
CS 188
Summer 2024 Regular Discussion 10 Solutions

1 Q-learning
Consider the following gridworld (rewards shown on left, state names shown on right).

Rewards State names

From state A, the possible actions are right(→) and down(↓). From state B, the possible actions are left(←)
and down(↓). For a numbered state (G1, G2), the only action is to exit. Upon exiting from a numbered square
we collect the reward specified by the number on the square and enter the end-of-game absorbing state X. We
also know that the discount factor γ = 1, and in this MDP all actions are deterministic and always succeed.

Consider the following episodes:

Episode 1 (E1)
s a s′ r
A ↓ G1 0
G1 exit X 10

Episode 2 (E2)
s a s′ r
B ↓ G2 0
G2 exit X 1

Episode 3 (E3)
s a s′ r
A → B 0
B ↓ G2 0
G2 exit X 1

Episode 4 (E4)
s a s′ r
B ← A 0
A ↓ G1 0
G1 exit X 10

(a) Consider using temporal-difference learning to learn V (s). When running TD-learning, all values are ini-
tialized to zero.
For which sequences of episodes, if repeated infinitely often, does V (s) converge to V ∗(s) for all states s?

(Assume appropriate learning rates such that all values converge.)
Write the correct sequence under “Other” if no correct sequences of episodes are listed.

□ E1, E2, E3, E4 □ E1, E2, E1, E2 □ E1, E2, E3, E1 ■ E4, E4, E4, E4
□ E4, E3, E2, E1 □ E3, E4, E3, E4 □ E1, E2, E4, E1

■ Other See explanation below

TD learning learns the value of the executed policy, which is V π(s). Therefore for V π(s) to converge to
V ∗(s), it is necessary that the executing policy π(s) = π∗(s).

Because there is no discounting since γ = 1, the optimal deterministic policy is π∗(A) = ↓ and π∗(B) =←
(π∗(G1) and π∗(G2) are trivially exit because that is the only available action). Therefore episodes E1
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and E4 act according to π∗(s) while episodes E2 and E3 are sampled from a suboptimal policy.

From the above, TD learning using episode E4 (and optionally E1) will converge to V π(s) = V ∗(s) for
states A, B, G1. However, then we never visit G2, so V (G2) will never converge. If we add either episode
E2 or E3 to ensure that V (G2) converges, then we are executing a suboptimal policy, which will then
cause V (B) to not converge. Therefore none of the listed sequences will learn a value function V π(s) that
converges to V ∗(s) for all states s. An example of a correct sequence would be E2, E4, E4, E4, ...; sampling
E2 first with the learning rate α = 1 ensures V π(G2) = V ∗(G2), and then executing E4 infinitely after
ensures the values for states A, B, and G1 converge to the optimal values.

We also accepted the answer such that the value function V (s) converges to V ∗(s) for states A and
B (ignoring G1 and G2). TD learning using only episode E4 (and optionally E1) will converge to
V π(s) = V ∗(s) for states A and B, therefore the only correct listed option is E4, E4, E4, E4.
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(b) Consider using Q-learning to learn Q(s, a). When running Q-learning, all values are initialized to zero.
For which sequences of episodes, if repeated infinitely often, does Q(s, a) converge to Q∗(s, a) for all state-
action pairs (s, a)

(Assume appropriate learning rates such that all Q-values converge.)
Write the correct sequence under “Other” if no correct sequences of episodes are listed.

■ E1, E2, E3, E4 □ E1, E2, E1, E2 □ E1, E2, E3, E1 □ E4, E4, E4, E4
■ E4, E3, E2, E1 ■ E3, E4, E3, E4 □ E1, E2, E4, E1

□ Other

For Q(s, a) to converge, we must visit all state action pairs for non-zero Q∗(s, a) infinitely often. Therefore
we must take the exit action in states G1 and G2, must take the down and right action in state A, and
must take the left and down action in state B. Therefore the answers must include E3 and E4.
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2 Pacman with Feature-Based Q-Learning
We would like to use a Q-learning agent for Pacman, but the size of the state space for a large grid is too
massive to hold in memory. To solve this, we will switch to feature-based representation of Pacman’s state.

(a) We will have two features, Fg and Fp, defined as follows:

Fg(s, a) = A(s) +B(s, a) + C(s, a)

Fp(s, a) = D(s) + 2E(s, a)

where

A(s) = number of ghosts within 1 step of state s

B(s, a) = number of ghosts Pacman touches after taking action a from state s

C(s, a) = number of ghosts within 1 step of the state Pacman ends up in after taking action a

D(s) = number of food pellets within 1 step of state s

E(s, a) = number of food pellets eaten after taking action a from state s

For this pacman board, the ghosts will always be stationary, and the action space is {left, right, up, down, stay}.

calculate the features for the actions ∈ {left, right, up, stay}

Fp(s, up) = 1 + 2(1) = 3

Fp(s, left) = 1 + 2(0) = 1

Fp(s, right) = 1 + 2(0) = 1

Fp(s, stay) = 1 + 2(0) = 1

Fg(s, up) = 2 + 0 + 0 = 2

Fg(s, left) = 2 + 1 + 1 = 4

Fg(s, right) = 2 + 1 + 1 = 4

Fg(s, stay) = 2 + 0 + 2 = 4

(b) After a few episodes of Q-learning, the weights are wg = −10 and wp = 100. Calculate the Q value for
each action ∈ {left, right, up, stay} from the current state shown in the figure.

Q(s, up) = wpFp(s, up) + wgFg(s, up) = 100(3) + (−10)(2) = 280

Q(s, left) = wpFp(s, left) + wgFg(s, left) = 100(1) + (−10)(4) = 60

Q(s, right) = wpFp(s, right) + wgFg(s, right) = 100(1) + (−10)(4) = 60

Q(s, stay) = wpFp(s, stay) + wgFg(s, stay) = 100(1) + (−10)(4) = 60
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(c) We observe a transition that starts from the state above, s, takes action up, ends in state s′ (the state
with the food pellet above) and receives a reward R(s, a, s′) = 250. The available actions from state s′ are
down and stay. Assuming a discount of γ = 0.5, calculate the new estimate of the Q value for s based on
this episode.

Qnew(s, a) = R(s, a, s′) + γ ∗max
a′

Q(s′, a′)

= 250 + 0.5 ∗max{Q(s′, down), Q(s′, stay)}
= 250 + 0.5 ∗ 0
= 250

where

Q(s′, down) = wpFp(s, down) + wgFg(s, down) = 100(0) + (−10)(2) = −20
Q(s′, stay) = wpFp(s, stay) + wgFg(s, stay) = 100(0) + (−10)(0) = 0

(d) With this new estimate and a learning rate (α) of 0.5, update the weights for each feature.

wp = wp + α ∗ (Qnew(s, a)−Q(s, a)) ∗ Fp(s, a) = 100 + 0.5 ∗ (250− 280) ∗ 3 = 55

wg = wg + α ∗ (Qnew(s, a)−Q(s, a)) ∗ Fg(s, a) = −10 + 0.5 ∗ (250− 280) ∗ 2 = −40
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3 Learning in Gridworld
Consider the example gridworld that we looked at in lecture. We would like to use TD learning and q-learning
to find the values of these states.

Suppose that we have the following observed transitions:
(B, East, C, 2), (C, South, E, 4), (C, East, A, 6), (B, East, C, 2)

The initial value of each state is 0. Assume that γ = 1 and α = 0.5.

(a) What are the learned values from TD learning after all four observations?

V (B) = 3.5
V (C) = 4
All other states have a value of 0.

(b) What are the learned Q-values from Q-learning after all four observations?

Q(B,East) = 3
Q(C, South) = 2
Q(C,East) = 3
All other q-states have a value of 0.
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