
CS 188: Artificial Intelligence

Search Problems

Summer 2024, Eve Fleisig & Evgeny Pobachienko

University of California, Berkeley

(slides adapted from Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, Saagar Sanghavi)

Last time…

▪ Utilities and Rationality

▪ Rational Preferences

▪ MEU Principle

Orderability: (A > B)  (B > A)  (A ~ B)
Transitivity: (A > B)  (B > C)  (A > C)
Continuity: (A > B > C)  p [p, A; 1-p, C] ~ B
Substitutability: (A ~ B)  [p, A; 1-p, C] ~ [p, B; 1-p, C]
Monotonicity: (A > B) 
 (p  q)  [p, A; 1-p, B]  [q, A; 1-q, B]

Money

▪ Money does not behave as a utility function, but we can
talk about the utility of having money (or being in debt)

▪ Given a lottery L = [p, $X; (1-p), $Y]

▪ The expected monetary value EMV(L) = pX + (1-p)Y

▪ The utility is U(L) = pU($X) + (1-p)U($Y)

▪ Typically, U(L) < U(EMV(L))

▪ In this sense, people are risk-averse

▪ E.g., how much would you pay for a lottery ticket
L=[0.5, $10,000; 0.5, $0]?

▪ The certainty equivalent of a lottery CE(L) is the
cash amount such that CE(L) ~ L

▪ The insurance premium is EMV(L) - CE(L)

▪ If people were risk-neutral, this would be zero!

Today

▪ Agents that Plan Ahead

▪ Search Problems

▪ Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search

Agents that Plan

Reflex Agents

▪ Reflex agents:
▪ Choose action based on current percept (and

maybe memory)

▪ May have memory or a model of the world’s
current state

▪ Do not consider the future consequences of
their actions

▪ Consider how the world IS

Planning Agents

▪ Planning agents:
▪ Ask “what if”

▪ Decisions based on (hypothesized)
consequences of actions

▪ Must have a model of how the world evolves in
response to actions

▪ Must formulate a goal (test)

▪ Consider how the world WOULD BE

▪ Optimal vs. complete planning

▪ Planning vs. replanning

Video of Demo Replanning

Video of Demo Mastermind

Search Problems

Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Search Problems Are Models

Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Successor function:
▪ Roads: Go to adjacent city with

cost = distance

▪ Start state:
▪ Arad

▪ Goal test:
▪ Is state == Bucharest?

▪ Solution?

What’s in a State?

▪ Problem: Pathing
▪ States: (x,y) location

▪ Actions: NSEW

▪ Successor: update location
only

▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots
▪ States: {(x,y), dot booleans}

▪ Actions: NSEW

▪ Successor: update location
and possibly a dot boolean

▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

▪ World state:
▪ Agent positions: 120

▪ Food count: 30

▪ Ghost positions: 12

▪ Agent facing: NSEW

▪ How many
▪ World states?

 120x(230)x(122)x4

▪ States for pathing?

 120

▪ States for eat-all-dots?

 120x(230)

State Space Graphs and Search Trees

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p
q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

Search Trees

▪ A search tree:
▪ A “what if” tree of plans and their outcomes

▪ The start state is the root node

▪ Children correspond to successors

▪ Nodes show states, but correspond to PLANS that achieve those states

▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
We construct only
what we need on

demand

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

s

b

b G a

a

G

a G b G

… …

Tree Search

Search Example: Romania

Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)

▪ Maintain a fringe of partial plans under consideration

▪ Try to expand as few tree nodes as possible

General Tree Search

▪ Important ideas:
▪ Fringe
▪ Expansion
▪ Exploration strategy

▪ Main question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r

Example: Tree Search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p
q

c

e

h

a

f

r

fd
e

r

S

d e p

e

h r

f

c G

b c

s
s → d
s → e
s → p
s → d → b
s → d → c
s → d → e
s → d → e → h
s → d → e → r
s → d → e → r → f
s → d → e → r → f → c
s → d → e → r → f → G

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand a deepest
node first

Implementation: Fringe is a
LIFO stack

Search Algorithm Properties

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?

▪ Optimal: Guaranteed to find the least cost path?

▪ Time complexity?

▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

▪ Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.

▪ Could process the whole tree!

▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent cycles

(more later)

▪ Is it optimal?
▪ No, it finds the “leftmost” solution, regardless of

depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a shallowest
node first

Implementation: Fringe is a
FIFO queue

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest solution

▪ Let depth of shallowest solution be s

▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages

▪ Run a DFS with depth limit 1. If no solution…

▪ Run a DFS with depth limit 2. If no solution…

▪ Run a DFS with depth limit 3. …..

▪ Isn’t that wastefully redundant?

▪ Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a cheapest

node first:

Fringe is a priority queue (priority:

cumulative cost)
S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost

contours

2

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!

▪ If that solution costs C* and arcs cost at least  , then the
“effective depth” is roughly C*/

▪ Takes time O(bC*/) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

▪ Is it optimal?
▪ Yes! (Proof via A*)

b

C*/ “tiers”
c  3

c  2

c  1

Uniform Cost Issues

▪ Remember: UCS explores increasing cost
contours

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

▪ We’ll fix that soon!

Start Goal

…

c  3

c  2

c  1

Video of Demo Empty UCS

Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

▪ All these search algorithms are the
same except for fringe strategies

▪ DFS: Fringe is a Stack

▪ BFS: Fringe is a Queue

▪ UCS: Fringe is a PriorityQueue

▪ Can even code one implementation that
takes a variable queuing object

Up next: Informed Search

▪ Uninformed Search
▪ DFS

▪ BFS

▪ UCS

▪ Informed Search (Heuristics)
▪ Greedy Search

▪ A* Search

Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal

▪ Designed for a particular search problem

▪ Pathing?

▪ Examples: Manhattan distance, Euclidean distance

10

5

11.2

Example: Heuristic Function

h(x)

Greedy Search

Greedy Search

▪ Expand the node that seems closest…
▪ Move to smallest heuristic value

▪ Is it optimal?
▪ No. Resulting path to Bucharest is not the shortest!

A* Search

Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost g(n)

▪ Greedy orders by goal proximity, or forward cost h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1
1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

When should A* terminate?

▪ Should we stop when we enqueue a goal?

▪ No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2

h = 1

h = 2

h = 0h = 3

S 0 3 3

g h +

S->A 2 2 4

S->B 2 1 3

S->B->G 5 0 5

S->A->G 4 0 4

A* Demo, with s = 0, goal = 6. (Credit: Josh Hug)

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

1

2

3

4

5

6

0s

distTo edgeTo
0 0 -
1 ∞ -
2 ∞ -
3 ∞ -
4 ∞ -
5 ∞ -
6 ∞ -

5
2

1

15

3

2

11

5

1

1

Fringe: [(1: ∞), (2: ∞), (3: ∞), (4: ∞), (5: ∞), (6: ∞)]

4

0

∞
∞

∞

∞

∞

∞

1

h(v, goal)
1
3
15
1
5
∞
0

h(v, goal) is arbitrary. In this example, it’s the min weight edge out of each vertex.

A* Demo, with s = 0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

1

2

3

4

5

6

0s

distTo edgeTo
0 0 -
1 2 0
2 1 0
3 ∞ -
4 ∞ -
5 ∞ -
6 ∞ -

5
2

1

15

3

2

11

5

1

1

Fringe: [(1: 5), (2: 16), (3: ∞), (4: ∞), (5: ∞), (6: ∞)]

4

0

∞
∞

∞

∞

∞

∞

1

2

1

h(v, goal)
1
3
15
1
5
∞
0

A* Demo, with s = 0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

1

2

3

4

5

6

0s

distTo edgeTo
0 0 -
1 2 0
2 1 0
3 ∞ -
4 ∞ -
5 ∞ -
6 ∞ -

5
2

1

15

3

2

11

5

1

1

Fringe: [(2: 16), (3: ∞), (4: ∞), (5: ∞), (6: ∞)]

4

0

∞

∞

∞

∞

1

h(v, goal)
1
3
15
2
1
∞
0

1

2

A* Demo, with s = 0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

1

2

3

4

5

6

0s

distTo edgeTo
0 0 -
1 2 0
2 1 0
3 13 1
4 5 1
5 ∞ -
6 ∞ -

5
2

1

15

3

2

11

5

1

1

Fringe: [(4: 6), (3: 15), (2: 16), (5: ∞), (6: ∞)]

4

0

∞

∞

∞

∞

1

h(v, goal)
1
3
15
2
1
∞
0

1

2

5

13

Which vertex is

removed next?

A* Demo, with s = 0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

● Give distTo, edgeTo, h(v, goal), and fringe after relaxation

1

2

3

4

5

6

0s

distTo edgeTo
0 0 -
1 2 0
2 1 0
3 13 1
4 5 1
5 9 4
6 10 4

5
2

1

15

3

2

11

5

1

1

Fringe: [(6: 10), (3: 15), (2: 16), (5: ∞)]

4

0

∞

∞

1

h(v, goal)
1
3
15
2
1
∞
0

1

2

5

13

10

9

A* Demo, with s = 0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

1

2

3

4

5

6

0s

distTo edgeTo
0 0 -
1 2 0
2 1 0
3 13 1
4 5 1
5 9 4
6 10 4

5
2

1

15

3

2

11

5

1

1

Fringe: [(6: 10), (3: 15), (2: 16), (5: ∞)]

4

0

1

h(v, goal)
1
3
15
2
1
∞
0

1

2

5

13

10

9

Next vertex to be dequeued is our target, so we’re done!

A* Demo, with s = 0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

1

2

3

4

5

6

0s

distTo edgeTo
0 0 -
1 2 0
2 1 0
3 13 1
4 5 1
5 9 4
6 10 4

5
2

1

15

3

2

11

5

1

1

4

0

1

h(v, goal)
1
3
15
2
1
∞
0

1

2

5

13

10

9

Observations:

● Not every vertex got visited.

● Result is not a shortest paths tree for vertex zero (path to 3 is

suboptimal!), but that’s OK because we only care about path to 6.

Is A* Optimal?

▪ What went wrong?

▪ Actual bad goal cost < estimated good goal cost

▪ We need estimates to be less than actual costs!

A

GS

1 3

h = 6

h = 0

5

h = 7

g h +

S 0 7 7

S->A 1 6 7

S->G 5 0 5

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics
 break optimality by trapping

good plans on the fringe

Admissible (optimistic) heuristics
slow down bad plans but
 never outweigh true costs

Admissible Heuristics

▪ A heuristic h is admissible (optimistic) iff:

 where is the true cost to a nearest goal

▪ Examples:

▪ Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

15 11.5
0.0

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

▪ A is an optimal goal node

▪ B is a suboptimal goal node

▪ h is admissible

Claim:

▪ A will exit the fringe before B

…

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the fringe,
too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost

Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the fringe,
too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

B is suboptimal

h = 0 at a goal

…

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the fringe,
too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3. n expands before B

▪ All ancestors of A expand before B

▪ A expands before B

▪ A* search is optimal

…

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

▪ Uniform-cost expands equally in all
“directions”

▪ A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

Start Goal

Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*

Comparison

Greedy Uniform Cost A*

A* Applications

▪ Video games

▪ Pathing / routing problems

▪ Resource planning problems

▪ Robot motion planning

▪ Language analysis

▪ Machine translation

▪ Speech recognition

▪ …

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Creating Heuristics

Creating Admissible Heuristics

▪ Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

▪ Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

▪ Inadmissible heuristics are often useful too

15

366

Example: 8 Puzzle

▪ What are the states?

▪ How many states?

▪ What are the actions?

▪ How many successors from the start state?

▪ What should the costs be?

Start State Goal StateActions

Admissible
heuristics?

8 Puzzle I

▪ Heuristic: Number of tiles misplaced

▪ Why is it admissible?

▪ h(start) = 8

▪ This is a relaxed-problem heuristic

Average nodes expanded
when the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II

▪ What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

▪ Total Manhattan distance

▪ Why is it admissible?

▪ h(start) = 3 + 1 + 2 + … = 18

Average nodes expanded
when the optimal path has…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73

Start State Goal State

8 Puzzle III

▪ How about using the actual cost as a heuristic?
▪ Would it be admissible?

▪ Would we save on nodes expanded?

▪ What’s wrong with it?

▪ With A*: a trade-off between quality of estimate and work per node
▪ As heuristics get closer to the true cost, you will expand fewer nodes but usually

do more work per node to compute the heuristic itself

Trivial Heuristics, Dominance

▪ Dominance: ha ≥ hc if

▪ Heuristics form a semi-lattice:
▪ Max of admissible heuristics is admissible

▪ Trivial heuristics
▪ Bottom of lattice is the zero heuristic (what

does this give us?)

▪ Top of lattice is the exact heuristic

Graph Search

Tree Search: Extra Work!

▪ Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Graph Search

▪ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

▪ Idea: never expand a state twice

▪ How to implement:

▪ Tree search + set of expanded states (“closed set”)

▪ Expand the search tree node-by-node, but…

▪ Before expanding a node, check to make sure its state has never been
expanded before

▪ If not new, skip it, if new add to closed set

▪ Important: store the closed set as a set, not a list

▪ Can graph search wreck completeness? Why/why not?

▪ How about optimality?

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Closed Set:S B C A

Consistency of Heuristics

▪ Main idea: estimated heuristic costs ≤ actual costs
▪ Admissibility: heuristic cost ≤ actual cost to goal

 h(v) ≤ h*(v) for all v ∈ V

 Underestimate the true cost to the goal!

▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc

 h(u) – h(v) ≤ d(u, v) for all (u, v) ∈ E

 Underestimate the weight of every edge!

▪ Consequences of consistency:
▪ The f value along a path never decreases

 h(A) ≤ cost(A to C) + h(C)

▪ A* graph search is optimal

3

A

C

G

h=4 h=1

1

h=2

Optimality of A* Search

▪ With a admissible heuristic, Tree A* is optimal.

▪ With a consistent heuristic, Graph A* is optimal.

▪ With h=0, the same proof shows that UCS is optimal.

Optimality of A* Graph Search

▪ Sketch: consider what A* does with
a consistent heuristic:
▪ Fact 1: In tree search, A* expands nodes

in increasing total f value (f-contours)

▪ Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

▪ Result: A* graph search is optimal

…

f ≤ 3

f ≤ 2

f ≤ 1

Optimality of A* Graph Search

Optimality

▪ Tree search:
▪ A* is optimal if heuristic is admissible
▪ UCS is a special case (h = 0)

▪ Graph search:
▪ A* optimal if heuristic is consistent
▪ UCS optimal (h = 0 is consistent)

▪ Consistency implies admissibility

▪ In general, most natural admissible heuristics
tend to be consistent, especially if it comes
from a relaxed problem

Tree Search Pseudo-Code

Graph Search Pseudo-Code

Search and Models

▪ Search operates over
models of the world

▪ The agent doesn’t
actually try all the plans
out in the real world!

▪ Planning is all “in
simulation”

▪ Your search is only as
good as your models…

Search Gone Wrong?

	Slide 1: CS 188: Artificial Intelligence
	Slide 2: Last time…
	Slide 3: Money
	Slide 4: Today
	Slide 5: Agents that Plan
	Slide 6: Reflex Agents
	Slide 7: Planning Agents
	Slide 8: Video of Demo Replanning
	Slide 9: Video of Demo Mastermind
	Slide 10: Search Problems
	Slide 11: Search Problems
	Slide 12: Search Problems Are Models
	Slide 13: Example: Traveling in Romania
	Slide 14: What’s in a State?
	Slide 15: State Space Sizes?
	Slide 16: State Space Graphs and Search Trees
	Slide 17: State Space Graphs
	Slide 18: State Space Graphs
	Slide 19: Search Trees
	Slide 20: State Space Graphs vs. Search Trees
	Slide 22: Quiz: State Space Graphs vs. Search Trees
	Slide 23: Quiz: State Space Graphs vs. Search Trees
	Slide 24: Tree Search
	Slide 25: Search Example: Romania
	Slide 26: Searching with a Search Tree
	Slide 27: General Tree Search
	Slide 28: Example: Tree Search
	Slide 29: Example: Tree Search
	Slide 30: Depth-First Search
	Slide 31: Depth-First Search
	Slide 32: Search Algorithm Properties
	Slide 33: Search Algorithm Properties
	Slide 34: Depth-First Search (DFS) Properties
	Slide 35: Breadth-First Search
	Slide 36: Breadth-First Search
	Slide 37: Breadth-First Search (BFS) Properties
	Slide 38: Video of Demo Maze Water DFS/BFS (part 1)
	Slide 39: Video of Demo Maze Water DFS/BFS (part 2)
	Slide 40: Iterative Deepening
	Slide 41: Cost-Sensitive Search
	Slide 42: Uniform Cost Search
	Slide 43: Uniform Cost Search
	Slide 44: Uniform Cost Search (UCS) Properties
	Slide 45: Uniform Cost Issues
	Slide 46: Video of Demo Empty UCS
	Slide 47: Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)
	Slide 48: Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)
	Slide 49: Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)
	Slide 50: The One Queue
	Slide 51: Up next: Informed Search
	Slide 52: Search Heuristics
	Slide 53: Example: Heuristic Function
	Slide 54: Greedy Search
	Slide 55: Greedy Search
	Slide 56: A* Search
	Slide 57: Combining UCS and Greedy
	Slide 58: When should A* terminate?
	Slide 59: A* Demo, with s = 0, goal = 6. (Credit: Josh Hug)
	Slide 60: A* Demo, with s = 0, goal = 6.
	Slide 61: A* Demo, with s = 0, goal = 6.
	Slide 62: A* Demo, with s = 0, goal = 6.
	Slide 63: A* Demo, with s = 0, goal = 6.
	Slide 64: A* Demo, with s = 0, goal = 6.
	Slide 65: A* Demo, with s = 0, goal = 6.
	Slide 66: Is A* Optimal?
	Slide 67: Admissible Heuristics
	Slide 68: Idea: Admissibility
	Slide 69: Admissible Heuristics
	Slide 70: Optimality of A* Tree Search
	Slide 71: Optimality of A* Tree Search
	Slide 72: Optimality of A* Tree Search: Blocking
	Slide 73: Optimality of A* Tree Search: Blocking
	Slide 74: Optimality of A* Tree Search: Blocking
	Slide 75: Properties of A*
	Slide 76: UCS vs A* Contours
	Slide 77: Video of Demo Contours (Empty) -- UCS
	Slide 78: Video of Demo Contours (Empty) -- Greedy
	Slide 79: Video of Demo Contours (Empty) – A*
	Slide 80: Video of Demo Contours (Pacman Small Maze) – A*
	Slide 81: Comparison
	Slide 82: A* Applications
	Slide 83: Creating Heuristics
	Slide 84: Creating Admissible Heuristics
	Slide 85: Example: 8 Puzzle
	Slide 86: 8 Puzzle I
	Slide 87: 8 Puzzle II
	Slide 88: 8 Puzzle III
	Slide 89: Trivial Heuristics, Dominance
	Slide 90: Graph Search
	Slide 91: Tree Search: Extra Work!
	Slide 92: Graph Search
	Slide 93: Graph Search
	Slide 94: A* Graph Search Gone Wrong?
	Slide 95: Consistency of Heuristics
	Slide 96: Optimality of A* Search
	Slide 97: Optimality of A* Graph Search
	Slide 98
	Slide 99: Optimality
	Slide 100: Tree Search Pseudo-Code
	Slide 101: Graph Search Pseudo-Code
	Slide 104: Search and Models
	Slide 105: Search Gone Wrong?

