Summer 2024 Regular Discussion 13

| Neura] Nets

Consider the following computation graph for a simple neural network for binary classification. Here z is a
single real-valued input feature with an associated class y* (0 or 1). There are two weight parameters w; and
wg, and non-linearity functions g; and g (to be defined later, below). The network will output a value as
between 0 and 1, representing the probability of being in class 1. We will be using a loss function Loss (to be
defined later, belovv , to compare the prediction as with the true class y*.

1. Perform the forward pass on this network, writing the output values for each node z1, a1, 22 and as in
terms of the node’s input values:

2. Compute the loss Loss(as,y*) in terms of the input x, weights w;, and activation functions g;:

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive %Liizjs.
Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the
node’s output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be

helpful; you may use any of those variables.)



4. Suppose the loss function is quadratic, Loss(as, y*) = %(aQ—y*)z, and g1 and g, are both sigmoid functions
g(z) = H% (note: it’s typically better to use a different type of loss, cross-entropy, for classification

problems, but we’ll use this to make the math easier).

Using the chain rule from Part 3, and the fact that 8%(;) = g(2)(1 — g(z)) for the sigmoid function, write

7‘%053 in terms of the values from the forward pass, ¥*, a1, and as:
w2

5. Now use the chain rule to derive %L—f as a product of partial derivatives at each node used in the chain

rule:

dLoss

50> In terms of x,y*, w;, a;, z;:

6. Finally, write

7. What is the gradient descent update for w; with step-size « in terms of the values computed above?



