CS 188: Artificial Intelligence

Search Problems

Summer 2024, Eve Fleisig & Evgeny Pobachienko
University of California, Berkeley
(slides adapted from Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, Saagar Sanghavi)
Utilities and Rationality
Rational Preferences
MEU Principle

Orderability: \((A > B) \lor (B > A) \lor (A \sim B)\)
Transitivity: \((A > B) \land (B > C) \Rightarrow (A > C)\)
Continuity: \((A > B > C) \Rightarrow \exists p \ [p, A; 1-p, C] \sim B\)
Substitutability: \((A \sim B) \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]\)
Monotonicity: \((A > B) \Rightarrow (p \geq q) \iff [p, A; 1-p, B] \geq [q, A; 1-q, B]\)
Money

- Money **does not** behave as a utility function, but we can talk about the utility of having money (or being in debt).
- Given a lottery \(L = [p, X; (1-p), Y] \):
 - The **expected monetary value** \(\text{EMV}(L) = pX + (1-p)Y \)
 - The utility is \(U(L) = pU(X) + (1-p)U(Y) \)
 - Typically, \(U(L) < U(\text{EMV}(L)) \)
 - In this sense, people are **risk-averse**
- E.g., how much would you pay for a lottery ticket \(L = [0.5, 10000; 0.5, 0] \)?
- The **certainty equivalent** of a lottery \(\text{CE}(L) \) is the cash amount such that \(\text{CE}(L) \sim L \)
- The **insurance premium** is \(\text{EMV}(L) - \text{CE}(L) \)
- If people were risk-neutral, this would be zero!
Today

- Agents that Plan Ahead
- Search Problems
- Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search
Agents that Plan
Reflex agents:

- Choose action based on current percept (and maybe memory)
- May have memory or a model of the world’s current state
- Do not consider the future consequences of their actions
- Consider how the world IS
Planning agents:
- Ask “what if”
- Decisions based on (hypothesized) consequences of actions
- Must have a model of how the world evolves in response to actions
- Must formulate a goal (test)
- Consider how the world WOULD BE

- Optimal vs. complete planning
- Planning vs. replanning
Video of Demo Replanning
Video of Demo Mastermind
Search Problems

- A search problem consists of:
 - A state space
 - A successor function (with actions, costs)
 - A start state and a goal test

- A solution is a sequence of actions (a plan) which transforms the start state to a goal state
Search Problems Are Models
Example: Traveling in Romania

- **State space:**
 - Cities

- **Successor function:**
 - Roads: Go to adjacent city with cost = distance

- **Start state:**
 - Arad

- **Goal test:**
 - Is state == Bucharest?

- **Solution?**
What’s in a State?

The world state includes every last detail of the environment.

A search state keeps only the details needed for planning (abstraction).

- **Problem: Pathing**
 - States: \((x,y)\) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is \((x,y)=\text{END}\)

- **Problem: Eat-All-Dots**
 - States: \(\{(x,y), \text{dot booleans}\}\)
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false
State Space Sizes?

- **World state:**
 - Agent positions: 120
 - Food count: 30
 - Ghost positions: 12
 - Agent facing: NSEW

- **How many**
 - World states?
 $120 \times (2^{30}) \times (12^2) \times 4$
 - States for pathing?
 120
 - States for eat-all-dots?
 $120 \times (2^{30})$
State Space Graphs and Search Trees
State Space Graphs

- **State space graph**: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)

- In a state space graph, each state occurs only once!

- We can rarely build this full graph in memory (it’s too big), but it’s a useful idea
State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)

- In a state space graph, each state occurs only once!

- We can rarely build this full graph in memory (it’s too big), but it’s a useful idea

Tiny state space graph for a tiny search problem
A search tree:
- A “what if” tree of plans and their outcomes
- The start state is the root node
- Children correspond to successors
- Nodes show states, but correspond to PLANS that achieve those states
- For most problems, we can never actually build the whole tree
Each NODE in the search tree is an entire PATH in the state space graph.

We construct only what we need on demand.
Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?
Consider this 4-state graph:

How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!
Tree Search
Search Example: Romania
 Searching with a Search Tree

- **Search:**
 - Expand out potential plans (tree nodes)
 - Maintain a *fringe* of partial plans under consideration
 - Try to expand as few tree nodes as possible
General Tree Search

function Tree-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

- Important ideas:
 - Fringe
 - Expansion
 - Exploration strategy

- Main question: which fringe nodes to explore?
Example: Tree Search
Example: Tree Search

- Start (S)
- S → d
- d → e
- e → f
- f → G
- S → p
- p → q
- q → e
- e → f
- f → G
- S → d
- d → b
- b → a
- a → S
- S → d
- d → c
- c → G
- G → S
- S → d
- d → e
- e → h
- h → S
- S → d
- d → r
- r → f
- f → c
- c → S
- S → d
- d → e
- e → r
- r → f
- f → G
- G → S
Depth-First Search
Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack
Search Algorithm Properties
Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?

Cartoon of search tree:
- b is the branching factor
- m is the maximum depth
- Solutions at various depths

Number of nodes in entire tree?
- $1 + b + b^2 + \ldots + b^m = O(b^m)$
Depth-First Search (DFS) Properties

▪ What nodes DFS expand?
 ▪ Some left prefix of the tree.
 ▪ Could process the whole tree!
 ▪ If \(m \) is finite, takes time \(O(b^m) \)

▪ How much space does the fringe take?
 ▪ Only has siblings on path to root, so \(O(bm) \)

▪ Is it complete?
 ▪ \(m \) could be infinite, so only if we prevent cycles (more later)

▪ Is it optimal?
 ▪ No, it finds the “leftmost” solution, regardless of depth or cost
Breadth-First Search
Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe is a FIFO queue
Breadth-First Search (BFS) Properties

- **What nodes does BFS expand?**
 - Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time $O(b^s)$

- **How much space does the fringe take?**
 - Has roughly the last tier, so $O(b^s)$

- **Is it complete?**
 - s must be finite if a solution exists, so yes!

- **Is it optimal?**
 - Only if costs are all 1 (more on costs later)
Video of Demo Maze Water DFS/BFS (part 1)
Video of Demo Maze Water DFS/BFS (part 2)
Iterative Deepening

- Idea: get DFS’s space advantage with BFS’s time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.

- Isn’t that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!
BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.
Uniform Cost Search
Uniform Cost Search

Strategy: expand a cheapest node first:
Fringe is a priority queue (priority: cumulative cost)
Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Processes all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ε, then the “effective depth” is roughly C^*/ε
 - Takes time $O(b^{C^*/\varepsilon})$ (exponential in effective depth)

- How much space does the fringe take?
 - Has roughly the last tier, so $O(b^{C^*/\varepsilon})$

- Is it complete?
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes!

- Is it optimal?
 - Yes! (Proof via A*)
Uniform Cost Issues

- Remember: UCS explores increasing cost contours

- The good: UCS is complete and optimal!

- The bad:
 - Explores options in every “direction”
 - No information about goal location

- We’ll fix that soon!
Video of Demo Empty UCS
Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)
Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)
Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)
All these search algorithms are the same except for fringe strategies

- DFS: Fringe is a Stack
- BFS: Fringe is a Queue
- UCS: Fringe is a PriorityQueue
- Can even code one implementation that takes a variable queuing object
Up next: Informed Search

- Uninformed Search
 - DFS
 - BFS
 - UCS

- Informed Search (Heuristics)
 - Greedy Search
 - A* Search
Search Heuristics

- A heuristic is:
 - A function that estimates how close a state is to a goal
 - Designed for a particular search problem
 - Pathing?
 - Examples: Manhattan distance, Euclidean distance
Example: Heuristic Function

Straight-line distance to Bucharest:
- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobrota: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehedia: 241
- Neamt: 234
- Oradea: 380
- Pitești: 98
- Râmnicu Vâlcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374

$h(x)$
Greedy Search
Greedy Search

- Expand the node that seems closest...
 - Move to smallest heuristic value

- Is it optimal?
 - No. Resulting path to Bucharest is not the shortest!
A* Search
Combining UCS and Greedy

- **Uniform-cost** orders by path cost, or *backward cost* $g(n)$
- **Greedy** orders by goal proximity, or *forward cost* $h(n)$

- **A* Search** orders by the sum: $f(n) = g(n) + h(n)$

Example: Teg Grenager
When should A* terminate?

- Should we stop when we enqueue a goal?
 - No: only stop when we dequeue a goal
Insert all vertices into fringe PQ, storing vertices in order of $d(\text{source}, v) + h(v, \text{goal})$.

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

$h(v, \text{goal})$ is arbitrary. In this example, it’s the min weight edge out of each vertex.

Fringe: $[(1: \infty), (2: \infty), (3: \infty), (4: \infty), (5: \infty), (6: \infty)]$
A* Demo, with \(s = 0 \), goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of \(d(\text{source}, v) + h(v, \text{goal}) \).

Repeat: Remove best vertex \(v \) from PQ, and relax all edges pointing from \(v \).

<table>
<thead>
<tr>
<th>#</th>
<th>distTo</th>
<th>edgeTo</th>
<th>(h(v, \text{goal}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>(\infty)</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>(\infty)</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>(\infty)</td>
<td>-</td>
<td>(\infty)</td>
</tr>
<tr>
<td>6</td>
<td>(\infty)</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Fringe: \([(1: 5), (2: 16), (3: \infty), (4: \infty), (5: \infty), (6: \infty)]\)
A* Demo, with $s = 0$, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of $d(\text{source, v}) + h(v, \text{goal})$.

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

<table>
<thead>
<tr>
<th>#</th>
<th>distTo</th>
<th>edgeTo</th>
<th>h(v, goal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>-</td>
<td>∞</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Fringe: $[(2: 16), (3: \infty), (4: \infty), (5: \infty), (6: \infty)]$
A* Demo, with $s = 0$, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of $d(\text{source, } v) + h(v, \text{goal})$.

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

<table>
<thead>
<tr>
<th>#</th>
<th>distTo</th>
<th>edgeTo</th>
<th>$h(v, \text{goal})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>-</td>
<td>∞</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Fringe: $[(4: 6), (3: 15), (2: 16), (5: \infty), (6: \infty)]$

Which vertex is removed next?
A* Demo, with \(s = 0 \), goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of \(d(\text{source}, v) + h(v, \text{goal}) \).

Repeat: Remove best vertex \(v \) from PQ, and relax all edges pointing from \(v \).

- Give \(\text{distTo} \), \(\text{edgeTo} \), \(h(v, \text{goal}) \), and fringe after relaxation

\[
\begin{array}{cccc}
\# & \text{distTo} & \text{edgeTo} & h(v, \text{goal}) \\
0 & 0 & - & 1 \\
1 & 2 & 0 & 3 \\
2 & 1 & 0 & 15 \\
3 & 13 & 1 & 2 \\
4 & 5 & 1 & 1 \\
5 & 9 & 4 & \infty \\
6 & 10 & 4 & 0 \\
\end{array}
\]

Fringe: \([(6: 10), (3: 15), (2: 16), (5: \infty)]\)
Insert all vertices into fringe PQ, storing vertices in order of $d(\text{source, v}) + h(v, \text{goal})$.

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

Next vertex to be dequeued is our target, so we're done!

Fringe: $[(6: 10), (3: 15), (2: 16), (5: \infty)]$
A* Demo, with $s = 0$, goal = 6.

Insert all vertices into fringe PQ, storing vertices in order of $d(\text{source}, v) + h(v, \text{goal})$.

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

<table>
<thead>
<tr>
<th>#</th>
<th>distTo</th>
<th>edgeTo</th>
<th>$h(v, \text{goal})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>4</td>
<td>∞</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Observations:
- Not every vertex got visited.
- Result is not a shortest paths tree for vertex zero (path to 3 is suboptimal!), but that’s OK because we only care about path to 6.
Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!
Admissible Heuristics
Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe.

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs.
Admissible Heuristics

- A heuristic h is **admissible** (optimistic) iff:

 \[0 \leq h(n) \leq h^*(n) \]

 where $h^*(n)$ is the true cost to a nearest goal

- Examples:

 - Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Optimality of A* Tree Search
Optimality of A* Tree Search

Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will exit the fringe before B
Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$

\[
\begin{align*}
 f(n) &= g(n) + h(n) \\
 f(n) &\leq g(A) \\
 g(A) &= f(A)
\end{align*}
\]

Definition of f-cost
Admissibility of h
$h = 0$ at a goal
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$
 2. $f(A)$ is less than $f(B)$

$g(A) < g(B)$ \hspace{1cm} B is suboptimal
$f(A) < f(B)$ \hspace{1cm} $h = 0$ at a goal
Proof:
- Imagine B is on the fringe
- Some ancestor \(n \) of A is on the fringe, too (maybe A!)
- Claim: \(n \) will be expanded before B
 1. \(f(n) \) is less or equal to \(f(A) \)
 2. \(f(A) \) is less than \(f(B) \)
 3. \(n \) expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal
Properties of A^*

Uniform-Cost

A*
UCS vs A* Contours

- Uniform-cost expands equally in all “directions”

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]
Video of Demo Contours (Empty) -- UCS
Video of Demo Contours (Empty) -- Greedy
Video of Demo Contours (Empty) – A*
Video of Demo Contours (Pacman Small Maze) – A*
Comparison

Greedy

Uniform Cost

A*
A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]
Creating Heuristics

YOU GOT
HEURISTIC UPGRADE!
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics.

- Often, admissible heuristics are solutions to relaxed problems, where new actions are available.

- Inadmissible heuristics are often useful too.
Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?
8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $h(\text{start}) = 8$
- This is a *relaxed-problem* heuristic

Average nodes expanded when the optimal path has...

<table>
<thead>
<tr>
<th></th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>112</td>
<td>6,300</td>
<td>3.6×10^6</td>
</tr>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
</tbody>
</table>

Statistics from Andrew Moore
What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?

Total *Manhattan* distance

Why is it admissible?

\[h(\text{start}) = 3 + 1 + 2 + ... = 18 \]

<table>
<thead>
<tr>
<th>Average nodes expanded when the optimal path has...</th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
<tr>
<td>MANHATTAN</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>
8 Puzzle III

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What’s wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself
Trivial Heuristics, Dominance

- Dominance: $h_a \geq h_c$ if
 \[
 \forall n : h_a(n) \geq h_c(n)
 \]

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[
 h(n) = \max(h_a(n), h_b(n))
 \]

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic
Graph Search
Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work.
Graph Search

- In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
Graph Search

- Idea: never expand a state twice

- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set

- Important: store the closed set as a set, not a list

- Can graph search wreck completeness? Why/why not?

- How about optimality?
A* Graph Search Gone Wrong?

State space graph

Search tree

Closed Set: S B C A
Consistency of Heuristics

- **Main idea:** Estimated heuristic costs \leq actual costs
 - Admissibility: heuristic cost \leq actual cost to goal
 \[h(v) \leq h^*(v) \text{ for all } v \in V \]
 Underestimate the true cost to the goal!
 - Consistency: heuristic “arc” cost \leq actual cost for each arc
 \[h(u) - h(v) \leq d(u, v) \text{ for all } (u, v) \in E \]
 Underestimate the weight of every edge!

- **Consequences of consistency:**
 - The f value along a path never decreases
 \[h(A) \leq \text{cost}(A \text{ to } C) + h(C) \]
 - A^* graph search is optimal
Optimality of A* Search

- With a admissible heuristic, Tree A* is optimal.
- With a consistent heuristic, Graph A* is optimal.
 - With $h=0$, the same proof shows that UCS is optimal.
Optimality of A* Graph Search
Sketch: consider what A* does with a consistent heuristic:

- Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
- Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
- Result: A* graph search is optimal
Optimality

- **Tree search:**
 - A^* is optimal if heuristic is admissible
 - UCS is a special case ($h = 0$)

- **Graph search:**
 - A^* optimal if heuristic is consistent
 - UCS optimal ($h = 0$ is consistent)

- Consistency implies admissibility

- In general, most natural admissible heuristics tend to be consistent, especially if it comes from a relaxed problem
function Tree-Search(problem, fringe) return a solution, or failure

fringe ← Insert(make-node(initial-state[problem]), fringe)

loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST(problem, STATE[node]) then return node
 for child-node in EXPAND(STATE[node], problem) do
 fringe ← Insert(child-node, fringe)
 end
end
function **Graph-Search** (*problem*, *fringe*) return a solution, or failure

 closed ← an empty set
 fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do
 if *fringe* is empty then return failure

 node ← REMOVE-FRONT(*fringe*)
 if GOAL-TEST(*problem*, STATE[*node]*) then return *node*

 if STATE[*node*] is not in closed then
 add STATE[*node*] to closed
 for *child-node* in EXPAND(STATE[*node*], *problem*) do
 fringe ← INSERT(*child-node*, fringe)
 end
 end
end
Search and Models

- Search operates over models of the world
 - The agent doesn’t actually try all the plans out in the real world!
 - Planning is all “in simulation”
 - Your search is only as good as your models...
Search Gone Wrong?