
CS 188: Artificial Intelligence

Bayesian Networks

Instructor: Evgeny Pobachienko — UC Berkeley
[Slides credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, Satish Rao, and many others]



Recall: Random Variables

o Recall: random variable is some aspect of the world about which 
we (may) have uncertainty

o R = Is it raining?

o T = Is it hot?

o D = How long will it take to drive to work?

o Capital letters: Random variables

o Lowercase letters: values that the R.V. can take
o r ∈ {+r, –r}

o t ∈ {+t, –t}

o d ∈ [0, ∞)



Probability Distributions

o Associate a probability with each value

o Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

▪ Weather: 



Joint Distributions

o A joint distribution over a set of random variables:
specifies a real number for each assignment (or outcome): 

o Must obey: (non-negativity)

(normalization)

o Size of distribution if n variables with domain sizes d?

o For all but the smallest distributions, impractical to write out!

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

~h ~s

h s

U



AI to teach AI



Marginal Distributions

o Marginal distributions are sub-tables which eliminate variables 

o Marginalization (summing out): Combine collapsed rows by 
adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

~h ~s

h s

U

𝑃 ℎ = 𝑃 ℎ, 𝑠 + 𝑃(ℎ, ~𝑠) 𝑃 𝑠|ℎ =
𝑃(𝑠, ℎ)

𝑃(ℎ)

~h ~s

h s

U

~h ~s

h s

U



Conditional Distributions

o Conditional distributions are probability distributions 
over some variables given fixed values of others

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Conditional Distributions
Joint Distribution



Normalization Trick

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6



SELECT the joint 
probabilities 
matching the 

evidence

Normalization Trick

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6

T W P

cold sun 0.2

cold rain 0.3

NORMALIZE the selection
(make it sum to one)



o (Dictionary) To bring or restore to a normal condition

o Procedure:
o Step 1: Compute Z = sum over all entries

o Step 2: Divide every entry by Z

o Example

To Normalize

All entries sum to ONE

W P

sun 0.2

rain 0.3 Z = 0.5

W P

sun 0.4

rain 0.6

Normalize



Probabilistic Inference

o Probabilistic inference: compute a desired 
probability from other known probabilities 
(e.g. conditional from joint)

o Probabilities change with new evidence:
o P(on time | no accidents, 5 a.m.) = 0.95

o P(on time | no accidents, 5 a.m., raining) = 0.80

o Observing new evidence causes beliefs to be updated



Inference by Enumeration

o P(W)? S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



Inference by Enumeration

o P(W)? S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



Inference by Enumeration

o P(W)? S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



Inference by Enumeration

o P(W)? S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

P(sun)=.3+.1+.1+.15=.65



Inference by Enumeration

o P(W)? S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

P(sun)=.3+.1+.1+.15=.65

P(rain)=1-.65=.35



Inference by Enumeration

o P(W | winter, hot)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



Inference by Enumeration

o P(W | winter, hot)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

P(sun|winter,hot)~.1

P(rain|winter,hot)~.05



Inference by Enumeration

o P(W | winter, hot)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

P(sun|winter,hot)~.1

P(rain|winter,hot)~.05

P(sun|winter,hot)=2/3

P(rain|winter,hot)=1/3



Inference by Enumeration

o General case:
o Evidence variables: 
o Query* variable:
o Hidden variables: All variables

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize



Independence



o Two variables are independent if:

o This says that their joint distribution factors into a product of two 
simpler distributions

o Another form:

o We write: 

o Independence is a simplifying modeling assumption

o Empirical joint distributions: at best “close” to independent

o What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence



Independence

~h

~s

h

s

U ~h

~s

h

s

U

𝑃 𝑠, ℎ = 𝑃 𝑠|ℎ ∗ 𝑃(ℎ)

𝑃 𝑠|ℎ =
𝑃(𝑠, ℎ)

𝑃(ℎ)



Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Example: Independence

o N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5



Conditional Independence



Conditional Independence

o Unconditional (absolute) independence very rare (why?)

o Conditional independence is our most basic and robust 
form of knowledge about uncertain environments.

o (X is conditionally independent of Y) given Z

if and only if:

or, equivalently, if and only if



Conditional Independence

o Unconditional (absolute) independence very rare (why?)

o Conditional independence is our most basic and robust 
form of knowledge about uncertain environments.

o (X is conditionally independent of Y) given Z

if and only if:

or, equivalently, if and only if



Conditional Independence

o What about this domain:

o Traffic
o Umbrella
o Raining



Conditional Independence

o What about this domain:

o Fire
o Smoke
o Alarm



Conditional Independence and the Chain Rule

o Chain rule: 

o Trivial decomposition:

o With assumption of conditional independence:

o Bayesian Networks/graphical models help us express conditional independence 
assumptions



Bayesian Networks: The Big Picture



Bayesian Networks: The Big Picture

o Two problems with using full joint distribution 
tables as our probabilistic models:
o Unless there are only a few variables, the joint is WAY 

too big to represent explicitly
o Hard to learn (estimate) anything empirically about 

more than a few variables at a time

o Bayesian Networks: a technique for describing 
complex joint distributions (models) using 
simple, local distributions (conditional 
probability tables, or CPTs)
o More properly called graphical models
o We describe how variables locally interact
o Local interactions chain together to give global, indirect 

interactions



Example Bayes Net: Insurance



Graphical Model Notation

o Nodes: variables (with domains)
o Can be assigned (observed) or unassigned 

(unobserved)

o Arcs: interactions
o MAY indicate influence between variables
o Formally: encode conditional independence 

relationships (more later)

o For now: arrows mean that there may be a 
causal relationship between the two 
variables



Bayes Net Semantics

o A set of nodes, one per variable X

o A directed, acyclic graph

o A conditional distribution for each node

o A collection of distributions over X, one for 
each combination of parents’ values

o CPT: conditional probability table

o Description of a potentially “causal” process

A

1

X

A

n

A Bayes net = Topology (graph) + Local Conditional Probabilities



Example Bayes Net: Car



Example: Coin Flips

o N independent coin flips

o No interactions between variables: absolute independence

X1 X2 Xn



Example: Traffic

o Variables:
o R: It rains

o T: There is traffic

o Model 1: independence

o Why is an agent using model 2 better?

R

T

R

T

▪ Model 2: rain may cause traffic



Bayes Net: DAG + CPTs



Example: Alarm Network

o Variables
o B: Burglary

o A: Alarm goes off

o M: Mary calls

o J: John calls

o E: Earthquake!



Example: Alarm Network

o Variables
o B: Burglary

o A: Alarm goes off

o M: Mary calls

o J: John calls

o E: Earthquake!

Burglary Earthqk

Alarm

John 
calls

Mary 
calls



Example: Humans

o G: human’s goal / human’s reward parameters

o S: state of the physical world

o A: human’s action

47



o Variables
o T: Traffic

o R: It rains

o L: Low pressure

o D: Roof drips

o B: Ballgame

o C: Cavity

Example: Traffic II



Bayesian Network Semantics



Probabilities in BNs

o Bayes nets implicitly encode joint distributions

o As a product of local conditional distributions

o To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

o Example:



Probabilities in BNs

o Why are we guaranteed that setting

results in a proper joint distribution?  

o Chain rule (valid for all distributions): 

o Assume conditional independences: 

🡪 Consequence:

o Not every BN can represent every joint distribution

o The topology enforces certain conditional independencies



Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

P(h)P(h)P(t)P(h)



Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

P(+r)P(-t|+r) = ¼* ¼  



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

P(M|A)P(J|A)

P(A|B,E)P(E)

P(B)



Example: Traffic

o Causal direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Example: Reverse Traffic

o Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Causality?

o When Bayes’ nets reflect the true causal patterns:
o Often simpler (nodes have fewer parents)
o Often easier to think about
o Often easier to elicit from experts

o BNs need not actually be causal
o Sometimes no causal net exists over the domain 

(especially if variables are missing)
o E.g. consider the variables Traffic and Drips
o End up with arrows that reflect correlation, not causation

o What do the arrows really mean?
o Topology may happen to encode causal structure
o Topology really encodes conditional independence



Conditional Independence Assumptions

o Each node, given its parents, is 
conditionally independent of all its 
non-descendants in the graph

Each node, given its MarkovBlanket, is 
conditionally independent of all other 
nodes in the graph

MarkovBlanket refers to the parents, 
children, and children's other parents.



Inference with Bayesian Networks



▪ Examples:

▪ Posterior probability

▪ Most likely explanation:

Inference

o Inference: calculating some 
useful quantity from a joint 
probability distribution



Inference by Enumeration

o General case:
o Evidence variables: 
o Query variable:
o Hidden variables: All variables

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize



Inference by Enumeration in Bayes’ Net

o Given unlimited time, inference in BNs is easy B E

A

MJ

𝑃 𝐴 𝐵, 𝐸 𝑃 𝐵 𝑃 𝐸 = 𝑃 𝐴 𝐵, 𝐸 𝑃 𝐵, 𝐸 = 𝑃(𝐴, 𝐵, 𝐸)



Inference by Enumeration in Bayes’ Net

o Given unlimited time, inference in BNs is easy

A,B,E
𝑃 𝐴 𝐵, 𝐸 𝑃 𝐵 𝑃 𝐸 = 𝑃 𝐴 𝐵, 𝐸 𝑃 𝐵, 𝐸 = 𝑃(𝐴, 𝐵, 𝐸)

MJ



Inference by Enumeration in Bayes’ Net

o Given unlimited time, inference in BNs is easy

A,B,E𝑃 𝐴 𝐵, 𝐸 𝑃 𝐵 𝑃 𝐸 = 𝑃 𝐴 𝐵, 𝐸 𝑃 𝐵, 𝐸 = 𝑃(𝐴, 𝐵, 𝐸)

= 𝑃(𝐽,𝑀, 𝐴, 𝐵, 𝐸)

B E

A

MJ

𝑃 𝐽 𝐴 𝑃 𝑀 𝐴 𝑃 𝐴, 𝐵, 𝐸

= 𝑃 𝐽,𝑀 𝐴 𝑃 𝐴, 𝐵, 𝐸
= 𝑃 𝐽,𝑀 𝐴, 𝐵, 𝐸 𝑃 𝐴, 𝐵, 𝐸



Inference by Enumeration in Bayes’ Net

o Given unlimited time, inference in BNs is easy B E

A

MJ



Example: Traffic Domain

o Random Variables
o R: Raining

o T: Traffic

o L: Late for class! T

L

R
+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9



Inference by Enumeration: Procedural Outline

o Track objects called factors

o Initial factors are local CPTs (one per node)

o Any known values are selected
o E.g. if we know                  , the initial factors are

o Procedure: Join all factors, then sum out all hidden variables

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9



Operation 1: Join Factors

o First basic operation: joining factors

o Combining factors:

o Just like a database join

o Get all factors over the joining variable

o Build a new factor over the union of the variables 
involved

o Example: Join on R

o Computation for each entry: pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T



Example: Multiple Joins



Example: Multiple Joins

T

R Join R

L

R, T

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L

+r +t +l 0.024

+r +t -l 0.056

+r -t +l 0.002

+r -t -l 0.018

-r +t +l 0.027

-r +t -l 0.063

-r -t +l 0.081

-r -t -l 0.729

Join T



Operation 2: Eliminate

o Second basic operation: 
marginalization

o Take a factor and sum out a variable

o Shrinks a factor to a smaller one

o A projection operation

o Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83



Multiple Elimination

Sum
out R

Sum
out T

T, L LR, T, L

+r +t +l 0.024

+r +t -l 0.056

+r -t +l 0.002

+r -t -l 0.018

-r +t +l 0.027

-r +t -l 0.063

-r -t +l 0.081

-r -t -l 0.729

+t +l 0.051

+t -l 0.119

-t +l 0.083

-t -l 0.747

+l 0.134
-l 0.866



Thus Far: Multiple Join, Multiple Eliminate (= Inf by Enumeration)



Recap: Inference by Enumeration

o General case:
o Evidence variables: 
o Query* variable:
o Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the entries 
consistent with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize



Thus Far: Multiple Join, Multiple Eliminate (= Inference by 
Enumeration)

▪ Compute joint ▪ Sum out hidden variables

▪ [Step 3: Normalize]



Thus Far: Multiple Join, Multiple Eliminate (= Inference by 
Enumeration)



Inference by Enumeration vs. Variable Elimination

o Why is inference by enumeration slow?
o You join up the whole joint distribution before 

you sum out the hidden variables

▪ Idea: interleave joining and marginalizing!
▪ Called “Variable Elimination”

▪ Still NP-hard, but usually much faster than 
inference by enumeration



Traffic Domain

o Inference by EnumerationT

L

R

▪ Variable Elimination

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

Eliminate t



Traffic Domain

o Inference by EnumerationT

L

R

▪ Variable Elimination

(5𝑎) + (5𝑏) 5(𝑎 + 𝑏)



Marginalizing Early (Variable Elimination)



Variable Elimination



Evidence

o If evidence, start with factors that select that evidence
o No evidence uses these initial factors:

o Computing                        , the initial factors become:

o We eliminate all vars other than query + evidence

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+r 0.1 +r +t 0.8

+r -t 0.2

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9



Evidence

o Result will be a selected joint of query and evidence
o E.g. for P(L | +r), we would end up with:

o To get our answer, just normalize this!

o That ’s it!

+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize



General Variable Elimination

o Query:

o Start with initial factors:
o Local CPTs (but instantiated by evidence)

o While there are still hidden variables 
(not Q or evidence):
o Pick a hidden variable H

o Join all factors mentioning H

o Eliminate (sum out) H

o Join all remaining factors and 
normalize



Example

marginal can be obtained from joint by summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f1

use x*(y+z)  = xy + xz

joining on e, and then summing out gives f2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Example

Choose A



Example

Choose E

Finish with B

Normalize



Variable Elimination Example



Variable Elimination Ordering

o For the query P(Xn|y1,…,yn) work through the following two different 
orderings as done in previous slide: Z, X1, …, Xn-1 and X1, …, Xn-1, Z.  
What is the size of the maximum factor generated for each of the 
orderings?

o Answer: 2n versus 2 (assuming binary)

o In general: the ordering can greatly affect efficiency.  

…

…



VE: Computational and Space Complexity

o The computational and space complexity of variable elimination is 
determined by the largest factor

o The elimination ordering can greatly affect the size of the largest 
factor.  
o E.g., previous slide’s example 2n vs. 2

o Does there always exist an ordering that only results in small 
factors?
o No!



“Easy” Structures: Polytrees

o A polytree is a directed graph with no undirected cycles

o For poly-trees you can always find an ordering that is efficient 
o Try it!!
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