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Introduction: Eve (she/her)

Eve Fleisig is a visionary computer scientist specializing in artificial intelligence and machine

learning, with a particular focus on the development of neural networks for image and speech

recognition. Currently based in San Francisco, Eve holds a Ph.D. in Computer Science from MIT

and has contributed to pivotal advancements in Al through her research and development work.

As a Senior Research Scientist at TechForward, Eve leads a team dedicated to refining deep
learning algorithms that enhance automated systems’ understanding and response capabilities.

Her work has been instrumental in developing technologies that significantly improve user

interactions with Al, making these systems more intuitive and effective.
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Introduction: Eve (she/her)

o Rising 4t" year PhD student
o Advised by Dan Klein

o Natural language processing (NLP) + Al ethics

o Ethics & societal impacts of generative language
models like ChatGPT

o Always happy to chat if you’re curious about getting started with
research
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g: backward cost (S -> current node)
h: forward cost (heuristic for current node -> goal)
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g: backward cost (S -> current node)

: Where do heuristics come from? e
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A: We have to create them!

What’s a better heuristic?



Last time...

Q: Where do heuristics come from? g: backward cost (S -> current node)
h: forward cost (heuristic for current node -> goal)

A: We have to create them!

h=3
f=8+h
=1+3
=4
h=1 =0
f=g+h
5 =5+0
=5

What's a better heuristic? Admissible = Underestimates cost from any node to the goal



Last time...

o Failure to detect repeated states can cause exponentially more work.
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Last time...

o ldea: never expand a state twice

o How to implement:

o Tree search + set of expanded states (“closed set”)
o Expand the search tree node-by-node, but...

o Before expanding a node, check to make sure its state has never been
expanded before

o If not new, skip it, if new add to closed set
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Last time...

This heuristic isn’t consistent

“Triangle inequality”
h(u) < d(u,v) + h(v)
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This heuristic isn’t consistent

“Triangle inequality”
h(u) < d(u,v) + h(v)

Q: Is h(A) < d(A,C) + h(C)?



Last time...

This heuristic isn’t consistent

Consistency: “Triangle inequality”
h(u) < d(u,v) + h(v)

h
Q: Is h(A) < d(A,C) + h(C)? f=
A:No:4£1+1



Summary of A*

Tree search:
o A*is optimal if heuristic is admissible
o UCS is a special case (h =0)

Graph search:
o A* optimal if heuristic is consistent
o UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if it comes
from a relaxed problem




Bonus: Optimality of A* Graph Search

o Consider what A* does:

o Expands nodes in increasing total f value (f-contours)
Reminder: f(n) = g(n) + h(n) = cost to n + heuristic

o Proof idea: the optimal goal(s) have the lowest f value, so
it must get expanded first




Bonus: Optimality of A* Graph Search

Proof by contradiction:

o New possible problem: some n on path to G*
isn’t in queue when we need it, because some
worse n’ for the same state dequeued and
expanded first (disaster!)

o Take the highest such nin tree *

Let p be the ancestor of n that was on the
qgueue when n’ was popped

f(p) < f(n) because of consistency
f(n) < f(n’) because n’ is suboptimal
p would have been expanded before n’

O

O O O O

Contradiction!



Beyond Pathfinding

A* can be used in a variety of domains er geht ja nicht nach hause

besides path planning

Even has applications to LLMs!
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Constraint Satisfaction Problems

N variables
domain D

constraints

states goal test successor function

partial assignment complete; satisfies constraints assign an unassigned variable



What is Search For?

o Assumptions about the world: a single agent, deterministic actions, fully observed
state, discrete state space

o Planning: sequences of actions

o The path to the goal is the important thing
o Paths have various costs, depths

o Heuristics give problem-specific guidance

o ldentification: assignments to variables
o The goal itself is important, not the path
o All paths at the same depth (for some formulations)

o CSPs are specialized for identification problems




Constraint Satisfaction Problems

Standard search problems:
o Stateis a “black box”: arbitrary data structure
o Goal test can be any function over states
o Successor function can also be anything

Constraint satisfaction problems (CSPs):
o A special subset of search problems

o State is defined by variables X; with values from a
domain D (sometimes D depends on i)

o Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

Allows useful general-purpose algorithms with more
power than standard search algorithms







Example: Map Coloring

Variables: WA, NT, Q, NSW, V, SA, T

Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

Implicit: WA = NT

Explicit: (WA,NT) € {(red,green), (red, blue), ...}

Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}




Constraint Graphs




Constraint Graphs

o Binary CSP: each constraint relates (at most) two @

variables e
@] -

o Binary constraint graph: nodes are variables, arcs
show constraints

o General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!



Example: N-Queens

o Formulation 1: =
o Variables: X =ﬂ
o Domains: {0,1}
o Constraints

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi, 7, k (Xij,ij) € {(0,0),(0,1),(1,0)} ZXij —
Vi, j, k (Xij, Xitk j+k) € 1(0,0),(0,1),(1,0)} .
Vi, j, k (X5, Xixkj—k) € 1(0,0),(0,1),(1,0)}



Example: N-Queens

o Formulation 2:

Q1

o Variables: Q) Qo
| Q3

o Domains: {1,2,3,...N} Qa

o Constraints:

Implicit: Vi,j non-threatening(Q;, @;)

it (Q1,Q0) € {(1,3),(1,4),...)



Example: Cryptarithmetic

X
o Variables: T Wg
FTUWRO X1 Xo X3 + T W|O
o Domains: F O UIR
{0,1,2,3,4,5,6,7,8,9) _“
o Constraints: .
k alldiff(F, T, U, W,R,O)J Fyr (7)) (U) (W) (R) 1O
( O—I—OzR—I—lO-le

e o o 5 X2 X1



Example: Sudoku

= Variables:

= Each (open) square
=  Domains:

= {1,2,..9}
= Constraints:

9-way alldiff for each column

9-way alldiff for each row

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)




Varieties of Constraints

o Varieties of Constraints

o Unary constraints involve a single variable (equivalent to
reducing domains), e.g.:

SA #* green
o Binary constraints involve pairs of variables, e.g.:

SA £ WA

o Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

o Preferences (soft constraints):
o E.g., redis better than green
o Often representable by a cost for each variable assignment
o Gives constrained optimization problems
o (We’ll ignore these until we get to Bayes’ nets)



O O O O O O O O

Real-World CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling

Factory scheduling

Circuit layout

Fault diagnosis

... lots more!

Many real-world problems involve real-valued variables...




Solving CSPs




Standard Search Formulation

o Standard search formulation of CSPs

o States defined by the values assigned so
far (partial assignments)
o Initial state: the empty assignment, {}

o Successor function: assign a value to an
unassigned variable

o Goal test: the current assignment is
complete and satisfies all constraints

o WEe'll start with the straightforward,
naive approach, then improve it




Search Methods

o What would BFS do?

{]
[ (WA=¢} {(WA=r} ... (NT=g} ... ]

[ (WA=g, NT=r} {WA=g, NT=g} {WA=r, NT=g/ ]

[Demo: coloring -- dfs]



Search Methods

o What would BFS do?

o What would DFS do?

o let’s see!

o What problems does naive search have?

[Demo: coloring -- dfs]



Video of Demo Coloring -- DFS







Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
o Variable assignments are commutative, so fix ordering -> better branching factor!
o l.e., [WA =red then NT = green] same as [NT = green then WA = red]
o Only need to consider assignments to a single variable at each step

ldea 2: Check constraints as you go
o l.e. consider only values which do not conflict previous assignments
o Might have to do some computation to check the constraints
o “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25




Backtracking Example

A

¢ & &




Video of Demo Coloring — Backtracking




Backtracking Search

function BACKTRACKING-SEARCH(csy
return RECURSIVE-BACKTRACKIN

Tetyrns solution /failure

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var«— SELECT-UNASSIGNED- VARIABLH( VARIABLES|[csp], assignment, csp)
Eor each value in OR.DER.—DOl\--IAIN—VALUES]( var, assignment, csp) do
if{value is consistent with assignment|given CONSTRAINTS[csp| then
add {var = valuey to assignment
result «— RECURSIVE-BACKTRACKING( assignment, csp)
if result # failure then return result

remove {var = value} from assignment
return failure

o Backtracking = DFS + variable-ordering + fail-on-violation

o What are the choice points?




Improving Backtracking

o General-purpose ideas give huge gains in speed

o Ordering:

o Which variable should be assigned next?
o In what order should its values be tried?

o Filtering: Can we detect inevitable failure early?




Filtering

Keep track of domains for unassigned variables and cross off bad options



Filtering: Forward Checking

o Filtering: Keep track of domains for unassigned variables and cross off bad options
o Forward checking: Cross off values that violate a constraint when added to the existing

assignment
WA NT| Q
SA NSW.
Vv

WA NT Q NSW Vv SA

[Demo: coloring -- forward checking]



Video of Demo Coloring — Backtracking with Forward Checking




Filtering: Constraint Propagation

o Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q NSW Vv SA
NT i T Ir I IrE IrE I
‘ A T BN P EECE[EIN[ESE] SN
b ] u| Tl 1LY Il
) ——

o NT and SA cannot both be blue!
o Why didn’t we detect this yet?
o Constraint propagation: reason from constraint to constraint



Consistency of A Single Arc

o An arc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

L

NT WA NT Q NSW v SA
Q

3 B _TEErEErEEr e .

NSW
\Y

Forward checking? Delete from the tail!

Enforcing consistency of arcs pointing to each new assignment



Arc Consistency of an Entire CSP

o A simple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 [m [T H] -]

v 1\ VV‘

Important: If X loses a value, neighbors of X need to be rechecked!

Arc consistency detects failure earlier than forward checking
i Remember: Delete
Can be run as a preprocessor or after each assignment from the taill

What's the downside of enforcing arc consistency?



Enforcing Arc Consistency in a CSP

function AC-3( csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xy, ..., X}
local variablesf queue, 3 queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.Y;, X)) then
for each X in NEIGHBORS[.X;| do
add (X, X;)to queue

function REMOVE-INCONSISTENT-VALUES( X, X;) returns true iff succeeds
removed < false
for each z in DoMAIN[X}] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; < X
then delete 2 from DOMAIN[X;]; removed «— true
return removed

o Runtime: O(n%d3), can be reduced to O(n%d?)
o ... but detecting all possible future problems is NP-hard — why?



o After enforcing arc consistency:

o Can
o Can
o Can

Limitations of Arc Consistency

nave one solution left

nave multiple solutions left

nave no solutions left (and

not know it)

o Arc consistency still runs inside
a backtracking search!

(—
Lz

 am

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]



Video of Demo Coloring — Backtracking with Forward Checking —
Complex Graph




Video of Demo Coloring — Backtracking with Arc Consistency —
Complex Graph




K-Consistency

o Increasing degrees of consistency

o 1-Consistency (Node Consistency): Each single node’s domain has a
value which meets that node’s unary constraints

o 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

o K-Consistency: For each k nodes, any consistent assignment to k-1
can be extended to the k*" node.

o Higher k more expensive to compute

o (You need to know the k=2 case: arc consistency)




O

O

O

Strong K-Consistency

Strong k-consistency: also k-1, k-2, ... 1 consistent
Claim: strong n-consistency means we can solve without backtracking!
Why?
o Choose any assignment to any variable
o Choose a new variable
o By 2-consistency, there is a choice consistent with the first
o Choose a new variable
o By 3-consistency, there is a choice consistent with the first 2
O
Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called

path consistency)



Ordering




Ordering: Minimum Remaining Values

o Variable Ordering: Minimum remaining values (MRV):

o Choose the variable with the fewest legal left values in its domain

~D

o Why min rather than max?

o Also called “most constrained variable”

o “Fail-fast” ordering




Ordering: Least Constraining Value

constraining value
o l.e., the one that rules out the fewest values in ‘\_Lt\‘

the remaining variables ‘\_L’:
o Note that it may take some computation to

determine this! (E.g., rerunning filtering)

o Value Ordering: Least Constraining Value *
o Given a choice of variable, choose the least ‘\_L,:

o Why least rather than most?

o Combining these ordering ideas makes
1000 queens feasible




Demo: Coloring -- Backtracking + Forward Checking + Ordering



Summary

o Work with your rubber duck to write down:
o How we order variables and why

o How we order values and why



Iterative Improvement

>




Iterative Algorithms for CSPs

o Local search methods typically work with “complete” states, i.e., all variables assigned

o To apply to CSPs:
o Take an assignment with unsatisfied constraints
o Operators reassign variable values
o No fringe! Live on the edge.

o Algorithm: While not solved,
o Variable selection: randomly select any conflicted variable

o Value selection: min-conflicts heuristic:
o Choose a value that violates the fewest constraints
o l.e., hill climb with h(x) = total number of violated constraints



Example: 4-Queens

States: 4 queens in 4 columns (4% = 256 states)
Operators: move queen in column

Goal test: no attacks

Evaluation: c(n) = number of attacks



Iterative Improvement — n Queens




Iterative Improvement — Coloring




Performance of Min-Conflicts

o Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n =10,000,000)!

o The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

R number of constraints i
number of variables
CPU
time

|
critical
ratio



Summary: CSPs

o CSPs are a special kind of search problem:
o States are partial assignments
o Goal test defined by constraints

o Basic solution: backtracking search

o Speed-ups:

o Ordering
o Filtering
o Structure —turns out trees are easy!

o Iterative min-conflicts is often effective in practice




Local Search




O

O

O

O

Local Search

Tree search keeps unexplored alternatives on the fringe (ensures completeness)

Local search: improve a single option until you can’t make it better (no fringe!)

New successor function: local changes

O

999

Generally much faster and more memory efficient (but incomplete and suboptimal)



Hill Climbing

o Simple, general idea:
o Start wherever
o Repeat: move to the best neighboring state
o If no neighbors better than current, quit

o What’s bad about this approach?

o What’s good about it?




Hill Climbing Diagram

objective function nlobal maximum

shoulder

\ local maximum

"flat" local maximum

state space
curren

state



Hill Climbing Quiz

Objective Function
r /

State Space

=
»

Starting from X, where do you end up ?
Starting from Y, where do you end up ?

Starting from Z, where do you end up ?



Simulated Annealing

o |dea: Escape local maxima by allowing downhill moves

o But make them rarer as time goes on

function SIMULATED- ANNEALING( problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
1, a "temperature” controlling prob. of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])
for t— 1 to oo do

T'— schedule][t]

if 7'= 0 then return current

next < a randomly selected successor of current

AE+— VALUE[nezt] — VALUE[current]

if AE > 0 then current <« next

else current < next only with probability e

A E/T




Simulated Annealing

o Theoretical guarantee:
o Stationary distribution:  p(x) o< e kT

o If T decreased slowly enough,
will converge to optimal state!

o Is this an interesting guarantee?

o Sounds like magic, but reality is reality:

o The more downhill steps you need to escape a local
optimum, the less likely you are to ever make them all in a
row

o People think hard about ridge operators which let you
jump around the space in better ways



Genetic Algorithms

24748552 |24 31% 327252411 32748552 3274802
32752411 %ﬁ: 247@48552 >_< 24752411 24752411
24415124 20\26%‘ 327.52§411 32752124 32252124
32543213 | 11 14% 244155124 >_< 24415411 2441541[7]

Fithess Selection

Pairs

Cross—Over

o Genetic algorithms use a natural selection metaphor
o Keep best N hypotheses at each step (selection) based on a fitness function
o Also have pairwise crossover operators, with optional mutation to give variety

o Possibly the most misunderstood, misapplied (and even maligned) technique around



Example: N-Queens

o Why does crossover make sense here?
o When wouldn’t it make sense?

o What would mutation be?

o What would a good fitness function be?




Bonus (time permitting): Structure




Problem Structure

Extreme case: independent subproblems
o Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into
subproblems of only c variables:

o Worst-case solution cost is O((n/c)(d¢)), linear in n

o E.g.,n=80,d=2,c=20

o 280 =4 billion years at 10 million nodes/sec

o (4)(22%°) = 0.4 seconds at 10 million nodes/sec




Tree-Structured CSPs

o Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
o Compare to general CSPs, where worst-case time is O(d")

o This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning



Tree-Structured CSPs

o Algorithm for tree-structured CSPs:
o Order: Choose a root variable, order variables so that parents precede children

2

o Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X;),X;)
o Assign forward: Fori=1: n, assign X; consistently with Parent(X)

o Runtime: O(n d?) (why?)




Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets



Improving Structure




Nearly Tree-Structured CSPs

@‘@"" C
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o Conditioning: instantiate a variable, prune its neighbors' domains

o Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

o Cutset size c gives runtime O( (d¢) (n-c) d?), very fast for small c



Cutset Conditioning

N

Choose a cutset

/

4

[ J

Instantiate the cutset /
[ (all possible ways) J - ‘W"e
[ J
[ J

o

9‘:‘9

&
O

l

g

Compute residual CSP
for each assignment

4_
4_

Solve the residual CSPs
(tree structured)




Cutset Quiz

o Find the smallest cutset for the graph below.




Tree Decomposition™

= |dea: create a tree-structured graph of mega-variables
= Each mega-variable encodes part of the original CSP
= Subproblems overlap to ensure consistent solutions @

sJeA paJeys | uo aa.by
sJeA paleys | uo saiby
sJen paleys | uo salby

{(WA=r,SA=g,NT=b),  {(NT=r,SA=g,Q=b), Agree: (M1,M2)
(V\;A=b,SA=r,NT=g), (N;’=b,SA=g,Q=r), {((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), ...}




