Summer 2024 Regular Discussion 13 Solutions

| Neura] Nets

Consider the following computation graph for a simple neural network for binary classification. Here z is a
single real-valued input feature with an associated class y* (0 or 1). There are two weight parameters w; and
wg, and non-linearity functions g; and g (to be defined later, below). The network will output a value as
between 0 and 1, representing the probability of being in class 1. We will be using a loss function Loss (to be
defined later, belovv , to compare the prediction as with the true class y*.

1. Perform the forward pass on this network, writing the output values for each node z1, a1, 22 and as in
terms of the node’s input values:

21 = T * Wy
ar = g1 (41)
Zo = @ * Wo

a2 = !]2(22)

2. Compute the loss Loss(asz,y*) in terms of the input z, weights w;, and activation functions g;:

Recursively substituting the values computed above, we have:

Loss(ag,y”) = Loss(ga(wa * g1 (w1 x x)),y")

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive %L—SZS.

Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the
node’s output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be
helpful; you may use any of those variables.)

0Loss OLoss Oas Ozo
Owsg Oas 0zy Owo

4. Suppose the loss function is quadratic, Loss(az,y*) = %(ag—y*)2, and g1 and g, are both sigmoid functions
g(z) = l-r% (note: it’s typically better to use a different type of loss, cross-entropy, for classification
problems, but we’ll use this to make the math easier).

Using the chain rule from Part 3, and the fact that 8%(;) = g(2)(1 — g(z)) for the sigmoid function, write

% in terms of the values from the forward pass, y*, a1, and as:
w2

First we’ll compute the partial derivatives at each node:

0Loss

9a, — (2~Y)

9 0

6%2 _ 9;52) = g2(22)(1 — g2(22)) = aa(1 — az)
Om _,

0w2 -

Now we can plug into the chain rule from part 3:
OLoss OLoss Day 0z
Ows dag 0Ozg Ows

= (ag —y") xaz(1 —az) * a;

5. Now use the chain rule to derive %L—Iifs as a product of partial derivatives at each node used in the chain

rule: .
OLoss OLoss Oaz Oz Oay 021

a’wl - aaz 822 6@1 021 8w1

6. Finally, write agifs in terms of z,y*, w;, a;, z;: The partial derivatives at each node (in addition to the

ones we computed in Part 4) are:

92 _

8@1 e

9 o)

87(2 = galifl) :gl(Zl)(l—gl(zl)) :al(l—(ll)
9a _,

80,1 -

Plugging into the chain rule from Part 5 gives:

0Loss O0Loss Day 0z9 Day 071

8w1 o 8a2 822 80,1 (921 E‘)wl

= (ag —y") *az(l —ag) xwyxa1(l —ay) *x

7. What is the gradient descent update for w; with step-size « in terms of the values computed above?

wy wy — afag —y*) xas(l —ag) xwe xay (1 —ay) *x

