote Y_i and is produced via a conditional distribution $P_E(Y_i|X_i)$.

(b) Only in this subquestion assume that $N > M$. Let X_1, \ldots, X_N and Y_1, \ldots, Y_N random variables defined as above. What is the maximum index $i \leq N - 1$ so that $X_1 \perp \perp X_N|X_i, X_{i+1}, \ldots, X_{N-1}$ is guaranteed?

(c) Only in this subquestion, assume the max duration $M = 2$, and P_D uniform over $\{1, 2\}$ and each x_i is in an alphabet $\{a, b\}$. For $(X_1, X_2, X_3, X_4, X_5, Y_1, Y_2, Y_3, Y_4, Y_5)$ draw a Bayes Net over these 10 random variables with the property that removing any of the edges would yield a Bayes net inconsistent with the given distribution.
In this part we will explore how to write the described process as an HMM with an extended state space. Write the states $z = (s, t)$ where s is a state of the original system and t represents the time elapsed in that state. For example, the state sequence s_1, s_1, s_2, s_3, s_3 would be represented as $(s_1, 1), (s_1, 2), (s_1, 3), (s_2, 1), (s_3, 1), (s_3, 2)$.

Answer all of the following in terms of the parameters $P_1(X_1), P_D(d), P_T(X_{j+1}|X_j), P_E(Y_i|X_i), k$ (total number of possible states), N and M (max duration).

(i) What is $P(Z_1)$?

$$P(x_1, t_1) =$$

(ii) What is $P(Z_{i+1}|Z_i)$? Hint: You will need to break this into cases where the transition function will behave differently.

$$P(X_{i+1}, t_{i+1} | X_i, t_i) =$$

(iii) What is $P(Y_i|Z_i)$?

$$P(Y_i | X_i, t_i) =$$
(e) In this question we explore how to write an algorithm to compute \(P(X_N|y_1, \cdots, y_N)\) using the particular structure of this process.

Write \(P(X_t|y_1, \cdots, y_{t-1})\) in terms of other factors. Construct an answer by checking the correct boxes below:

\[
P(X_t|y_1, \cdots, y_{t-1}) = \begin{array}{lll}
\text{(i)} & \sum_{i=1}^{k} & \sum_{d=1}^{M} \sum_{d'=1}^{M} \\
\text{(ii)} & P(Z_t = (X_t, d)|Z_{t-1} = (s_i, d)) & P(X_t|X_{t-1} = s_d) \\
\text{(iii)} & P(Z_{t-1} = (s_d, i)|y_1, \cdots, y_{t-1}) & P(Z_{t-1} = (s_i, d))|y_1, \cdots, y_{t-1}) \\
\end{array}
\]

\[
\text{(iv)} \quad \text{Now we would like to include the evidence } y_t \text{ in the picture. What would be the running time of each update of the whole table } P(X_t|y_1, \cdots, y_t) \text{? Assume tables corresponding to any factors used in (i), (ii), (iii) have already been computed.}
\]

\[
\begin{array}{ll}
\text{(iv)} & O(k^2) \quad O(k^2M^2) \\
\text{(iv)} & O(kM) \quad O(kM) \\
\end{array}
\]

Note: Computing \(P(X_N|y_1, \cdots, y_N)\) will take time \(N \times \text{your answer in (iv)}\).

\[
\text{(v) Describe an update rule to compute } P(X_t|y_1, \cdots, y_{t-1}) \text{ that is faster than the one you discovered in parts (i), (ii), (iii). \textbf{Specify its running time.}} \quad \text{Hint: Use the structure of the transitions } Z_{t-1} \rightarrow Z_t.
\]