

Instructor: Evgeny Pobachienko – UC Berkeley

[Slides credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, Satish Rao, and many others]

Recall: Random Variables

- Recall: random variable is some aspect of the world about which we (may) have uncertainty
 - \circ R = Is it raining?
 - \circ T = Is it hot?
 - D = How long will it take to drive to work?
- Capital letters: Random variables
- Lowercase letters: values that the R.V. can take
 - $\circ \quad r \in \{+r, -r\}$
 - $\circ \quad t \in \{+t, -t\}$
 - $\circ \quad d \in [0,\infty)$

Probability Distributions

- Associate a probability with each value
 - o Temperature:

• Weather:

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Joint Distributions

A *joint distribution* over a set of random variables: X_1, X_2, \ldots, X_n specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

• Must obey: $P(x_1, x_2, \dots, x_n) \ge 0$ (non-negativity) $\sum P(x_1, x_2, \dots, x_n) = 1$ (normalization) (x_1, x_2, \dots, x_n)

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d? \bigcirc
 - For all but the smallest distributions, impractical to write out!

Probability

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

AI to teach AI

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding P(T)

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Probability

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(h) = P(h, s) + P(h, \sim s)$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T)

Joint Distribution

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

P(T,W)

W

sun

rain

sun

rain

L

Т

hot

hot

cold

cold

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W|T = c)$$

$$\frac{W \quad P}{sun \quad 0.4}$$

$$rain \quad 0.6$$

$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Normalization Trick

To Normalize

- (Dictionary) To bring or restore to anormal condition
- Procedure:
 - Step 1: Compute Z = sum over all entries
 - $\circ~$ Step 2: Divide every entry by Z

o Example

W	Р	Normalize	W	Р
sun	0.2	\rightarrow	sun	0.4
rain	0.3	Z = 0.5	rain	0.6

All entries sum to ONE

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes *beliefs to be updated*

 $\circ P(W)?$

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

 $\circ P(W)?$

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

 $\circ P(W)?$

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

 $\circ P(W)?$

P(sun)=.3+.1+.1+.15=.65

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

 $\circ P(W)?$

P(sun)=.3+.1+.1+.15=.65 P(rain)=1-.65=.35

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

• P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

\circ P(W | winter, hot)?

P(sun|winter,hot)~.1 P(rain|winter,hot)~.05

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

\circ P(W | winter, hot)?

P(sun|winter,hot)~.1 P(rain|winter,hot)~.05 P(sun|winter,hot)=2/3 P(rain|winter,hot)=1/3

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Independence

Independence

• Two variables are *independent* if:

 $\forall x, y : P(x, y) = P(x)P(y)$

- This says that their joint distribution *factors* into a product of two simpler distributions
- Another form:

 $\forall x, y : P(x|y) = P(x)$

- \circ We write: $X \perp \!\!\!\perp Y$
- Independence is a simplifying *modeling assumption*
 - *Empirical* joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence

$$P(s|h) = \frac{P(s,h)}{P(h)}$$

P(s,h) = P(s|h) * P(h)

Example: Independence?

0.6

0.4

sun

rain

Ρ

0.3

0.2

0.3

0.2

W

sun

rain

sun

rain

Example: Independence

- Unconditional (absolute) independence very rare (why?)
- *Conditional independence* is our most basic and robust form of knowledge about uncertain environments.
- (X is conditionally independent of Y) given Z

 $X \bot\!\!\!\!\perp Y | Z$

if and only if:

 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$ or, equivalently, if and only if

 $\forall x, y, z : P(x|z, y) = P(x|z)$

- Unconditional (absolute) independence very rare (why?)
- *Conditional independence* is our most basic and robust form of knowledge about uncertain environments.
- (X is conditionally independent of Y) given Z $X \perp \!\!\!\perp Y | Z$

if and only if:

 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$ or, equivalently, if and only if

 $\forall x, y, z : P(x|z, y) = P(x|z)$

 $P(x|z, y) = \frac{P(x, z, y)}{P(z, y)}$ $= \frac{P(x, y|z)P(z)}{P(y|z)P(z)}$ $= \frac{P(x|z)P(y|z)P(z)}{P(y|z)P(z)}$

- What about this domain:
 - o Traffic
 - o Umbrella
 - o Raining

- What about this domain:
 - o Fire
 - o Smoke
 - o Alarm

Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$
- Trivial decomposition:
 - P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)
- With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

 Bayesian Networks/graphical models help us express conditional independence assumptions

Bayesian Networks: The Big Picture

Bayesian Networks: The Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayesian Networks: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probability tables, or CPTs)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions

Example Bayes Net: Insurance

Graphical Model Notation

• Nodes: variables (with domains)

 Can be assigned (observed) or unassigned (unobserved)

• Arcs: interactions

- o MAY indicate influence between variables
- Formally: encode conditional independence relationships (more later)
- For now: arrows mean that there **may be** a causal relationship between the two variables

Bayes Net Semantics

- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- CPT: conditional probability table
- Description of a potentially "causal" process

A Bayes net = *Topology (graph)* + *Local Conditional Probabilities*

Example Bayes Net: Car

Example: Coin Flips

• No interactions between variables: absolute independence

Example: Traffic

- Variables: 0
 - o R: It rains
 - T: There is traffic

Model 1: independence Ο

• Model 2: rain may cause traffic

R

Why is an agent using model 2 better? Ο

Bayes Net: DAG + CPTs

Example: Alarm Network

• Variables

- o B: Burglary
- A: Alarm goes off
- o M: Mary calls
- o J: John calls
- E: Earthquake!

Example: Alarm Network

• Variables

- o B: Burglary
- A: Alarm goes off
- M: Mary calls
- o J: John calls
- o E: Earthquake!

Example: Humans

- G: human's goal / human's reward parameters
- S: state of the physical world
- o A: human's action

Example: Traffic II

- Variables
 - o T: Traffic
 - o R: It rains
 - L: Low pressure
 - D: Roof drips
 - o B: Ballgame
 - o C: Cavity

Bayesian Network Semantics

Probabilities in BNs

- Bayes nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

• Example:
Cavity
Toothache Catch

P(*+cavity*, *+catch*, *-toothache*)

Probabilities in BNs

- Why are we guaranteed that setting $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$ results in a proper joint distribution?
- Chain rule (valid for all distributions): $P(x_1, x_2, ..., x_n) = \prod_{i=1}^n P(x_i | x_1 ... x_{i-1})$
- <u>Assume</u> conditional independences: $P(x_i|x_1, \dots, x_{i-1}) = P(x_i|parents(X_i))$
 - Consequence: $P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$
- Not every BN can represent every joint distribution
 - o The topology enforces certain conditional independencies

Example: Coin Flips

P(h, h, t, h) = P(h)P(h)P(t)P(h)

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

Example: Alarm Network

E	P(E)
+e	0.002
-е	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

P(M|A)P(J|A)P(A|B,E)P(E)P(B)

Example: Traffic

Causal direction

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

• Reverse causality?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

• When Bayes' nets reflect the true causal patterns:

- o Often simpler (nodes have fewer parents)
- Often easier to think about
- o Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

 $P(x_i|x_1,\ldots,x_{i-1}) = P(x_i|parents(X_i))$

Conditional Independence Assumptions

 Each node, given its parents, is conditionally independent of all its non-descendants in the graph

Each node, given its MarkovBlanket, is conditionally independent of all other nodes in the graph

MarkovBlanket refers to the parents, children, and children's other parents.

Inference with Bayesian Networks

Inference

 Inference: calculating some useful quantity from a joint probability distribution

- Examples:
 - Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Most likely explanation:
 - $\operatorname{argmax}_q P(Q = q | E_1 = e_1 \dots)$

Inference by Enumeration

• Given unlimited time, inference in BNs is easy

P(A|B,E)P(B)P(E) = P(A|B,E)P(B,E) = P(A,B,E)

• Given unlimited time, inference in BNs is easy

P(A|B,E)P(B)P(E) = P(A|B,E)P(B,E) = P(A,B,E)

• Given unlimited time, inference in BNs is easy

P(A|B,E)P(B)P(E) = P(A|B,E)P(B,E) = P(A,B,E)

P(J|A)P(M|A)P(A, B, E)= P(J, M|A)P(A, B, E)= P(J, M|A, B, E)P(A, B, E)= P(J, M, A, B, E)

В

Ε

• Given unlimited time, inference in BNs is easy

 $P(B \mid +j,+m) \propto_B P(B,+j,+m)$ $= \sum_{e,a} P(B,e,a,+j,+m)$ $= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$

=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P

Example: Traffic Domain

Random Variables
 R: Raining
 T: Traffic
 L: Late for class!

$$P(L) = ?$$

= $\sum_{r,t} P(r,t,L)$
= $\sum_{r,t} P(r)P(t|r)P(L|t)$

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Inference by Enumeration: Procedural Outline

0.3

0.7 0.1

0.9

+|

- Track objects called **factors**
- Initial factors are local CPTs (one per node)

P(R)		
+r	0.1	
-r	0.9	

D(D)

P(T	R)	P
+r	+t	0.8	+
+r	-t	0.2	+
-r	+t	0.1	_
-r	-t	0.9	-
			-

• Any known values are selected

• E.g. if we know $L = +\ell$, the initial factors are

+t

+t

0.9

+r

-r

P(R)		
+r	0.1	
-r	0.9	

Procedure: Join all factors, then sum out all hidden variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - o Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved

• Example: Join on R

• Computation for each entry: pointwise products $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$

Example: Multiple Joins

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - o Shrinks a factor to a smaller one
 - A projection operation
- Example: P(R,T)

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

_		
	+t	0.17
	-t	0.83

P(T)

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inf by Enumeration)

P(R)

Recap: Inference by Enumeration

* Works fine with

General case: We want: Ο multiple query Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ Query* variable:QAll variablesHidden variables: $H_1 \dots H_r$ All variables variables, too 0 $P(Q|e_1\ldots e_k)$ 0 Ο Step 3: Normalize Step 1: Select the entries Step 2: Sum out H to get joint consistent with the evidence of Query and evidence Pa $\times \frac{1}{Z}$ -3 0.05 - 1 0.25 \odot 0.07 0.2 5 0.01 0.15 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$ $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots X_n})$
Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

P(R)• Compute joint
• Sum out hidden variables $P(T|R) \longrightarrow P(R,T,L) \longrightarrow P(L)$ • [Step 3: Normalize]

P(L|T)

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration slow?
 - You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

Traffic Domain

Traffic Domain

$$P(L) = ?$$

$$O \text{ Inference by Enumeration} \quad Variable Elimination$$

$$= \sum_{t} \sum_{r} P(L|t)P(r)P(t|r)$$

$$= \sum_{t} P(L|t)\sum_{r} P(r)P(t|r)$$

$$(5a) + (5b)$$

$$5(a + b)$$

Marginalizing Early (Variable Elimination)

Variable Elimination

Evidence

• If evidence, start with factors that select that evidence

• No evidence uses these initial factors:

	P(L T)										
]	+t	+	0.3								
	+t	-	0.7								
	-t	+	0.1								
	-t	-	0.9								

 $D(T \mid m)$

• Computing P(L|+r), the initial factors become:

P(+r)		P	P(T +r)				P(L T)		
+r	0.1		+r	+t	0.8		+t	+	0.3
-			+r	-t	0.2		+t	-1	0.7
							-t	+	0.1
							l-t	-	0.9

• We eliminate all vars other than query + evidence

Evidence

Result will be a selected joint of query and evidence
 E.g. for P(L | +r), we would end up with:

• To get our answer, just normalize this!

• That 's it!

General Variable Elimination

• Query:
$$P(Q|E_1 = e_1, ..., E_k = e_k)$$

• Start with initial factors:

o Local CPTs (but instantiated by evidence)

- While there are still hidden variables (not Q or evidence):
 - o Pick a hidden variable H
 - o Join all factors mentioning H
 - o Eliminate (sum out) H
- Join all remaining factors and normalize

Example

 $P(B|j,m) \propto P(B,j,m)$

$$P(B)$$
 $P(E)$ $P(A|B,E)$ $P(j|A)$ $P(m|A)$

 $P(B|j,m) \propto P(B,j,m)$

- $=\sum_{a,a} P(B, j, m, e, a)$
- $=\sum_{a=1}^{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$
- $=\sum_{e}^{e,a} P(B)P(e)\sum_{a} P(a|B,e)P(j|a)P(m|a)$
- $= \sum_{e}^{e} P(B)P(e)f_1(j,m|B,e)$ $= P(B)\sum_{e}^{e} P(e)f_1(j,m|B,e)$ $= P(B)f_2(j,m|B)$

marginal can be obtained from joint by summing

Α

Μ

use Bayes' net joint distribution expression

use
$$x^*(y+z) = xy + xz$$

joining on a, and then summing out gives f_1

use
$$x^*(y+z) = xy + xz$$

joining on e, and then summing out gives f_2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Example

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B) \quad P(E) \quad P(A|B,E) \quad P(j|A) \quad P(m|A)$$

$$(j \quad M)$$
Choose A
$$P(A|B,E)$$

$$P(A|B, E)$$

$$P(j|A)$$

$$P(m|A)$$

$$P(m|A)$$

$$P(j, m, A|B, E)$$

$$P(j, m|B, E)$$

$$P(B)$$
 $P(E)$ $P(j,m|B,E)$

Example

Variable Elimination Example

Query: $P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$

Variable Elimination Ordering

For the query P(X_n|y₁,...,y_n) work through the following two different orderings as done in previous slide: Z, X₁, ..., X_{n-1} and X₁, ..., X_{n-1}, Z. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2ⁿ versus 2 (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - o E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - o **No!**

"Easy" Structures: Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 Try it!!