Q7. [8 pts] So Many Derivatives

Consider the neural network configuration below.

(a) [2 pts] Which of the following decision boundaries can be learned by the neural network? Assume $w_0, w_1, x_0, x_1, T_a \in \mathbb{R}^n$ and $z = w_0 x_0 + w_1 x_1$. Let $g(z)$ be the binary step activation function with T_a as the decision threshold, which is defined as follows:

$$
g(z) = \begin{cases} 1 \text{ if } z \ge T_a \\ 0 \text{ if } z < T_a \end{cases}
$$

-
- **[B]** Graph B
- **[C]** Graph C
- **[D]** Graph D
- **[E]** Graph E
- **(F)** None of the above
- **(b)** Now let $g(z)$ be the sigmoid activation function and *y* be a real number value between 0 and 1 (we will ignore the threshold T_a for this part). Recall that the derivative of the sigmoid function is $\frac{\partial}{\partial z}g(z) = g(z) \cdot (1 - g(z))$. You can represent your answers in terms of x_0 , x_1 , w_0 , w_1 , z, or *y*.
	- **(i)** [2 pts] Calculate the following partial derivatives for backpropagation.

SID:

(ii) [2 pts] Suppose we are running gradient **descent** on the neural network above. We are trying to minimize the upstream loss L using learning rate α . Given the upstream gradient $\frac{\partial L}{\partial y}$ and the two partial derivatives that you computed in the previous part ($\frac{\partial y}{\partial z}$ and $\frac{\partial z}{\partial w_0}$), determine the gradient descent update rule for w_0 .

(c) [2 pts] The Binary Perceptron is defined as the following:

$$
y = \text{classify}(x) = \begin{cases} +1 & \text{if } w \cdot f(x) + b \ge 0 \\ -1 & \text{if } w \cdot f(x) + b < 0 \end{cases}
$$

where w is a vector of real-valued weights, $w \cdot f(x)$ is the dot product $\sum_{i=1}^{m} w_i f_i(x)$ where m is the number of features, $f_i(x)$ is the *i*th feature of x, and b is the bias.

Which of the following are true about the binary perceptron as defined above?

- [A] It is possible that the perceptron learns a decision boundary that is nonlinear in terms of the features $f(x)$.
- **[B]** It is possible that the perceptron learns a decision boundary that is nonlinear in terms of the data x.
- **[C]** The perceptron algorithm is guaranteed to converge if the data is linearly separable.
- **[D]** The perceptron algorithm is trained using gradient descent.
- **(E)** None of the above

Q9. [8 pts] Higher-Dimensional Perceptrons

Consider a dataset with 6 points on a 2D coordinate grid Each point belongs to one of two classes. Points [−1*,* 0]*,* [1*,* 0]*,* [0*,* 1] belong to the negative class. Points [−2*,* 0]*,* [2*,* 0]*,* [0*,* 2] belong to the positive class.

(a) [1 pt] Suppose we run the perceptron algorithm with the initial weight vector set to [0*,* 5]. What is the updated weight vector after processing the data point [0*,* 1]?

(b) [1 pt] How many iterations of the perceptron algorithm will run before the algorithm converges? Processing one data point counts as one iteration. If the algorithm never converges, write ∞ .

In the next few subparts, we'll consider *transforming* the data points by applying some modification to each of the data points. Then, we pass these modified data points into the perceptron algorithm.

For example, consider the transformation $[x, y] \to [x, y, x^2, 1]$. In this transformation, we add two extra dimensions: one whose value is always the square of the first coordinate, and one whose value is always the constant 1. For example, the point at [2*,* 0] is transformed into a point at [2*,* 0*,* 4*,* 1] in 4-dimensional space.

(c) [2 pts] Which of the following data transformations will cause the perceptron algorithm to converge, when run on the transformed data? Select all that apply.

 $\bigcap [x, y] \rightarrow [y, x]$ \Box [*x*, *y*] \rightarrow [*x*, *y*, 1] $[x, y] \rightarrow [x, y, x^2, 1]$ $[x, y] \rightarrow [x, y, x^2 + y^2]$ \bigcirc None of the above.

- (d) [2 pts] Suppose we transform [x, y] to [x, y, $x^2 + y^2$, 1], and pass the transformed data points into the perceptron. Write one possible weight vector that the perceptron algorithm may converge to.
- **(e)** [2 pts] Construct another transformation (not equal to the ones above) that will allow the perceptron algorithm to converge. Hint: The transformation $[x, y] \rightarrow [x, y, x^2 + y^2, 1]$ allows the perceptron algorithm to converge. Fill in the blank: $[x, y] \rightarrow [x, y, \underline{\hspace{1cm}}, 1].$

Exam continues on next page.

Q10. [9 pts] Q-Networks

Consider running Q-learning on the following Pacman problem: the maze is an x -by- x square, and each position can contain a food pellet or no food pellet. There are no ghosts or walls. Pacman's only actions are {up*,* down*,* left*,* right}.

(a) [2 pts] How many Q-values do we need to learn for this problem?

Your answer should be an expression, possibly in terms of x .

To learn every Q-value, we could run standard Q-learning, but we decide to try a different approach:

Suppose somebody tells us N exact Q-values for N different state-action pairs: the exact Q-value for the state-action pair (s_i, a_j) is q_i , for $1 \le i \le N$. (*N* is less than the total number of state-action pairs.)

We decide to use these exact Q-values to train a neural network, so that we can estimate other Q-values we don't know. To train this neural network, we need to apply gradient descent to minimize the following loss function:

$$
L(\theta) = \frac{1}{N} \sum_{i=1}^{N} (f(\theta, s_i, a_i) - q_i)^2
$$

 θ represents the weights of the neural network. $f(\theta, s_i, a_i)$ represents running the neural network with weights θ on state-action pair (s_i, a_i) .

(b) [1 pt] What is the gradient $\frac{\partial L}{\partial \theta}$?

Your answer should be an expression, possibly in terms of N, $\frac{\partial f}{\partial \theta}$, and q_i .

$$
\frac{\partial L}{\partial \theta} =
$$

(c) [1 pt] After running *t* iterations of gradient descent, our current weights are θ_t . The learning rate is α .

What are the weights on the next iteration, θ_{t+1} ?

Your answer should be an expression, possibly in terms of θ_t , α , and $\frac{\partial L}{\partial \theta}$.

 $\theta_{t+1} =$

(d) [2 pts] Eventually, gradient descent converges to the weights θ^* .

We use the neural network with weights θ^* to compute Q-values, and extract a policy out of these Q-values:

$$
\pi(s) = \arg\max_{a} f(\theta^*, s, a)
$$

Is π the optimal policy for this problem?

 \bigcirc Yes \bigcirc No \bigcirc Not enough information

Instead of the Pacman problem, consider a different problem where the action space is continuous. In other words, there are infinitely many actions available from a given state.

(e) [3 pts] Can we still use the strategy from the previous subparts (without any modifications) to obtain a policy π ?

 \bigcap Yes \bigcap No

Briefly explain why or why not.