CS 188: Artificial Intelligence

Search Problems

Summer 2024, Eve Fleisig & Evgeny Pobachienko

University of California, Berkeley

(slides adapted from Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, Saagar Sanghavi)

Last time...

= Utilities and Rationality
= Rational Preferences
= MEU Principle

[

Orderability: (A > B)v (B > A) v (A ~ B)
Transitivity: (A > B)A(B > C)= (A > ()
Continuity: (A > B > CO)=3p[p, A, 1-p,C]~B
Substitutability: (A ~ B) = [p, A; 1-p, C] ~ [p, B; 1-p, C]
Monotonicity: (A > B) =

(p=q) < Ip, A; 1-p, Bl 2 [g, A; 1-q, B]

_

Money

Money does not behave as a utility function, but we can
talk about the utility of having money (or being in debt)

Given a lottery L = [p, SX; (1-p), SY]

The expected monetary value EMV(L) = pX + (1-p)Y
The utility is U(L) = pU(SX) + (1-p)U(SY)

Typically, U(L) < U(EMV(L))

In this sense, people are risk-averse

E.g., how much would you pay for a lottery ticket
L=[0.5, $10,000; 0.5, S0]?

The certainty equivalent of a lottery CE(L) is the
cash amount such that CE(L) ~ L

1
-150,000

The insurance premium is EMV/(L) - CE(L)
If people were risk-neutral, this would be zero!

800,000

(a)

(b)

Today

= Agents that Plan Ahead

= Search Problems

= Uninformed Search Methods
= Depth-First Search
= Breadth-First Search

= Uniform-Cost Search

Agents that Plan

Reflex Agents

= Reflex agents:

= Choose action based on current percept (and
maybe memory)

= May have memory or a model of the world’s
current state

= Do not consider the future consequences of
their actions

= Consider how the world IS

Planning Agents

" Planning agents:
= Ask “what if”

= Decisions based on (hypothesized)
consequences of actions

= Must have a model of how the world evolves in
response to actions

= Must formulate a goal (test)
= Consider how the world WOULD BE

= Optimal vs. complete planning

= Planning vs. replanning

Video of Demo Replanning

SCORE: 0

Video of Demo Mastermind

|

Pydey - Edipse

SCORE:

Search Problems

Search Problems

= A search problem consists of:

s |0 0 0 I O

= A successor function N, 1.0 u
(with actions, costs) —

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

= State space:
= Cities
= Successor function:

= Roads: Go to adjacent city with
cost = distance

= Start state:
= Arad

= Goal test:

® |s state == Bucharest?

= Solution?

What’'s in a State?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

" Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only

Goal test: is (x,y)=END

= Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(122%)x4
= States for pathing?
120
= States for eat-all-dots?
120x(239)

State Space Graphs and Search Trees

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
" The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
" The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Tiny state space graph for a tiny
search problem

Search Trees

’ _ This is now / start
"N"‘,l.()/ “E”, 1.0
u H _ Possible futures

= Asearch tree:

= A “what if” tree of plans and their outcomes

The start state is the root node

Children correspond to successors

Nodes show states, but correspond to PLANS that achieve those states

For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct only
what we need on
demand

-

Search Tree

~

S
e
e
T
e h
— AN
h r P d
AN 1
p q f q C
l/\ .
g ¢ G a
a

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?
S
a / \b
o DN N
b G a G
/NN
a G G

/N /N

Important: Lots of repeated structure in the search tree!

Tree Search

118

Search Example: Romania

] Oradea

M Vaslui

Pitesti

OX .
; Hirsova

86

Eforie

Searching with a Search Tree

Arad

CArad > CFagaras> COradea> @iricu Vieh)

= Search:
" Expand out potential plans (tree nodes)
" Maintain a fringe of partial plans under consideration
" Try to expand as few tree nodes as possible

General Tree Search

function T'REE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

" |[mportant ideas:
= Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?

Example: Tree Search

Example: Tree Search

®
)
® © © h

s2>e

S2p

s=2>d—=2>b

s=2>d—>c

sod=>c
s=2>d—2>e—2>h
s=>2d=2a>y¢

s> d=>e—=>r—>f
s2d2e2r>f2c
s=2d=2a22rafao

Depth-First Search

Depth-First Search

Strategy: expand a deepest
node first

Implementation: Fringe is a
LIFO stack

Search Algorithm Properties

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

: [1 node
Space complexity?
b nodes
2

Cartoon of search tree: | b* nodes

= bis the branching factor m tiers <

" mis the maximum depth

= solutions at various depths

\ b™ nodes

Number of nodes in entire tree?
= 1+b+b?+...bM=0(bM)

Depth-First Search (DFS) Properties

= What nodes DFS expand?

= Some left prefix of the tree. 1 node
= Could process the whole tree! b nodes
. e : "
If mis finite, takes time O(b™) M tiers b2 nodes
= How much space does the fringe take?
= Only has siblings on path to root, so O(bm)
" |sitcomplete? b™M nodes

= m could be infinite, so only if we prevent cycles
(more later)

" [sitoptimal?

= No, it finds the “leftmost” solution, regardless of
depth or cost

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest
node first

Implementation: Fringe is a
FIFO queue

Search

<

Tiers

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?
= Processes all nodes above shallowest solution b 1 node
= Let depth of shallowest solution be s b nodes

, . s tiers < ,
= Search takes time O(b®) b2 nodes

* How much space does the fringe take? - / o \ bs nodes
= Has roughly the last tier, so O(b®)

" |sitcomplete? o b™ nodes
= s must be finite if a solution exists, so yes!

" |sit optimal?
= Only if costs are all 1 (more on costs later)

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Iterative Deepening

" |dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

" [sn’t that wastefully redundant?

/
/

= Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Strategy: expand a cheapest
node first:

Fringe is a priority queue (priority:
cumulative cost)

Cost < Q@ 6

contours

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least g, then the
“effective depth” is roughly C*/¢

C*le “tiers” <
= Takes time O(b®"¢) (exponential in effective depth)

= How much space does the fringe take?
= Has roughly the last tier, so O(b®"¢)

)
O/

" |sit complete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

" [sit optimal?
= Yes! (Proof via A*)

Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

" The good: UCS is complete and optimall

= The bad:

= Explores options in every “direction”
= No information about goal location

= \We'll fix that soon!

Video of Demo Empty UCS

Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

= All these search algorithms are the
same except for fringe strategies {
EEEE). |
= DFS: Fringe is a Stack L @L °\" °\° A" ’\ LJ
= BFS: Fringe is a Queue
= UCS: Fringe is a PriorityQueue

= Can even code one implementation that
takes a variable queuing object

Up next: Informed Search

= Uninformed Search » Informed Search (Heuristics)
= DFS " Greedy Search
= BFS " A*Search
= UCS

noPE. [\ GoAL!

Search Heuristics

A heuristic is:

A function that estimates how close a state is to a goal

Designed for a particular search problem
Pathing?
Examples: Manhattan distance, Euclidean distance

)

=]

L I'I'Eurlsl' ~Tron \

E
Heuristi - Tron 4\

Example: Heuristic Function

75 = Zarind

Arad 140

92

118

] Vaslui

Timisoara

142

] Hirsova

] Mehadia Urziceni

75 86

Bucharest

Dobreta [J

o Eforie
[] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
ZLerind

ﬁ'tmight—linedistﬂnce \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
30
199
374

J

h(x)

Greedy Search

Greedy Search

= Expand the node that seems closest...
= Move to smallest heuristic value

Arad

329

366 380

b P Echarsd

253 0

" |sit optimal?
= No. Resulting path to Bucharest is not the shortest!

A* Search

Ang UCS and Greedy

Uniform-cost orders\by path cost, or backward cost g(n)
= Greedy orders by goa\ proximity, or forward cost h(n)

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

@ L3 L—0 @ G>A 204

S>B 213

2 @) 3
S->B->G505

S>A->G404
= No: only stop when we dequeue a goal

A* Demo, with s = 0, goal = 6. (Credit: Josh Hug)

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

distTo
%) %)
1)
2 00
3 00
4 00
5)
6 00

edgeTo

h(v, goal) 0 11

1 1

3 s <_

15 . 2 l 3

1 5

5 0 |< 4
00 1 » 1

0 N\ >

15

o0

\

A

/3\

:

%
7

h(v, goal) is arbitrary. In this example, it's the min weight edge out of each vertex.

Fringe: [(1: «), (2: ®), (3: =), (4: o), (5:), (6: =)]

A* Demo, with s =0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

AUV hWNEO H

distTo

&

8

8 8 8

edgeTo

%)
%)

Fringe:

| —

h(v, goal)

1
0
0

3
15

© 8 U =
7

1

(1: 5), (2: 16)

/3
1 c0
1

/11

A* Demo, with s =0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

/3
distTo edgeTo h(v, goal) 11 - .

2

%) %) - 1 1 2

1 2 0 3 yd < \oo
2 1 0 15 2 , 3 - 5
3 o0 - 2 0 5 4/5/
4 00 - 1 5|0 /
5 o - 0 1 1 1 4 1

6 o0 0

_ NG ﬁ"/
15 2

Fringe: [(2: 16), (3: »), (4: =), (5: «), (6: «)]

A* Demo, with s =0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

Pl S
distTo edgeTo h(v, goal) 2 11 13BQ
0 -1 1 2 1
2 0 3 / \oo
1 0 15 2 , 3
5 0 5

_ N\ ! . 4 1
2 0
s @y

Which vertex is
removed next?

AUV hWNEO H

®© 8 L N
(0]
!CDFD

Fringe: [(4: 6), (3: 15), (2: 16), (5: «), (6: «)]

A* Demo, with s =0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

e Give distTo, edgeTo, h(v, goal), and fringe after relaxation P 3
distTo edgeTo h(v, goal) 2 11 13 .
1 2 6 3 yd < \&210
2 1 2 15 2 l 3 5 -
3 13 1 2 0 5 4 — O
4 5 1 1 S|0
5 %) 1
6 %)

@ \21 115 %Q/l
——{ 5 9

Fringe: [(6: 10), (3: 15), (2: 16), (5: «)]

A* Demo, with s =0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

A 3 \
distTo edgeTo h(v, goal) 2 11 13/ .
(%] (%] - 1 1 2
1 2 0 3 / < \ 10
2 1 0 15 2 l 3 5 .
3 13 1 2 U 5 4 — 5
4 5 1 1 s|0 /
6 10 4 0 N\ > 3 ;

15

Next vertex to be dequeued is our target, so we're done! 15

N
Fringe: [(6: 10), (3: 15), (2: 16), (5: «)]

A* Demo, with s =0, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

A 3 \

distTo edgeTo h(v, goal) 11 I 1
0 0 - 1 1 2
1 2 0 3 / \
2 1 %) 15 2 l 3 6
4 5 1 1 5|0 /
5 9 4 00 1 1 A 1
6 10 4 0 N 5

15
Observations: B

o Not every vertex got visited.
e Resultis not a shortest paths tree for vertex zero (path to 3 is
suboptimal!), but that's OK because we only care about path to 6.

Is A* Optimal?

S>A 167

S>G 505

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!

Admissible Heuristics

ldea: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics Admissible (optimistic) heuristics
break optimality by trapping slow down bad plans but
good plans on the fringe never outweigh true costs

Admissible Heuristics

= A heuristic h is admissible (optimistic) iff:
0 < h(n) < h™(n)

where A" (n)is the true cost to a nearest goal

= Examples:
- - O.O

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

= Ais an optimal goal node
" Bisasuboptimal goal node
" hisadmissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the fringe,
too (maybe Al)
= Claim: n will be expanded before B

1. f(n) is less or equal to f(A) \

=

-

~
f(n) =g(n)+ h(n) Definition of f-cost
f(n) < g(A) Admissibility of h
(A) = f(A) h =0 at a goal
C y

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the fringe,
too (maybe Al)

= Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A)is less than f(B)
x N

g(A) < g(B) B is suboptimal

f(A) < f(B) h=0 at a goal
N\ _J

Optimality

Proof:

Imagine B is on the fringe

Some ancestor n of A is on the fringe,

too (maybe Al)

Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A)is less than f(B)

3. nexpands before B
All ancestors of A expand b
A expands before B
A* search is optimal

of A* Tree Search: Blocking

eforeB\L f(n) < f(A) < f(B) J

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
Sta Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
O ptl mad I Ity Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) — A*

Video of Demo Contours (Pacman Small Maze) — A*

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

A* Applications

= Video games

Pathing / routing problems
Resource planning problems
Robot motion planning

Language analysis
Machine translation
Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Creating Heuristics

YOU GOT

HEURISTIL
UFGRADE!

Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

" |nadmissible heuristics are often useful too

Example: 8 Puzzle

TN

~7.

7 2 |4 3/7|1
s 6 2 %[5
8 3 1 S8 N 6

Start State Actions

What are the states?

How many states?

What are the actions?

How many successors from the start state?
What should the costs be?

!
4

3
6|7

Goal State

Admissible
heuristics?

8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

Statistics from Andrew Moore

8 Puzzle Il

What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

Total Manhattan distance

Start State

Why is it admissible?

h(start) = 3+1+2+..=18

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73

8 Puzzle Il

= How about using the actual cost as a heuristic?
= Would it be admissible?

" Would we save on nodes expanded?
= What’s wrong with it? v;? /t

= With A*: a trade-off between quality of estimate and work per node

= As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Trivial Heuristics, Dominance

= Dominance: h, > h_if

Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:
= Max of admissible heuristics is admissible

h(n) = max(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
|

max(hg, hy)

Graph Search

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \ / Search Tree \

A @

TN

O
i W
a? N Mo N
O
_.,-f-:".\:
O
@

-

Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

Graph Search

ldea: never expand a state twice

How to implement:

= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list
Can graph search wreck completeness? Why/why not?

How about optimality?

A* Graph Search Gone Wrong?

State space graph Search tree

S(0+2)

O\

A (1+4) Blel)

l l

—C+h)- G E+H)-

l l

G (5+0) G (6+0)

Closed Set:S B C A

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(v) < h*(v) forall veV
Underestimate the true cost to the goal!
= Consistency: heuristic “arc” cost < actual cost for each arc
h(u) —h(v) £d(u, v) forall (u,v) €E
Underestimate the weight of every edge!
= Consequences of consistency:
= The f value along a path never decreases
h(A) < cost(A to C) + h(C)
= A* graph search is optimal

Optimality of A* Search

= With a admissible heuristic, Tree A* is optimal.

= With a consistent heuristic, Graph A* is optimal.
® With h=0, the same proof shows that UCS is optimal.

Optimality of A* Graph Search

Optimality of A* Graph Search

= Sketch: consider what A* does with

a consistent heuristic:

= Fact 1: In tree search, A* expands nodes
in increasing total f value (f-contours)

= Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

= Result: A* graph search is optimal

Optimality

Tree search:
= A*js optimal if heuristic is admissible
= UCS is a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if it comes
from a relaxed problem

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe ¢ INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do

if fringe is empty then return failure

node <~ REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE|node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe <= INSERT(child-node, fringe)

end

end

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed +— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node| is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE[node|, problem) do
fringe <— INSERT(child-node, fringe)
end
end

Search and Models

= Search operates over
models of the world

" The agent doesn’t
actually try all the plans
out in the real world!

" Planning is all “in
simulation”

" Your search is only as
good as your models...

Search Gone Wrong?

- MAPQVEST.

ICELAND

MOIN

[®PH
S
eq

7.-RUSSIA
: <. Helsinki Tver
Telingfers

=

Riga b
Vo 2. Smelenst
1 Vilnius @}:" Ty

b [N
Eialf?'g;{.f.[{é’{'BELARUSr'U'
POLAHD -’mqr’ Kievy

)

1000

~ o
%98(S

<
* 2100 A0 et
\7 200 400 AO0

Start: Haugesund, Rogaland, Morway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

» 2005 MapQ .com, Inc.

nrk.no/alltidmoro

	Slide 1: CS 188: Artificial Intelligence
	Slide 2: Last time…
	Slide 3: Money
	Slide 4: Today
	Slide 5: Agents that Plan
	Slide 6: Reflex Agents
	Slide 7: Planning Agents
	Slide 8: Video of Demo Replanning
	Slide 9: Video of Demo Mastermind
	Slide 10: Search Problems
	Slide 11: Search Problems
	Slide 12: Search Problems Are Models
	Slide 13: Example: Traveling in Romania
	Slide 14: What’s in a State?
	Slide 15: State Space Sizes?
	Slide 16: State Space Graphs and Search Trees
	Slide 17: State Space Graphs
	Slide 18: State Space Graphs
	Slide 19: Search Trees
	Slide 20: State Space Graphs vs. Search Trees
	Slide 22: Quiz: State Space Graphs vs. Search Trees
	Slide 23: Quiz: State Space Graphs vs. Search Trees
	Slide 24: Tree Search
	Slide 25: Search Example: Romania
	Slide 26: Searching with a Search Tree
	Slide 27: General Tree Search
	Slide 28: Example: Tree Search
	Slide 29: Example: Tree Search
	Slide 30: Depth-First Search
	Slide 31: Depth-First Search
	Slide 32: Search Algorithm Properties
	Slide 33: Search Algorithm Properties
	Slide 34: Depth-First Search (DFS) Properties
	Slide 35: Breadth-First Search
	Slide 36: Breadth-First Search
	Slide 37: Breadth-First Search (BFS) Properties
	Slide 38: Video of Demo Maze Water DFS/BFS (part 1)
	Slide 39: Video of Demo Maze Water DFS/BFS (part 2)
	Slide 40: Iterative Deepening
	Slide 41: Cost-Sensitive Search
	Slide 42: Uniform Cost Search
	Slide 43: Uniform Cost Search
	Slide 44: Uniform Cost Search (UCS) Properties
	Slide 45: Uniform Cost Issues
	Slide 46: Video of Demo Empty UCS
	Slide 47: Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)
	Slide 48: Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)
	Slide 49: Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)
	Slide 50: The One Queue
	Slide 51: Up next: Informed Search
	Slide 52: Search Heuristics
	Slide 53: Example: Heuristic Function
	Slide 54: Greedy Search
	Slide 55: Greedy Search
	Slide 56: A* Search
	Slide 57: Combining UCS and Greedy
	Slide 58: When should A* terminate?
	Slide 59: A* Demo, with s = 0, goal = 6. (Credit: Josh Hug)
	Slide 60: A* Demo, with s = 0, goal = 6.
	Slide 61: A* Demo, with s = 0, goal = 6.
	Slide 62: A* Demo, with s = 0, goal = 6.
	Slide 63: A* Demo, with s = 0, goal = 6.
	Slide 64: A* Demo, with s = 0, goal = 6.
	Slide 65: A* Demo, with s = 0, goal = 6.
	Slide 66: Is A* Optimal?
	Slide 67: Admissible Heuristics
	Slide 68: Idea: Admissibility
	Slide 69: Admissible Heuristics
	Slide 70: Optimality of A* Tree Search
	Slide 71: Optimality of A* Tree Search
	Slide 72: Optimality of A* Tree Search: Blocking
	Slide 73: Optimality of A* Tree Search: Blocking
	Slide 74: Optimality of A* Tree Search: Blocking
	Slide 75: Properties of A*
	Slide 76: UCS vs A* Contours
	Slide 77: Video of Demo Contours (Empty) -- UCS
	Slide 78: Video of Demo Contours (Empty) -- Greedy
	Slide 79: Video of Demo Contours (Empty) – A*
	Slide 80: Video of Demo Contours (Pacman Small Maze) – A*
	Slide 81: Comparison
	Slide 82: A* Applications
	Slide 83: Creating Heuristics
	Slide 84: Creating Admissible Heuristics
	Slide 85: Example: 8 Puzzle
	Slide 86: 8 Puzzle I
	Slide 87: 8 Puzzle II
	Slide 88: 8 Puzzle III
	Slide 89: Trivial Heuristics, Dominance
	Slide 90: Graph Search
	Slide 91: Tree Search: Extra Work!
	Slide 92: Graph Search
	Slide 93: Graph Search
	Slide 94: A* Graph Search Gone Wrong?
	Slide 95: Consistency of Heuristics
	Slide 96: Optimality of A* Search
	Slide 97: Optimality of A* Graph Search
	Slide 98
	Slide 99: Optimality
	Slide 100: Tree Search Pseudo-Code
	Slide 101: Graph Search Pseudo-Code
	Slide 104: Search and Models
	Slide 105: Search Gone Wrong?

