
Q3. [9 pts] A Multiplayer MDP
Alice and Bob are playing a game on a 2-by-2 grid, shown below. To start the game, a puck is placed on square A.
At each time step, the available actions are:

• Up, Left, Down, Right: These actions move the puck deterministically. Actions that move the puck off the grid are
disallowed. These actions give both players a reward of 0.

• Exit: This action ends the game. Note that the Exit action can be taken no matter where the puck is. This action gives
Alice and Bob rewards depending on the puck’s final location, as shown below.

Each player tries to maximize their own reward, and does not care about what rewards the other player gets.

X

W Z

Y

Figure 1: The grid that the puck moves on.
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Figure 2: Exit rewards for Alice and Bob.
(a) [2 pts] Suppose Bob is the only player taking actions in this game. Bob models this game as an MDP with a discount

factor 0 < 𝛾 ≤ 1.
For which of the following states does Bob’s optimal policy depend on the value of 𝛾? Select all that apply.

□ W
□ X

■ Y
■ Z

# None of the above.

Clarification during exam: To start the game, a puck is placed on square W (not A).
Note that in this question, Bob is the only player, so all we’re concerned about is maximizing Bob’s utility. Alice’s utility
does not matter in this question.
Bob gets highest reward at W, so the optimal action at W is always to exit.
The optimal policy from X is always {down, exit} to move into state W and exit there for a reward of 3. Even though
there’s a discount factor, we know that a reward of 3𝛾 (one discount factor applied) is always going to be greater than the
reward of 0 (if we had exited from X), because 𝛾 > 0.
At Y and Z, if the discount factor is low (i.e. future rewards are heavily discounted), the optimal action is to immediately
exit and get a reward of 2. If the discount factor is high enough (i.e. future rewards are not so heavily discounted), then
it’s better to go to state W and get the discounted reward of 3𝛾 for exiting from state W.

For the rest of the question, Alice and Bob alternate taking actions. Alice goes first.
Alice models this game with the following game tree, and wants to run depth-limited search with limit 3 turns. She uses an
evaluation of 0 for any leaf node that is not a terminal state. (Note: Circles do not necessarily represent chance nodes.)
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(b) [1 pt] This is a zero-sum game.
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# True  False

Alice and Bob have different utilities in the tree, partially cooperative and partially competitive, as shown in the reward
table.
In order for this game to be zero-sum, Alice’s utility would need to be the negative of Bob’s utility.

(c) [1 pt] What is Alice’s value of the root node of the tree?

1

(d) [1 pt] What is Bob’s value of the root node of the tree?

2

Clarification during exam: The left-most subtree under the game tree should say "right, up, exit" not "right, left, exit".
Filling out the tree with Alice and Bob’s utility gives the following tree.

1,2

1,2

0,0

0,0 0,0 -1,3

1,2

0,0 0,0 1,2

0,0

±1,2

0,0

0,0 0,0 -1,3

1,2

0,0 0,0 1,2

-1,2

up

down

right left exit

right

left down exit

exit

right

left

up right exit

up

left down exit

exit

At the terminal nodes, we fill in the utilities associated with the corresponding sequence of actions. For example, going
through the leaf nodes of the tree left to right:
The left-most leaf node corresponds to the actions {up, down, right}. This sequence of actions has not led to the game
ending, so we cannot evaluate the value (Alice and Bob’s reward) at this state. However, we note that Alice uses an
evaluation of 0 for any non-terminal leaf node, so the value of this state is (0, 0).
Similarly, the next leaf node corresponds to {up, down, up} (clarification corrected this from {up, down, left}, which is
illegal). Again, the game has not ended, so we use the evaluation of 0 to find the value of this state is (0, 0).
The next leaf node corresponds to {up, down, exit}. This ends the game with an exit from W, which gives Alice reward
of −1 and Bob reward of +3. In the tree, we denote this as (−1, 3), where the left value is Alice’s reward and the right
value is Bob’s reward.
Going through the other leaf nodes, we can write in (0, 0) for any non-terminal leaf nodes and the exit rewards for any
leaf nodes where an exit action was taken.
To solve the tree, we need to evaluate which layers correspond to which player. Alice is going first, so the two branches
from the root node (up and right) correspond to Alice’s action (where she will maximize her own utility). Since Alice and
Bob take turns, the next layer then corresponds to Bob’s action (where he will maximize his own utility), and the final
layer corresponds to Alice’s action again.
In layers where it’s Bob’s turn, we pick the child with the highest right-value (second value in the tuple). In layers where
it’s Alice’s turn, we pick the child with the highest left-value (first value in the tuple).
Note that we have a node labeled (±1, 2). This is because at this node, Bob is indifferent between the (1, 2) and the
(−1, 2) nodes, since he gets a reward of 2 either way. Since we didn’t specify a tiebreaker mechanism, the value here
could be either (1, 2) or (−1, 2). However, the tiebreaker mechanism doesn’t matter because at the root node, Alice has a
choice between (1, 2) and (±1, 2) and will choose (1, 2). If Alice is unsure of Bob’s tiebreaker strategy, she’d choose the
guaranteed (1, 2) over the (±1, 2) where she might risk getting −1.
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(e) [2 pts] Assuming that Alice and Bob play optimally, what are possible sequences of actions that they might play? Select
all that apply.

■ up, right, exit
□ up, right, down
□ right, left, right

□ right, up, exit
□ right, exit
# None of the above.

Using the tree above, we see that the value (1, 2) is associated with either the action sequence {up, right, exit}, or {right,
up, exit}.
However, as discussed above, Alice does not know Bob’s tiebreaker strategy, so the (1, 2) value at the root is associated
with the left branch {up, right, exit}. In other words, {right, up, exit} is suboptimal with no further knowledge of Bob’s
strategy, because we can’t be sure if Bob will force the (1, 2) or the (−1, 2) outcome.

Alice instead decides to model the game as an MDP. Assumptions:
• 𝛾 = 0.5

• Alice knows Bob’s policy is 𝜋.
• 𝐷(𝑠, 𝑎) represents the new state you move into when you start at state 𝑠 and take action 𝑎.

(f) [2 pts] Fill in the blanks to derive a modified Bellman equation that Alice can use to compute the values of states.
Let 𝑠′ = 𝐷(𝑠, 𝑎) and 𝑠′′ = 𝐷(𝑠′, 𝜋(𝑠′)).

𝑉 (𝑠) = max
𝑎

𝑅(𝑠, 𝑎, 𝑠′) + (i) (ii) + (iii) (iv)

(i) # 1  0.5 # 0.25
(ii) # 0 # 𝑅(𝑠, 𝜋(𝑠), 𝑠′)  𝑅(𝑠′, 𝜋(𝑠′), 𝑠′′)
(iii) # 1 # 0.5  0.25
(iv) # 𝑉 (𝑠) # 𝑉 (𝑠′)  𝑉 (𝑠′′)

Recall that the Bellman equation relates the values of states 𝑉 (𝑠) with the values of other states 𝑉 (𝑠′). In this MDP, Alice
and Bob alternate choosing actions, so in order to relate Alice’s value at a state to Alice’s value function at some other
state, we need to iterate two timesteps into the future (to reach the next time it’s Alice’s turn).
To consider the first time step into the future, we need to consider Alice’s immediate reward 𝑅(𝑠, 𝑎, 𝑠′), which is already
in the answer. After the first time step, the game has transitioned from 𝑠 into 𝑠′.
Then, for the second time step into the future, we need to consider the action that Bob will take, 𝑝𝑖(𝑠′). This will transition
the game from state 𝑠′ to another state, denoted 𝑠′′. We also need to consider the reward that Alice will get from this
transition (that Bob chose), which is 𝑅(𝑠′, 𝜋(𝑠′), 𝑠′′).
Once we reach 𝑠′′ two time steps later, it’s Alice’s turn again, so we can use the recursive definition 𝑉 (𝑠′′) to denote the
value of Alice starting at 𝑠′′ and acting optimally.
Finally, we need to make sure to apply one discount of 0.5 to the reward 𝑅(𝑠′, 𝜋(𝑠′), 𝑠′′) one time step into the future. We
need to apply two discounts to the rewards that are 2+ time steps into the future, 𝑉 (𝑠′′).
𝑉 (𝑠) = max𝑎(𝑅(𝑠, 𝑎, 𝑠′) + 0.5𝑅(𝑠′, 𝜋(𝑠′), 𝑠′′) + 0.25𝑉 (𝑠′′)
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Q5. [13 pts] MDPs: Jim & Pam Part 2
Jim and Pam are on a 1𝑥5 grid, where Jim starts at square 1, and Pam is fixed at square 5.

Jim Pam

In each time step, Jim chooses to either move right or to rest. Choosing to move succeeds with probability 𝑝 and fails with
probability 1−𝑝, in which case Jim stays in his original square (Jim received 0 utility regardless of success or failure). Choosing
to rest always succeeds, and gives 𝑅(𝑑) = 45−𝑑 utility, where 𝑑 is the distance between Jim and Pam. For example, at the start,
where 𝑑 = 4, if Jim decides to rest, he gets 4 utility. We represent this as an infinite horizon MDP with no terminal state.

(a) [3 pts] Jim is considering two policies:
Policy 1: Rest at the start forever.
Policy 2: Attempt to move right once, and then, regardless of success or failure, rest forever.
Assuming that Jim starts in square 1, for what values of 𝑝 is Policy 1 superior to Policy 2 when the discount factor 𝛾 = 0.5?
Hint: the sum 𝑆 of an infinite geometric series with starting value 𝑎 and ratio 𝑟 is 𝑆 = 𝑎

1−𝑟

Show your work. 0 ≤
0

≤ 𝑝 ≤
1∕3

≤ 1

𝑉𝑟𝑒𝑠𝑡 = 8 and 𝑉𝑚𝑜𝑣𝑒−>𝑟𝑒𝑠𝑡 = 16𝑝 + 4(1 − 𝑝), so 8 ≥ 16𝑝 + 4(1 − 𝑝)

(b) [3 pts]
Now assume that 𝑝 = 1. Still assuming that Jim starts in square 1, for what values of 𝛾 is Policy 1 superior to Policy 2?

Show your work. 0 ≤
0

< 𝛾 <
1/4

≤ 1

𝑉𝑟𝑒𝑠𝑡 =
4

1−𝛾 and 𝑉𝑚𝑜𝑣𝑒−>𝑟𝑒𝑠𝑡 =
16𝛾
1−𝛾 , so 4

1−𝛾 ≥ 16𝛾
1−𝛾
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(c) [7 pts] For the following subparts, assume that 𝛾 = 0.5 and 𝑝 = 1.
(i) [3 pts] Perform two iterations of value iteration, for the following locations of Jim. Show your work.

𝑆𝑡𝑎𝑡𝑒𝑠 𝑠𝐽 = 1 𝑠𝐽 = 2 𝑠𝐽 = 3 𝑠𝐽 = 4 𝑠𝐽 = 5

𝑉0 0 0 0 0 0

𝑉1 4 42 43 44 45

𝑉2 2−1 ∗ 42 2−1 ∗ 43 2−1 ∗ 44 2−1 ∗ 45 45 + 2−1 ∗ 45

(ii) [3 pts] Perform two iterations of policy iteration for the following locations of Jim.

𝑆𝑡𝑎𝑡𝑒𝑠 𝑠𝐽 = 1 𝑠𝐽 = 2 𝑠𝐽 = 3 𝑠𝐽 = 4 𝑠𝐽 = 5

𝜋𝑖 𝑎𝐽 = right 𝑎𝐽 = rest 𝑎𝐽 = rest 𝑎𝐽 = rest 𝑎𝐽 = rest

𝑉 𝜋𝑖 42 2 ∗ 42 2 ∗ 43 2 ∗ 44 2 ∗ 45

𝜋𝑖+1 𝑎𝐽 = right 𝑎𝐽 = right 𝑎𝐽 = right 𝑎𝐽 = right 𝑎𝐽 = rest

𝑉 𝜋𝑖+1 2−3 ∗ 45 2−2 ∗ 45 2−1 ∗ 45 20 ∗ 45 21 ∗ 45

𝜋𝑖+2 𝑎𝐽 = right 𝑎𝐽 = right 𝑎𝐽 = right 𝑎𝐽 = right 𝑎𝐽 = rest

(iii) [1 pt] Assuming that policy iteration has converged, Jim argues it isn’t guaranteed values have converged yet, so they
need to run value iteration to get the correct values. Pam agrees that policy convergence doesn’t guarantee value
convergence, but thinks that we don’t need to switch to value iteration, as if we continue running policy iteration,
eventually the values will converge as well. Who is correct and why?
# Jim  Pam

Pam is correct. Policy iteration contains the policy evaluation step, which is essentially just value iteration once the
policy has converged.
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Q4. [13 pts] Slightly Different MDPs
Each subpart of this question is independent.
For all MDPs in this question, you may assume that:

• The maximum reward for any single action is some fixed number 𝑅 > 0, and the minimum reward is 0.
• The discount factor satisfies 0 < 𝛾 ≤ 1.
• There are a finite number of possible states and actions.

(a) [2 pts] Which statements are always true? Select all that apply.
□ ∑

𝑠∈𝑆 𝑇 (𝑠, 𝑎, 𝑠′) = 1.
■ ∑

𝑠′∈𝑆 𝑇 (𝑠, 𝑎, 𝑠′) = 1.
□ ∑

𝑎∈𝐴 𝑇 (𝑠, 𝑎, 𝑠′) ≤ 1.
□ For all state-action pairs (𝑠, 𝑎), there exists some 𝑠′, such that 𝑇 (𝑠, 𝑎, 𝑠′) = 1.
# None of the above

Clarification during exam: Q4 - The discount factor is 0 < 𝛾 < 1.
(A): False. This adds up the probability of going from all states to a certain state, which doesn’t necessarily sum to 1.
As an intuitive example (disregarding the constant action 𝑎), consider a 3-state MDP with states X, Y, and Z. 𝑃 (𝑋 →
𝑍) + 𝑃 (𝑌 → 𝑍) + 𝑃 (𝑍 → 𝑍) ≠ 1. Maybe it’s likely (< 50%) to reach 𝑍 from any of the 3 states, which would make
this expression add to more than 1.
(B): True. This adds up the probability of going from 1 state to all other states, which sums to 1 (because from one state,
once you take an action, you have to land in some state). Using the example above, 𝑃 (𝑋 → 𝑋) + 𝑃 (𝑋 → 𝑌 ) + 𝑃 (𝑋 →
𝑍) = 1 because from X, once you take an action, you have to land in X, Y, or Z.
(C): False. Suppose that in the example, if you’re in X, any action is guaranteed to land you in Z, no matter what action
you take. Assume there are 2 actions, Left and Right. Then 𝑇 (𝑋,Left, 𝑍) + 𝑇 (𝑋,Right, 𝑍) = 2, which is not ≤ 1.
(D): False. 𝑇 (𝑠, 𝑎, 𝑠′) = 1 would say that in state 𝑠, taking action 𝑎 always lands you in 𝑠′. However, there is no guarantee
that taking some action in the MDP has a guaranteed outcome. For example, consider Gridworld from lecture with the
exit action removed: every action is probabilistic, and there is no action that has a guaranteed 𝑠′ successor state.

(b) [2 pts] Which statements are always true? Select all that apply.
■ Every MDP has a unique set of optimal values for each state.
□ Every MDP has a unique optimal policy.
□ If we change the discount factor 𝛾 of an MDP, the original optimal policy will remain optimal.
■ If we scale the reward function 𝑟(𝑠, 𝑎) of an MDP by a constant multiplier 𝛼 > 0, the original optimal policy

will remain optimal.
# None of the above

(A): True. The optimal values are the solutions to the Bellman equations, and they exist and are finite if 0 < 𝛾 < 1 and
the state space is finite. In other words, from a given state, the expected discounted sum of rewards for acting optimally
is a unique value.
(B): False. An MDP could have multiple optimal policies. For example, consider a state where every action results in the
same successor state. Then the optimal policies could assign any action at this state.
(C): False. Consider an MDP with two states, 𝐴 and 𝐵. At 𝐴 we can either go to 𝐵 or exit, getting a reward of 1, and
at 𝐵, we can only exit, getting a reward of 10. If the discount factor is 0.9, the optimal action at 𝐴 would be to go to 𝐵;
whereas if the discount factor is 0.01, the optimal action at 𝐴 is to exit directly.
(D): True. The optimal policy is determined by taking a argmax over values; if we scale all the values up or down by a
constant, the relative ordering of values stays the same.

(c) [2 pts] Which statements are true? Select all that apply.
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■ Policy iteration is guaranteed to converge to a policy whose values are the same as the values computed by
value iteration in the limit.
■ Policy iteration usually converges to exact values faster than value iteration.
□ Temporal difference (TD) learning is off-policy.
■ An agent is performing Q-learning, using a table representation of Q (with all Q-values initialized to 0). If this
agent takes only optimal actions during learning, this agent will eventually learn the optimal policy.
# None of the above

(A): True. Policy iteration is guaranteed to converge to an optimal policy. Value iteration computes the values of the
optimal policy. If we compute the values of the optimal policy (from policy iteration), we’ll get the same numbers as if
we performed value iteration.
(B): True. Most of the time, value iteration converges towards optimal values in the limit but never reaches the exact
values. However, policy iteration eventually finds the optimal policy, and then the policy evaluation step finds exact
values as the solution of the linear equations.
(C): False. TD learning involves collecting samples using a particular policy 𝜋(𝑠) on the MDP, and thus it is on-policy,
i.e., it learns values for 𝜋, the policy that is generating the samples.
(D): True.

(d) [2 pts] We modify the reward function of an MDP by adding or subtracting at most 𝜖 from each single-step reward.
(Assume 𝜖 > 0.)
We fix a policy 𝜋, and compute 𝑉𝜋(𝑠), the values of all states 𝑠 in the original MDP under policy 𝜋.
Then, we compute 𝑉 ′

𝜋 (𝑠), the values of all states in the modified MDP under the same policy 𝜋.
What is the maximum possible difference |

|

𝑉 ′
𝜋 (𝑠) − 𝑉𝜋(𝑠)|| for any state 𝑠?

# 𝜖
# 𝛾𝜖
 ∑∞

𝑛=0 𝜖(𝛾)
𝑛 = 𝜖∕(1 − 𝛾)

# 𝜖𝑅
# None of the above

Intuitively, because the policies are the same, the future action sequences from any given state is also the same. (Formally,
because an action can result in landing in multiple different states, we’d have to say something like, the distribution over
futures is the same at a given state.)
Recall that the value of a state is the expected, discounted sum of rewards for acting optimally from that state for the rest
of the time. So at each time step that we act, the difference in reward is at most 𝜖 (discounted appropriately). The sum of
discounted differences at each time step is: 1 + 𝛾 + 𝛾2 +… = 𝜖∕(1 − 𝛾).

10


