
CS 188
Summer 2024 Midterm Review Bayes Nets Solutions
Q1. Bayes Nets: Elimination
(a) Consider running variable elimination on the Bayes Net shown below.
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D
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E

F

C

G

H J

First, we eliminate D to create a factor f1
Next, we eliminate E to create a factor f2
Next, we eliminate H to create a factor f3

From the list below, select all factors that remain after D, E and H have been eliminated.

□ f1
■ f2
■ f3

■ P (A)

□ P (A|F )

■ P (B)

□ P (B|A)

□ P (B|C)

□ P (C)

■ P (C|B)

□ P (D|A)

□ P (D|A,F )

□ P (E|B)

□ P (E|C)

□ P (E|B,C)

□ P (F )

□ P (F |A,B)

□ P (F |G)

□ P (G|C)

■ P (G|C,F )

□ P (H|F )

□ P (H|C,F )

□ P (H|J)
□ P (J |C)

□ P (J |F )

□ P (J |H)

(b) Consider the Bayes Net shown below. Each variable in the Bayes Net can take on two possible values.

A B

D

C

E

F
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You are given the query P (C|F ), which you would like to answer using variable elimination. Please find
a variable elimination ordering where the largest intermediate factor created during variable elimination
is as small as possible.

Elimination ordering: ABED, AEBD, or EABD

(c) Consider doing inference in an m x n lattice Bayes Net, as shown below. The network consists of mn
binary variables Vi,j , and you have observed that Vm,n = +vm,n.

V1,1

V2,1

V1,2

V2,2

V1,3

V2,3

V1,n

V2,n

Vm,1 Vm,2 Vm,3 Vm,n

You wish to calculate P (V1,1| + vm,n) using variable elimination. To maximize computational efficiency,
you wish to use a variable elimination ordering for which the size of the largest generated factor is as small
as possible.

(i) First consider the special case where m = 4 and n = 5. A reproduction of the lattice is shown
below, with variable names for non-query variables omitted. Please provide your optimal elimination
ordering for this example by numbering the nodes below in the order they will be eliminated (i.e.
write a number such as 1, 2, 3, . . . inside every node that will be eliminated.)

V1,1

18

16

15

14

12

11

10

8

3

V4,5

2

17 13 9 1

7

6

4

5

(or)

V1,1

18

13

17

15

9

14

11

5

6

V4,5

3

16 12 8 1

10

7

2

4

Note that there is actually more than one correct ordering, and that a few minor variations on the
orderings given above are possible. However, it’s important to start near the same corner as the
evidence variable and to never create a factor that involves more than 4 non-evidence variables.

However, the ordering shown below is suboptimal (eliminating node 6 will create a size 25 factor
involving the five nodes highlighted in blue):
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V1,1

17

10

18

15

6

16

12

3

9

V4,5

5

14 11 7 2

13

8

1

4

(ii) Now consider the general case (assume m > 2 and n > 2). What is the size of the largest factor
generated under the most efficient elimination ordering? Your answer should be the number of rows
in the factor’s table, expressed in terms of m and n.

Size (number of rows) of the largest factor: 2min(m,n)
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Q2. Bayesian Networks
Consider the below Bayesian Network. Assume each event A,B,C,D,E, F is an indicator random variable.

(a) Independence and Variable Elimination

(i) [true or false] F ⊥⊥ D

(ii) [true or false] F ⊥⊥ E|D
(iii) You are asked to calculate the following query: P (F | + e). You decide to use variable elimina-

tion to solve this problem. You eliminate D first and then C. The resulting factor you obtain is
f(+e, F |A,B. Write f(+e, F |A,B) in terms of the relevant conditional probabilities encoded in the
Bayesian network.

f(+e, F |A,B) =
∑

c P (c|A)P (F |c)
∑

d P (d|B,C)P (+e|D)

(iv) We just calculated f(+e, F |A,B) and now the next step is to eliminate B followed by then elimi-
nating A. The resulting factor from these elimination steps is f(+e, F ). Write f(+e, F ) in terms of
f(+e, F |A,B) and relevant conditional probabilities in the Bayesian Network after performing these
two steps of variable elimination.

f(+e, F ) =
∑

a P (a)
∑

b P (b|A)f(+e, F |A, b)

(v) The last step in variable elimination is normalizing our final factor f(+e, F ) to obtain P (F | + e).
Write P (F |+ e) in terms of f(+e, F ) (perform the normalization step).

P (F |+ e) = f(+e,F )∑
f′ f(+e,f ′)
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Q3. Bayes Nets: Sampling
Consider the following Bayes Net, where we have observed that B = +b and D = +d.

A B C D
P (A)

+a 0.5
−a 0.5

P (B|A)
+a +b 0.8
+a −b 0.2
−a +b 0.4
−a −b 0.6

P (C|B)
+b +c 0.1
+b −c 0.9
−b +c 0.7
−b −c 0.3

P (D|A,C)
+a +c +d 0.6
+a +c −d 0.4
+a −c +d 0.1
+a −c −d 0.9
−a +c +d 0.2
−a +c −d 0.8
−a −c +d 0.5
−a −c −d 0.5

(a) Consider doing Gibbs sampling for this example. Assume that we have initialized all variables to the
values +a,+b,+c,+d. We then un-assign the variable C, such that we have A = +a, B = +b, C = ?,
D = +d. Calculate the probabilities for new values of C at this stage of the Gibbs sampling procedure.

P (C = +c at next step) =

0.1·0.6
0.1·0.6+0.9·0.1 =

2

5

P (C = −c at next step) =

0.9·0.1
0.1·0.6+0.9·0.1 =

3

5

(b) Consider a sampling scheme that is a hybrid of rejection sampling and likelihood-weighted sampling. Under
this scheme, we first perform rejection sampling for the variables A and B. We then take the sampled values
for A and B and extend the sample to include values for variables C and D, using likelihood-weighted
sampling.

(i) Below is a list of candidate samples. Mark the samples that would be rejected by the rejection
sampling portion of the hybrid scheme.

■ (−a,−b) □ (+a,+b) ■ (+a,−b) □ (−a,+b)

(ii) To decouple from part (i), you now re-
ceive a new set of samples shown be-
low. Fill in the weights for these
samples under our hybrid scheme.

−a +b −c +d 0.5

+a +b −c +d 0.1

+a +b −c +d 0.1

−a +b +c +d 0.2

+a +b +c +d 0.6

(iii) Use the weighted samples to calcu-
late an estimate for P (+a| + b,+d).

0.1 + 0.1 + 0.6

0.5 + 0.1 + 0.1 + 0.2 + 0.6
=

8

15

(c) We now attempt to design an alternative hybrid sampling scheme that combines elements of likelihood-
weighted and rejection sampling. For each proposed scheme, indicate whether it is valid, i.e. whether the
weighted samples it produces correctly approximate the distribution P (A,C|+ b,+d).

(i) First collect a likelihood-weighted sample for the variables A and B. Then switch to rejection sampling
for the variables C and D. In case of rejection, the values of A and B and the sample weight are
thrown away. Sampling then restarts from node A.

 Valid # Invalid
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(ii) First collect a likelihood-weighted sample for the variables A and B. Then switch to rejection sampling
for the variables C and D. In case of rejection, the values of A and B and the sample weight are
retained. Sampling then restarts from node C.

# Valid  Invalid

The sampling procedure in part (i) is the correct way of combining likelihood-weighted and rejection
sampling: any time a node gets rejected, the sample must be thrown out in its entirety. In part (ii),
however, the evidence that D = +d has no effect on which values of A are sampled or on the sample
weights. This means that values for A would be sampled according to P (A|+ b), not P (A|+ b,+d).

As an extreme case, suppose node D had a different probability table where P (+d| + a) = 0. Following
the procedure from part (ii), we might start by sampling (+a,+b) and assigning a weight according to
P (+b|+ a). However, when we move on to rejection sampling we will be forced to continuously reject all
possible values because our evidence +d is inconsistent with our the assignment of A = +a. This means
that the procedure from part (ii) is flawed to the extent that it might fail to generate a sample altogether!
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