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Last time…

▪ Utilities and Rationality

▪ Rational Preferences

▪ MEU Principle

Orderability: (A  >  B)  (B  >  A)  (A ~  B) 
Transitivity: (A  >  B)  (B  >  C)  (A >  C)
Continuity: (A  >  B  >  C)  p [p, A;  1-p, C] ~ B
Substitutability: (A ~  B)  [p, A;  1-p, C] ~ [p, B;  1-p, C] 
Monotonicity: (A >  B) 
      (p  q)  [p, A;  1-p, B]   [q, A;  1-q, B] 



Money

▪ Money does not behave as a utility function, but we can 
talk about the utility of having money (or being in debt)

▪ Given a lottery L = [p, $X; (1-p), $Y]

▪ The expected monetary value EMV(L) = pX + (1-p)Y

▪ The utility is U(L) = pU($X) + (1-p)U($Y)

▪ Typically, U(L) < U( EMV(L) )

▪ In this sense, people are risk-averse

▪ E.g., how much would you pay for a lottery ticket  
L=[0.5, $10,000;  0.5, $0]?

▪ The certainty equivalent of a lottery CE(L) is the 
cash amount such that CE(L) ~ L

▪ The insurance premium is EMV(L) - CE(L)

▪ If people were risk-neutral, this would be zero!



Today

▪ Agents that Plan Ahead

▪ Search Problems

▪ Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search



Agents that Plan



Reflex Agents

▪ Reflex agents:
▪ Choose action based on current percept (and 

maybe memory)

▪ May have memory or a model of the world’s 
current state

▪ Do not consider the future consequences of 
their actions

▪ Consider how the world IS



Planning Agents

▪ Planning agents:
▪ Ask “what if”

▪ Decisions based on (hypothesized) 
consequences of actions

▪ Must have a model of how the world evolves in 
response to actions

▪ Must formulate a goal (test)

▪ Consider how the world WOULD BE

▪ Optimal vs. complete planning

▪ Planning vs. replanning



Video of Demo Replanning



Video of Demo Mastermind



Search Problems



Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan) which 
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0



Search Problems Are Models



Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Successor function:
▪ Roads: Go to adjacent city with 

cost = distance

▪ Start state:
▪ Arad

▪ Goal test:
▪ Is state == Bucharest?

▪ Solution?



What’s in a State?

▪ Problem: Pathing
▪ States: (x,y) location

▪ Actions: NSEW

▪ Successor: update location 
only

▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots
▪ States: {(x,y), dot booleans}

▪ Actions: NSEW

▪ Successor: update location 
and possibly a dot boolean

▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)



State Space Sizes?

▪ World state:
▪ Agent positions: 120

▪ Food count: 30

▪ Ghost positions: 12

▪ Agent facing: NSEW

▪ How many
▪ World states?

 120x(230)x(122)x4

▪ States for pathing?

 120

▪ States for eat-all-dots?

 120x(230)



State Space Graphs and Search Trees



State Space Graphs

▪ State space graph: A mathematical 
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only 
once!

▪ We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea



State Space Graphs

▪ State space graph: A mathematical 
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only 
once!

▪ We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea
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Search Trees

▪ A search tree:
▪ A “what if” tree of plans and their outcomes

▪ The start state is the root node

▪ Children correspond to successors

▪ Nodes show states, but correspond to PLANS that achieve those states

▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures



State Space Graphs vs. Search Trees
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Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?



Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: 

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?
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Tree Search



Search Example: Romania



Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)

▪ Maintain a fringe of partial plans under consideration

▪ Try to expand as few tree nodes as possible



General Tree Search

▪ Important ideas:
▪ Fringe
▪ Expansion
▪ Exploration strategy

▪ Main question: which fringe nodes to explore?



Example: Tree Search
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Example: Tree Search
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Depth-First Search



Depth-First Search
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Implementation: Fringe is a 
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Search Algorithm Properties



Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?

▪ Optimal: Guaranteed to find the least cost path?

▪ Time complexity?

▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

▪ Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers



Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.

▪ Could process the whole tree!

▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent cycles 

(more later)

▪ Is it optimal?
▪ No, it finds the “leftmost” solution, regardless of 

depth or cost



Breadth-First Search



Breadth-First Search
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Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest solution

▪ Let depth of shallowest solution be s

▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes



Video of Demo Maze Water DFS/BFS (part 1)



Video of Demo Maze Water DFS/BFS (part 2)



Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s 
time / shallow-solution advantages

▪ Run a DFS with depth limit 1.  If no solution…

▪ Run a DFS with depth limit 2.  If no solution…

▪ Run a DFS with depth limit 3.  …..

▪ Isn’t that wastefully redundant?

▪ Generally most work happens in the lowest 
level searched, so not so bad!



Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path.  We will now cover
a similar algorithm which does find the least-cost path.  
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Uniform Cost Search



Uniform Cost Search
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…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!

▪ If that solution costs C* and arcs cost at least  , then the 
“effective depth” is roughly C*/

▪ Takes time O(bC*/) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost 

is positive, yes!

▪ Is it optimal?
▪ Yes!  (Proof via A*)

b

C*/  “tiers”
c  3

c  2

c  1



Uniform Cost Issues

▪ Remember: UCS explores increasing cost 
contours

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

▪ We’ll fix that soon!

Start Goal

…

c  3

c  2

c  1



Video of Demo Empty UCS



Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)



Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)



Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)



The One Queue

▪ All these search algorithms are the 
same except for fringe strategies

▪ DFS: Fringe is a Stack

▪ BFS: Fringe is a Queue

▪ UCS: Fringe is a PriorityQueue

▪ Can even code one implementation that 
takes a variable queuing object



Up next: Informed Search

▪ Uninformed Search
▪ DFS

▪ BFS

▪ UCS

▪ Informed Search (Heuristics)
▪ Greedy Search

▪ A* Search



Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal

▪ Designed for a particular search problem

▪ Pathing? 

▪ Examples: Manhattan distance, Euclidean distance
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Example: Heuristic Function

h(x)



Greedy Search



Greedy Search

▪ Expand the node that seems closest…
▪ Move to smallest heuristic value 

▪ Is it optimal?
▪ No. Resulting path to Bucharest is not the shortest!



A* Search



Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost  g(n)

▪ Greedy orders by goal proximity, or forward cost  h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)
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When should A* terminate?

▪ Should we stop when we enqueue a goal?

▪ No: only stop when we dequeue a goal
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A* Demo, with s = 0, goal = 6. (Credit: Josh Hug)

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

1

2

3

4

5

6

0s
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h(v, goal) is arbitrary. In this example, it’s the min weight edge out of each vertex. 



A* Demo, with s = 0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.
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A* Demo, with s = 0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.
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A* Demo, with s = 0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.
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A* Demo, with s = 0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

● Give distTo, edgeTo, h(v, goal), and fringe after relaxation
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A* Demo, with s = 0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.
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#     distTo    edgeTo
0        0        -
1        2        0
2        1        0
3       13        1
4        5        1
5        9        4
6       10        4
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Next vertex to be dequeued is our target, so we’re done!



A* Demo, with s = 0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.
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Observations:

● Not every vertex got visited.

● Result is not a shortest paths tree for vertex zero (path to 3 is 

suboptimal!), but that’s OK because we only care about path to 6.



Is A* Optimal?

▪ What went wrong?

▪ Actual bad goal cost < estimated good goal cost

▪ We need estimates to be less than actual costs!
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Admissible Heuristics



Idea: Admissibility

Inadmissible (pessimistic) heuristics
 break optimality by trapping 

good plans on the fringe

Admissible (optimistic) heuristics 
slow down bad plans but
 never outweigh true costs



Admissible Heuristics

▪ A heuristic h is admissible (optimistic) iff:

 where               is the true cost to a nearest goal

▪ Examples:

▪ Coming up with admissible heuristics is most of what’s involved 
in using A* in practice.

15 11.5
0.0



Optimality of A* Tree Search



Optimality of A* Tree Search

Assume:

▪ A is an optimal goal node

▪ B is a suboptimal goal node

▪ h is admissible

Claim:

▪ A will exit the fringe before B

…



Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the fringe, 
too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost

Admissibility of h

…

h = 0 at a goal



Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the fringe, 
too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

B is suboptimal

h = 0 at a goal

…



Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the fringe, 
too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3.  n expands before B

▪ All ancestors of A expand before B

▪ A expands before B

▪ A* search is optimal

…



Properties of A*

…
b

…
b

Uniform-Cost A*



UCS vs A* Contours

▪ Uniform-cost expands equally in all 
“directions”

▪ A* expands mainly toward the goal, 
but does hedge its bets to ensure 
optimality

Start Goal

Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]



Video of Demo Contours (Empty) -- UCS



Video of Demo Contours (Empty) -- Greedy



Video of Demo Contours (Empty) – A*



Video of Demo Contours (Pacman Small Maze) – A*



Comparison

Greedy Uniform Cost A*



A* Applications

▪ Video games

▪ Pathing / routing problems

▪ Resource planning problems

▪ Robot motion planning

▪ Language analysis

▪ Machine translation

▪ Speech recognition

▪ …

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]



Creating Heuristics



Creating Admissible Heuristics

▪ Most of the work in solving hard search problems optimally is in coming up 
with admissible heuristics

▪ Often, admissible heuristics are solutions to relaxed problems, where new 
actions are available

▪ Inadmissible heuristics are often useful too

15

366



Example: 8 Puzzle

▪ What are the states?

▪ How many states?

▪ What are the actions?

▪ How many successors from the start state?

▪ What should the costs be?

Start State Goal StateActions

Admissible
heuristics?



8 Puzzle I

▪ Heuristic: Number of tiles misplaced

▪ Why is it admissible?

▪ h(start) = 8

▪ This is a relaxed-problem heuristic

Average nodes expanded 
when the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore



8 Puzzle II

▪ What if we had an easier 8-puzzle where 
any tile could slide any direction at any 
time, ignoring other tiles?

▪ Total Manhattan distance

▪ Why is it admissible?

▪ h(start) = 3 + 1 + 2 + … = 18

Average nodes expanded 
when the optimal path has…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73

Start State Goal State



8 Puzzle III

▪ How about using the actual cost as a heuristic?
▪ Would it be admissible?

▪ Would we save on nodes expanded?

▪ What’s wrong with it?

▪ With A*: a trade-off between quality of estimate and work per node
▪ As heuristics get closer to the true cost, you will expand fewer nodes but usually 

do more work per node to compute the heuristic itself



Trivial Heuristics, Dominance

▪ Dominance: ha ≥ hc if

▪ Heuristics form a semi-lattice:
▪ Max of admissible heuristics is admissible

▪ Trivial heuristics
▪ Bottom of lattice is the zero heuristic (what 

does this give us?)

▪ Top of lattice is the exact heuristic



Graph Search



Tree Search: Extra Work!

▪ Failure to detect repeated states can cause exponentially more work.  

Search TreeState Graph



Graph Search

▪ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
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Graph Search

▪ Idea: never expand a state twice

▪ How to implement: 

▪ Tree search + set of expanded states (“closed set”)

▪ Expand the search tree node-by-node, but…

▪ Before expanding a node, check to make sure its state has never been 
expanded before

▪ If not new, skip it, if new add to closed set

▪ Important: store the closed set as a set, not a list

▪ Can graph search wreck completeness?  Why/why not?

▪ How about optimality?



A* Graph Search Gone Wrong?
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Consistency of Heuristics

▪ Main idea: estimated heuristic costs ≤ actual costs
▪ Admissibility: heuristic cost ≤ actual cost to goal

  h(v) ≤ h*(v) for all v ∈ V

  Underestimate the true cost to the goal!

▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc

  h(u) – h(v) ≤ d(u, v) for all (u, v) ∈ E 

  Underestimate the weight of every edge!

▪ Consequences of consistency:
▪ The f value along a path never decreases

   h(A) ≤ cost(A to C) + h(C)

▪ A* graph search is optimal
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Optimality of A* Search

▪ With a admissible heuristic, Tree A* is optimal.

▪ With a consistent heuristic, Graph A* is optimal.

▪ With h=0, the same proof shows that UCS is optimal.



Optimality of A* Graph Search



▪ Sketch: consider what A* does with 
a consistent heuristic:
▪ Fact 1: In tree search, A* expands nodes 

in increasing total f value (f-contours)

▪ Fact 2: For every state s, nodes that reach 
s optimally are expanded before nodes 
that reach s suboptimally

▪ Result: A* graph search is optimal

…

f ≤ 3

f ≤ 2

f ≤ 1

Optimality of A* Graph Search



Optimality

▪ Tree search:
▪ A* is optimal if heuristic is admissible
▪ UCS is a special case (h = 0)

▪ Graph search:
▪ A* optimal if heuristic is consistent
▪ UCS optimal (h = 0 is consistent)

▪ Consistency implies admissibility

▪ In general, most natural admissible heuristics 
tend to be consistent, especially if it comes 
from a relaxed problem



Tree Search Pseudo-Code



Graph Search Pseudo-Code



Search and Models

▪ Search operates over 
models of the world

▪ The agent doesn’t 
actually try all the plans 
out in the real world!

▪ Planning is all “in 
simulation”

▪ Your search is only as 
good as your models…



Search Gone Wrong?
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