
SID:

Q7. [8 pts] So Many Derivatives
Consider the neural network configuration below.

(a) [2 pts] Which of the following decision boundaries can be learned by the neural network? Assume 𝑤0, 𝑤1, 𝑥0, 𝑥1, 𝑇𝑎 ∈ ℝ𝑛

and 𝑧 = 𝑤0𝑥0 +𝑤1𝑥1. Let 𝑔(𝑧) be the binary step activation function with 𝑇𝑎 as the decision threshold, which is defined
as follows:

𝑔(𝑧) =

{

1 if 𝑧 ≥ 𝑇𝑎
0 if 𝑧 < 𝑇𝑎

□ Graph A
■ Graph B
■ Graph C
■ Graph D
□ Graph E
# None of the above

(b) Now let 𝑔(𝑧) be the sigmoid activation function and y be a real number value between 0 and 1 (we will ignore the threshold
𝑇𝑎 for this part). Recall that the derivative of the sigmoid function is 𝜕

𝜕𝑧𝑔(𝑧) = 𝑔(𝑧) ⋅ (1 − 𝑔(𝑧)). You can represent your
answers in terms of 𝑥0, 𝑥1, 𝑤0, 𝑤1, 𝑧, or y.

(i) [2 pts] Calculate the following partial derivatives for backpropagation.

(1) 𝜕y
𝜕𝑧 =

y(1 − y)

(2) 𝜕𝑧
𝜕𝑤0

=
𝑥0
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(ii) [2 pts] Suppose we are running gradient descent on the neural network above. We are trying to minimize the
upstream loss 𝐿 using learning rate 𝛼. Given the upstream gradient 𝜕𝐿

𝜕y and the two partial derivatives that you

computed in the previous part ( 𝜕y𝜕𝑧 and 𝜕𝑧
𝜕𝑤0

), determine the gradient descent update rule for 𝑤0.

𝑤0 ←

𝑤0 − 𝛼 ⋅ 𝜕𝐿
𝜕y

𝜕y
𝜕𝑧

𝜕𝑧
𝜕𝑤0

(c) [2 pts] The Binary Perceptron is defined as the following:

𝑦 = classify(𝑥) =

{

+1 if 𝑤 ⋅ 𝑓 (𝑥) + 𝑏 ≥ 0
−1 if 𝑤 ⋅ 𝑓 (𝑥) + 𝑏 < 0

where 𝑤 is a vector of real-valued weights, 𝑤 ⋅ 𝑓 (𝑥) is the dot product
∑𝑚

𝑖=1𝑤𝑖𝑓𝑖(𝑥) where 𝑚 is the number of features,
𝑓𝑖(𝑥) is the 𝑖th feature of 𝑥, and 𝑏 is the bias.
Which of the following are true about the binary perceptron as defined above?

□ It is possible that the perceptron learns a decision boundary that is nonlinear in terms of the features 𝑓 (𝑥).
■ It is possible that the perceptron learns a decision boundary that is nonlinear in terms of the data 𝑥.
■ The perceptron algorithm is guaranteed to converge if the data is linearly separable.
□ The perceptron algorithm is trained using gradient descent.
# None of the above
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Q9. [8 pts] Higher-Dimensional Perceptrons
Consider a dataset with 6 points on a 2D coordinate grid Each point belongs to one of two classes. Points [−1, 0], [1, 0], [0, 1]
belong to the negative class. Points [−2, 0], [2, 0], [0, 2] belong to the positive class.

−2 −1 1 2

1

2

(a) [1 pt] Suppose we run the perceptron algorithm with the initial weight vector set to [0, 5].
What is the updated weight vector after processing the data point [0, 1]?

[0, 4]

We have 𝑓 = [0, 1] and 𝑤 = [0, 5]. First we classify the point by computing the dot product: 𝑓 ⋅𝑤 = 5. This classifies 𝑓
in the positive class, but the true class is negative.
Our classification is wrong, so we need to adjust the weights by subtracting the feature vector: 𝑤 − 𝑓 = [0, 5] − [0, 1] =
[0, 4].

(b) [1 pt] How many iterations of the perceptron algorithm will run before the algorithm converges? Processing one data
point counts as one iteration. If the algorithm never converges, write ∞.

∞

The data points are not linearly separable, so the perceptron algorithm will never terminate.
In the next few subparts, we’ll consider transforming the data points by applying some modification to each of the data points.
Then, we pass these modified data points into the perceptron algorithm.
For example, consider the transformation [𝑥, 𝑦] → [𝑥, 𝑦, 𝑥2, 1]. In this transformation, we add two extra dimensions: one whose
value is always the square of the first coordinate, and one whose value is always the constant 1. For example, the point at [2, 0]
is transformed into a point at [2, 0, 4, 1] in 4-dimensional space.

(c) [2 pts] Which of the following data transformations will cause the perceptron algorithm to converge, when run on the
transformed data? Select all that apply.

□ [𝑥, 𝑦] → [𝑦, 𝑥]
□ [𝑥, 𝑦] → [𝑥, 𝑦, 1]
■ [𝑥, 𝑦] → [𝑥, 𝑦, 𝑥2, 1]
□ [𝑥, 𝑦] → [𝑥, 𝑦, 𝑥2 + 𝑦2]
 None of the above.

(A): False. Pictorially, this transformation reflects all the data points across the 𝑥 = 𝑦 line. If you graph the resulting
points, they’re still not linearly separable, so the perceptron algorithm still never terminates.
(B): Pictorially, this transformation plots the data points along a flat plane in the 3D grid. If you graph the resulting points,
they’re still not linearly separable, so the perceptron algorithm still never terminates.
If you don’t want to picture points in higher dimensions, another solution is to note that the resulting decision boundary
here is 𝑤1𝑥 + 𝑤2𝑦 + 𝑤3 > 0. In other words, you added a y-intercept term 𝑤3 to the decision boundary line on the 2D
coordinate plane. Adding a y-intercept so that the decision boundary doesn’t have to cross the origin still doesn’t help us
linearly separate the data, though.
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(C): True. Write the decision boundary equation 𝑤1𝑥+𝑤2𝑦+𝑤3𝑥2+𝑤4 > 0, and note that this is some form of parabola
(quadratic equation) in the 2D coordinate plane, since we have terms with 𝑦, 𝑥2, 𝑥, plus some constant.
Intuitively, you could sketch a parabola that crosses coordinate points [−1.5, 0], [0, 1.5], and [1.5, 0] on the coordinate
grid, which would separate the points.
If you wanted to find the exact equation of this line (which was not necessary for this question), you could start with
𝑦 = 𝑥2. Then note that the parabola has to point down, so it should be something like 𝑦 = −𝑥2. Then note that we should
shift this parabola upwards so that the negative points are "below" the parabola, to get something like 𝑦 = −𝑥2 + 1.5.
Rearranging gives the decision boundary 𝑦 + 𝑥2 − 1.5 > 0.
You can confirm that this equation works by plugging in all six points and noting that the negative points all have 𝑦+𝑥2−
1.5 < 0, and all the positive points have 𝑦 + 𝑥2 − 1.5 > 0.
(D): False. The new feature, 𝑥2 + 𝑦2, is equal to 1 for all the negative points and 4 for all the positive points. However,
the perceptron classifies points based on the sign of the output, so we’d have somehow use the remaining features to map
all the 1s to negative numbers, and all the 4s to positive numbers. We don’t have a constant (like in the previous options)
to help us with this, and trying to add/subtract multiples of 𝑥 or 𝑦 proves to not be useful either (playing around with a
few possibilities should be enough to convince you that 𝑥 and 𝑦 can’t help here).
A geometric solution (which is not necessary to solve this problem, but useful if you like thinking geometrically): note
that the 𝑥2+𝑦2 term looks like the equation of a circle, so adding this term introduces circles into our decision boundaries.
We can draw circles and classify points inside the circle as one class, and points outside the circle as a different class.
However, we lack a constant term, so our decision boundary is always going to be in the form𝑤1𝑥+𝑤2𝑦+𝑤3(𝑥2+𝑦2) > 0.
We can see that [0, 0] is always going to fall on the decision boundary, so the lack of constant term restricts our decision
boundaries to only the circles that pass through the origin. Visually, we can see that a circle passing through the origin
will not separate the points.

(d) [2 pts] Suppose we transform [𝑥, 𝑦] to [𝑥, 𝑦, 𝑥2 + 𝑦2, 1], and pass the transformed data points into the perceptron.
Write one possible weight vector that the perceptron algorithm may converge to.

[0,0,1,-2]

The new 𝑥2+𝑦2 coordinate looks very useful for separating the data. Note that for the negative points, the new coordinate
is always 1, and for the positive points, the new coordinate is always 4.
However, 1 and 4 are both positive, and the perceptron classifies based on the sign of the output. To fix this, we need to
use the constant bias term to add any negative bias −4 < 𝑐 < −1 from every classification so that 1 maps to some negative
number and 4 maps to some positive number. For example, 𝑐 = −2 would map positive points to 1−2 = −1 and negative
points to 4 − 2 = 2.
If you used a different weight 𝑘 for the 𝑥2+ 𝑦2 feature, you would get perceptron activation of 𝑘 for all the negative points
and 4𝑘 for all the positive points. Then, your constant factor would need to be in the range −4𝑘 < 𝑐 < −𝑘 so that 𝑘 gets
mapped to a negative number, and 4𝑘 gets mapped to a positive number.
A nice geometric solution (which is not necessary to solve this problem): the 𝑥2+𝑦2 feature, along with the constant bias,
lets us draw circular decision boundaries. The restriction to circles passing through the origin, from the previous subpart,
no longer applies here because we’ve introduced a constant bias. Now, we can draw a circle that separates the points. Any
circle with center at the origin, and radius between 1 and 2, will perfectly separate the points (all negative points inside,
all positive points outside). If we set the radius to be 1.5, we’d get the circle equation 𝑥2+ 𝑦2 = 1.52 = 2.25. Rearranging
terms a bit, we get the decision boundary 𝑥2+𝑦2−2.25 > 0. This corresponds to the weight vector [0, 0, 1,−2.25], which
is also a correct solution.

(e) [2 pts] Construct another transformation (not equal to the ones above) that will allow the perceptron algorithm to converge.
Hint: The transformation [𝑥, 𝑦] → [𝑥, 𝑦, 𝑥2 + 𝑦2, 1] allows the perceptron algorithm to converge.
Fill in the blank: [𝑥, 𝑦] → [𝑥, 𝑦, ___, 1].

𝑥4 + 𝑦4

One simple class of transformations that works here is any that combines the magnitudes of the two coordinates. (Picto-
rially, this corresponds to the fact that the negative points are closer to the origin, and the positive points are further away
from the origin.) Some sample answers include: 𝑥4 + 𝑦4, or 𝑥6 + 𝑦6, or |𝑥| + |𝑦|, etc.
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Another simple class of transformations is to add a constant factor to the 𝑥2+𝑦2 feature that helped from earlier: 2(𝑥2+𝑦2),
or 3(𝑥2 + 𝑦2), or 4(𝑥2 + 𝑦2), etc. These transformations still work because you could always adjust the third weight value
from the [𝑥, 𝑦, 𝑥2 + 𝑦2, 1] perceptron to cancel out the new coefficient, which would give you back the original decision
boundary that worked on the [𝑥, 𝑦, 𝑥2 + 𝑦2, 1] perceptron. For example, if your transformation is 𝑥2 + 𝑦2 → 𝑐(𝑥2 + 𝑦2)
and the original weight vector had 𝑤3, you could adjust the weight vector to 𝑤3∕𝑐 and end up with the same decision
boundary.
Another simple class of transformation is to add a constant value to the 𝑥2+𝑦2 feature from earlier: 𝑥2+𝑦2+1, 𝑥2+𝑦2+2,
etc. If your transformation is 𝑥2 + 𝑦2 → 𝑥2 + 𝑦2 + 𝑐, then you’ve added a constant value 𝑐𝑤3 to every activation value.
If you adjust the constant bias weight value from 𝑤4 to 𝑤4 − 𝑐𝑤3, then you cancel out the new addition and end up with
the same original decision boundary.
Other solutions probably exist here, but these were the simplest three that we could think of.

Exam continues on next page.
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Q10. [9 pts] Q-Networks
Consider running Q-learning on the following Pacman problem: the maze is an 𝑥-by-𝑥 square, and each position can contain a
food pellet or no food pellet. There are no ghosts or walls. Pacman’s only actions are {up, down, left, right}.

(a) [2 pts] How many Q-values do we need to learn for this problem?
Your answer should be an expression, possibly in terms of 𝑥.

4𝑥2 ⋅ 2𝑥2

The table represents 𝑄(𝑠, 𝑎), so we need |𝑆|× |𝐴| entries. |𝐴|=4. Pacman has 𝑥2 possible locations. Every location has
two potential statuses (food or empty). Hence the table size is 4𝑥2 ⋅ 2𝑥2 .
Recall that in Q-learning, we maintain a table of 𝑄(𝑠, 𝑎) values, where there’s one Q-value for every state-action pair.
There are 4 actions available from any given state. (Note: We got a few clarification questions during the exam about
actions that would cause Pacman to leave the maze. Here, we either assumed that these actions were legal but left Pacman
in the same position, or, if these actions were illegal, that 4 is a reasonable upper-bound on the number of available actions
from any given state.)
The state space should include Pacman’s position, and a list of Booleans indicating whether each position has a food
pellet or not. There are 𝑥2 possible locations for Pacman. There are 𝑥2 Booleans we have to keep track of, so there are
2𝑥2 possible configurations of food pellets. In total, the problem has 𝑥2 ⋅ 2𝑥2 possible states.
For each of the 𝑥2 ⋅ 2𝑥2 states, there are 4 possible actions. Therefore, there are 4𝑥2 ⋅ 2𝑥2 state-action pairs.

To learn every Q-value, we could run standard Q-learning, but we decide to try a different approach:
Suppose somebody tells us 𝑁 exact Q-values for 𝑁 different state-action pairs: the exact Q-value for the state-action pair (𝑠𝑖, 𝑎𝑖)is 𝑞𝑖, for 1 ≤ 𝑖 ≤ 𝑁 . (𝑁 is less than the total number of state-action pairs.)
We decide to use these exact Q-values to train a neural network, so that we can estimate other Q-values we don’t know. To train
this neural network, we need to apply gradient descent to minimize the following loss function:

𝐿(𝜃) = 1
𝑁

𝑁
∑

𝑖=1
(𝑓 (𝜃, 𝑠𝑖, 𝑎𝑖) − 𝑞𝑖)2

𝜃 represents the weights of the neural network. 𝑓 (𝜃, 𝑠𝑖, 𝑎𝑖) represents running the neural network with weights 𝜃 on state-action
pair (𝑠𝑖, 𝑎𝑖).

(b) [1 pt] What is the gradient 𝜕𝐿
𝜕𝜃 ?

Your answer should be an expression, possibly in terms of 𝑁 , 𝜕𝑓
𝜕𝜃 , and 𝑞𝑖.

𝜕𝐿
𝜕𝜃 =

2
𝑁
∑𝑁

𝑖=1

[

𝜕𝑓
𝜕𝜃 (𝑓 (𝜃, 𝑠𝑖, 𝑎𝑖) − 𝑞𝑖)

]

Clarification during exam: Your expression could also use 𝑓 (𝜃, 𝑠𝑖, 𝑎𝑖) and 𝑞𝑖.
Take the partial derivative using the chain rule.
The 2 comes from applying the power rule on the square of each term in the summation, and then factoring it out. The 1∕𝑁
constant coefficient comes from the coefficient in the original expression. The summation stays because the derivative of
a sum is equal to the sum of the derivatives.
Inside the summation, we’re taking the derivative with respect to 𝜃, so by the chain rule, we need to have a factor of 𝜕𝑓

𝜕𝜃 .
(c) [1 pt] After running 𝑡 iterations of gradient descent, our current weights are 𝜃𝑡. The learning rate is 𝛼.

What are the weights on the next iteration, 𝜃𝑡+1?
Your answer should be an expression, possibly in terms of 𝜃𝑡, 𝛼, and 𝜕𝐿

𝜕𝜃 .
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𝜃𝑡+1 =

𝜃𝑡 − 𝛼 𝜕𝐿
𝜕𝜃

This is the expression for gradient descent from lecture. We take the current weights 𝜃𝑡, and move them in the direction
of the gradient 𝜕𝐿

𝜕𝜃 . We apply a learning rate of 𝛼, and we use subtraction because gradient descent involves moving in the
opposite direction of the gradient.

(d) [2 pts] Eventually, gradient descent converges to the weights 𝜃∗.
We use the neural network with weights 𝜃∗ to compute Q-values, and extract a policy out of these Q-values:

𝜋(𝑠) = argmax
𝑎

𝑓 (𝜃∗, 𝑠, 𝑎)

Is 𝜋 the optimal policy for this problem?
# Yes # No  Not enough information

When we train a neural network on some training data (here, some subset of all the Q-values) and then use the network
to classify some unseen test data (here, the unseen Q-values), there is no guarantee that we are going to perfectly predict
the test data values. In other words, test accuracy in a neural network is not guaranteed to be perfect.
It’s possible (but unlikely) that we get lucky and our neural network perfectly predicts all unseen Q-values. It’s also
possible that our neural network makes some errors when predicting unseen Q-values. We don’t have enough information
to know what the test accuracy of the neural network is.

Instead of the Pacman problem, consider a different problem where the action space is continuous. In other words, there are
infinitely many actions available from a given state.

(e) [3 pts] Can we still use the strategy from the previous subparts (without any modifications) to obtain a policy 𝜋?
# Yes  No

Briefly explain why or why not.

When we move to a continuous action space, the main part of our strategy that breaks is the policy extraction step 𝜋(𝑠) =
argmax𝑎 𝑓 (𝜃∗, 𝑠, 𝑎).
When we had a finite number of actions, this argmax involved trying each value of 𝑎 and picking the one with the highest
𝑓 (𝜃∗, 𝑠, 𝑎) value. However, when we have an infinite number of actions available, this argmax becomes more difficult (or
even impossible).
The neural network step should still mostly work; we can still pass in some existing training data and learn weights. Then,
we can still use the neural network model to predict Q-values of state-action pairs that we’ve never seen before, even if
there are infinitely many actions.
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