## Bayes Nets: Independence

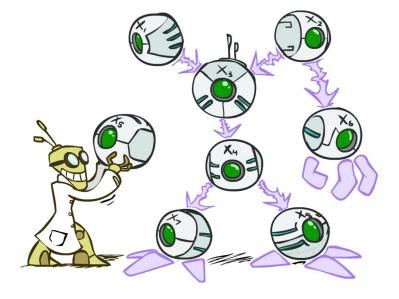


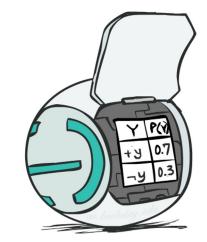
#### Instructor: Evgeny Pobachienko — UC Berkeley [Slides credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, Satish Rao, and many others]

# Bayesian Networks: Recall...

- A directed acyclic graph (DAG), one node per random variable
- A conditional probability table (CPT) for each node
  - Probability of X, given a combination of values for parents.  $P(X|a_1...a_n)$
- Bayes nets implicitly encode joint distributions as a product of local conditional distributions
  - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

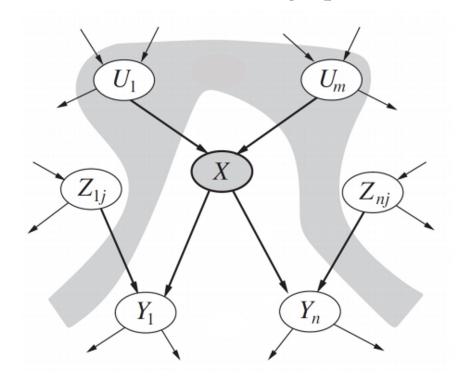
$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$



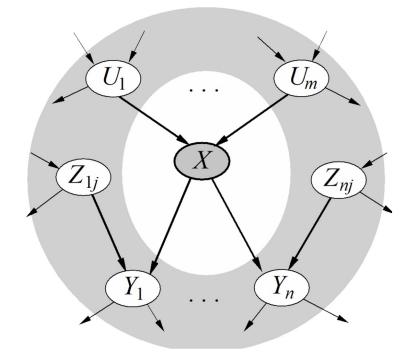


# Independence Assumptions so far...

 Each node, given its parents, is conditionally independent of all its non-descendants in the graph

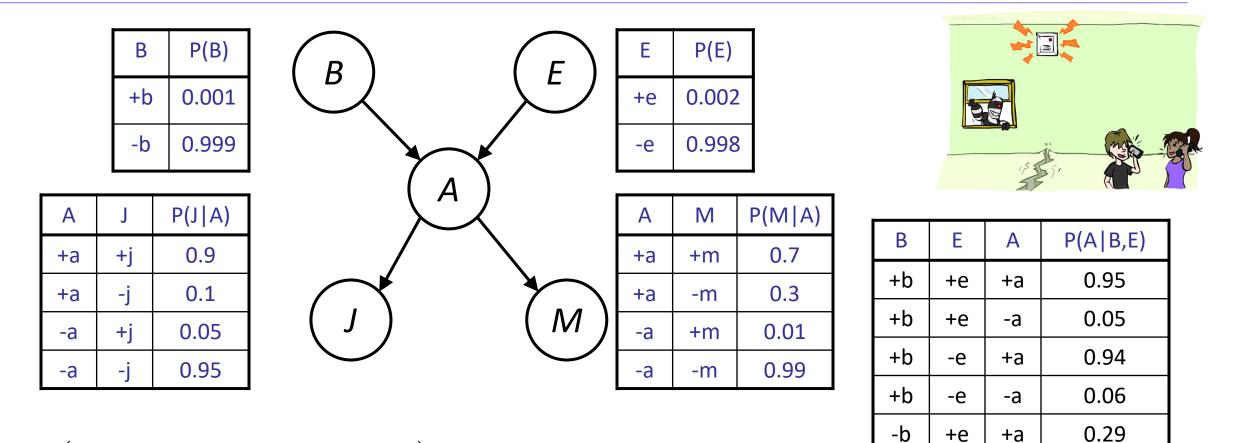


Each node, given its MarkovBlanket, is conditionally independent of all other nodes in the graph



MarkovBlanket refers to the parents, children, and children's other parents.

# Example: Alarm Network



-b

-b

-b

+e

-е

-e

-a

+a

-a

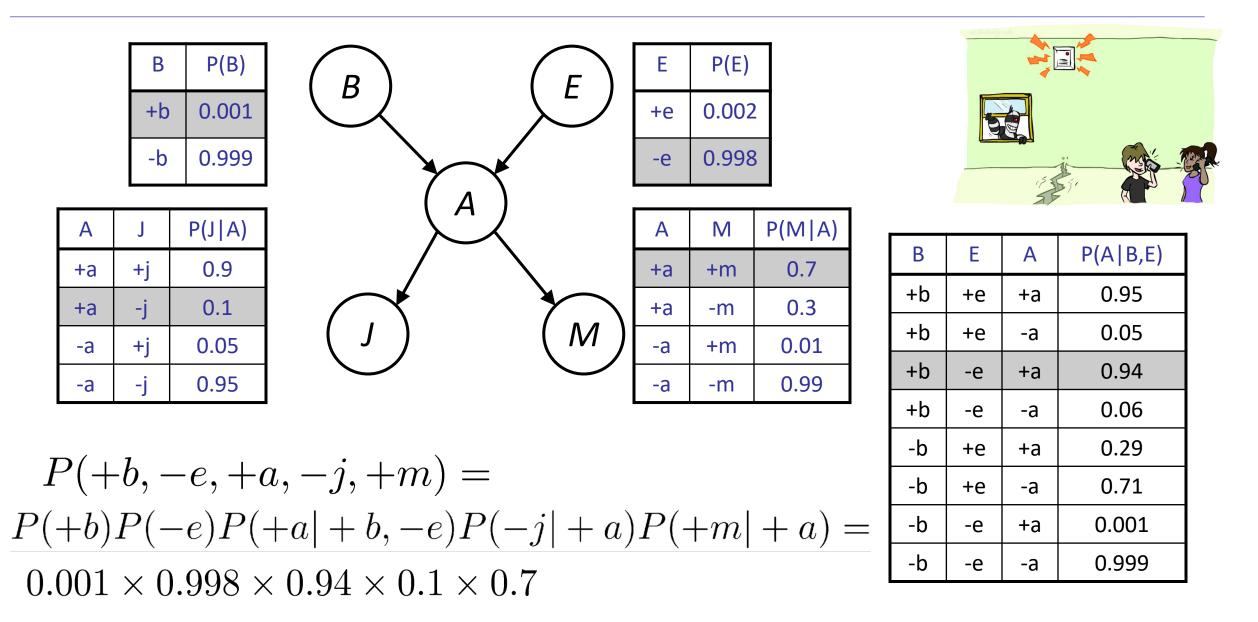
0.71

0.001

0.999

$$P(+b, -e, +a, -j, +m) =$$

# Example: Alarm Network



# **Conditional Independence**

• X and Y are independent iff

$$\forall x, y \ P(x, y) = P(x)P(y) \qquad \qquad X \bot\!\!\!\!\perp Y$$

• Given Z, we say X and Y are conditionally independent iff

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) \quad \neg \neg \rightarrow \quad X \perp Y|Z$$

o (Conditional) independence is a property of a distribution

• Example:

 $A larm \bot\!\!\!\!\perp Fire | Smoke$ 



# **Bayes Nets: Assumptions**

• Assumptions we are required to make to define the Bayes net when given the graph:

 $P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$ 

 Important for modeling: understand assumptions made when choosing a Bayes net graph



$$(x) \rightarrow (y) \rightarrow (z) \rightarrow (w)$$

• Conditional independence assumptions directly from simplifications in chain rule:  $X \perp\!\!\!\!\perp Z | Y \qquad P(x, y, z, w) = P(x)P(y|x)P(z|x, y)P(w|x, y, z)$  $W \perp\!\!\!\!\perp \{X, Y\} | Z \qquad P(x, y, z, w) = P(x)P(y|x)P(z|y)P(w|z)$ 

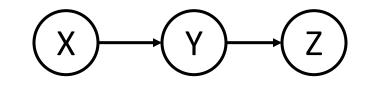
Additional implied conditional independence assumptions?

 $W \perp \!\!\!\perp X | Y$ 

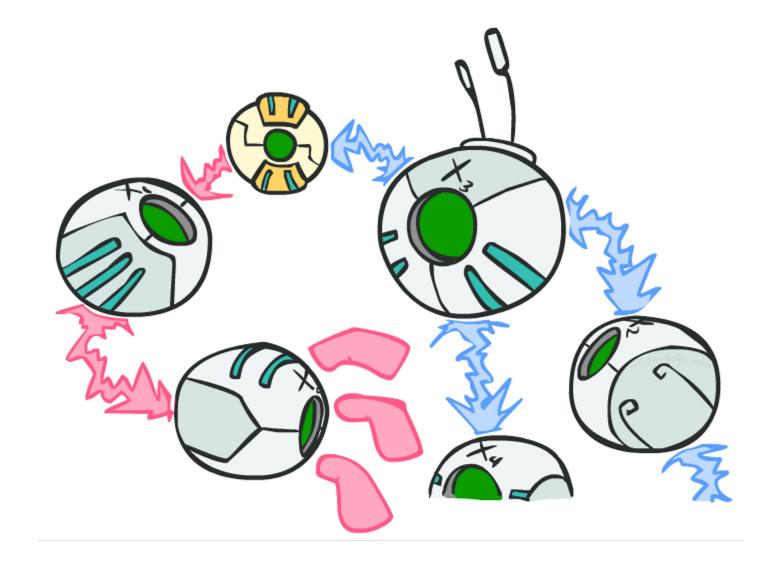
# Independence in a BN

#### • Important question about a BN:

- Are two nodes independent given certain evidence?
- Question: are X and Z guaranteed to be independent?
  - Answer: no. Example: low pressure causes rain, which causes traffic.
  - X can influence Z, Z can influence X (via Y)
  - Addendum: they *could* be independent: how?



### D-separation: Outline



### **D-separation:** Outline

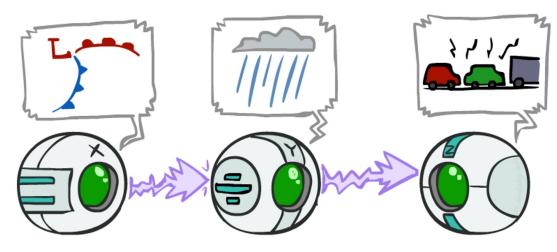
Study independence properties for triples
 Why triples?

• Analyze complex cases in terms of member triples

• D-separation: a condition / algorithm for answering such queries

## Causal Chains

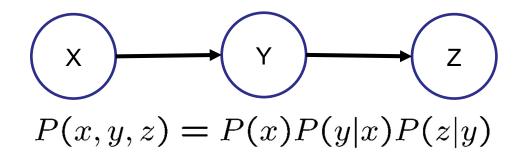
• This configuration is a "causal chain"



X: Low pressure



Z: Traffic



Y: Rain

Is X guaranteed to be independent of Z? *No!* 

One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed. Example:

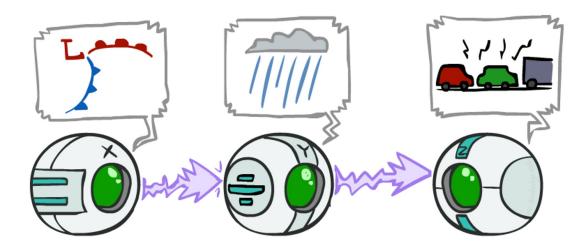
Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic

In numbers:

P(+y + x) = 1, P(-y + x) = 1, P(-y + x) = 1, P(+z + y) = 1, P(-z + y) = 1

### Causal Chains

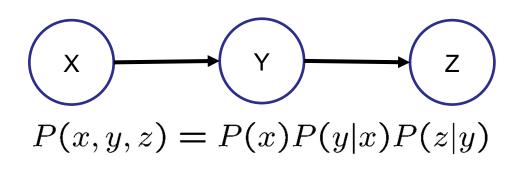
• This configuration is a "causal chain"



X: Low pressure



Z: Traffic



Given Y, is X guaranteed to be independent of Z?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$=\frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

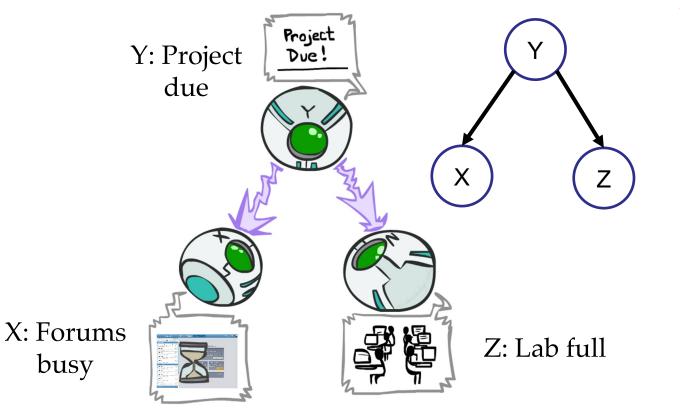
$$= P(z|y)$$

Yes!

Evidence along the chain "blocks" the influence

### Common Causes

• This configuration is a "common cause"



P(x, y, z) = P(y)P(x|y)P(z|y)

# Guaranteed X independent of Z ? *No!*

One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

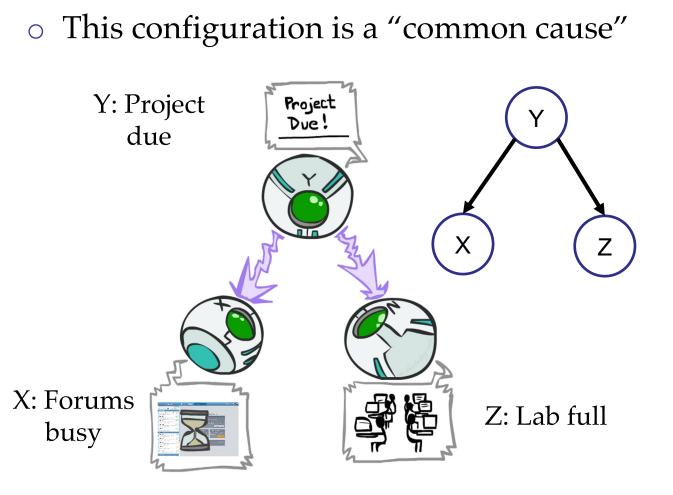
Example:

Project due causes both forums busy and lab full

In numbers:

$$\begin{array}{l} P(\ +x \ | \ +y \ ) = 1, \ P(\ -x \ | \ -y \ ) = 1, \\ P(\ +z \ | \ +y \ ) = 1, \ P(\ -z \ | \ -y \ ) = 1 \end{array}$$

### Common Cause



P(x, y, z) = P(y)P(x|y)P(z|y)

Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$=\frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

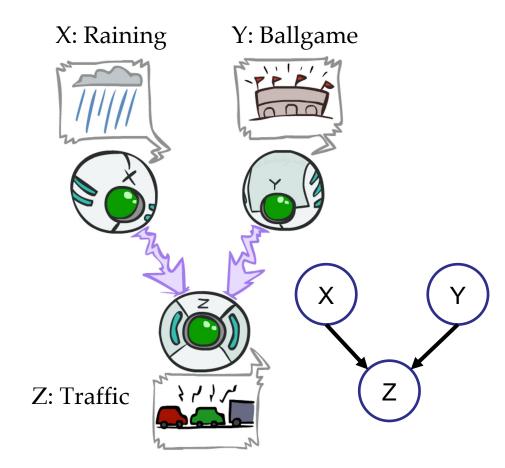
= P(z|y)

#### Yes!

Observing the cause blocks influence between effects.

### Common Effect

 Last configuration: two causes of one effect (v-structures)



#### Are X and Y independent?

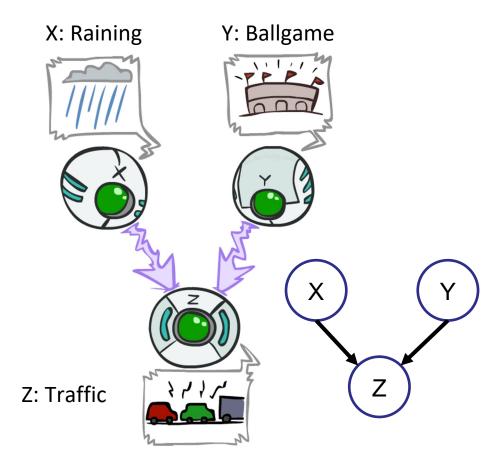
*Yes*: the ballgame and the rain cause traffic, but they are not correlated

Proof:

$$P(x,y) = \sum P(x,y,z)$$

## Common Effect

 Last configuration: two causes of one effect (v-structures)



#### Are X and Y independent?

- *Yes*: the ballgame and the rain cause traffic, but they are not correlated
- (Proved previously)

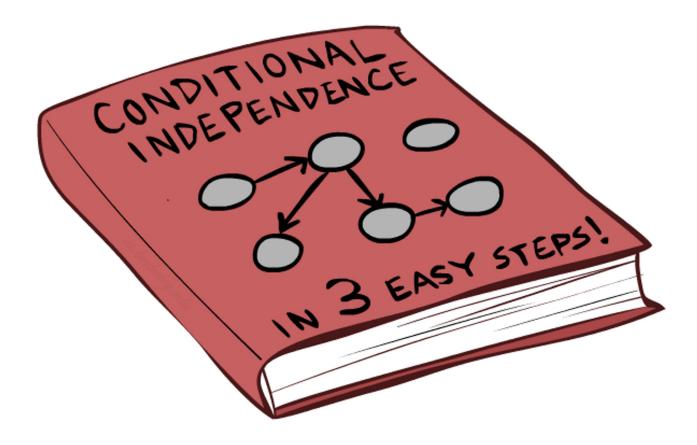
#### Are X and Y independent given Z?

*No*: seeing traffic puts the rain and the ballgame in competition as explanation.

#### This is backwards from the other cases

Observing an effect activates influence between possible causes.

#### The General Case

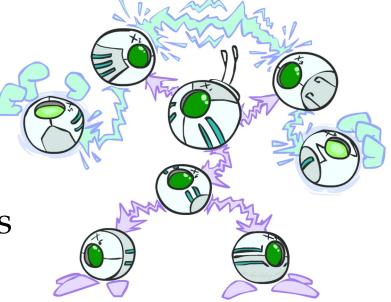


### The General Case

• General question: in a given BN, are two variables independent (given evidence)?

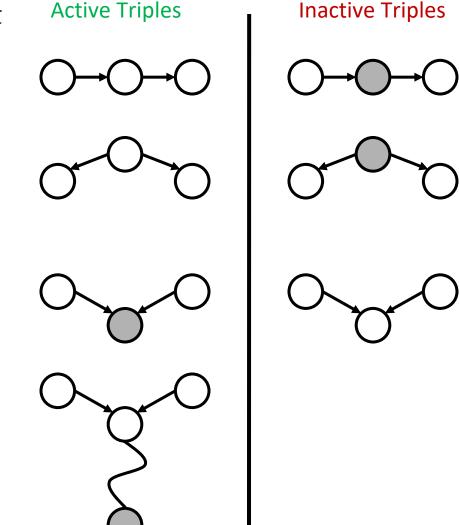
• Solution: analyze the graph

 Any complex example can be broken into repetitions of the three canonical cases



# Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
  - Yes, if X and Y "d-separated" by Z
  - Consider all (undirected) paths from X to Y
  - No active paths = independence!
- A path is active if each triple is active:
  - Causal chain A -> B -> C where B is unobserved (either direction)
  - Common cause A <- B -> C where B is unobserved
  - o Common effect (aka v-structure)
    - A -> B <- C where B *or one of its descendants* is observed
- All it takes to block a path is a single inactive segment



# **D**-Separation

Query: 
$$X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$
?

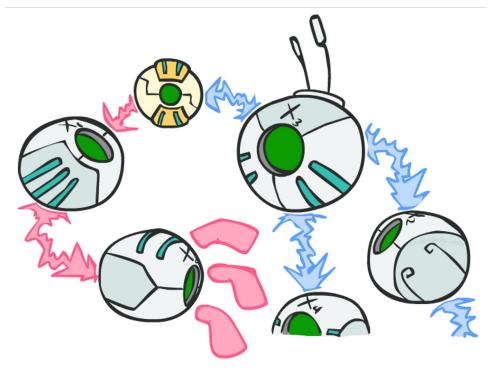
Check all (undirected!) paths between  $X_i$  and  $X_j$ 

If one or more active paths, then independence not guaranteed

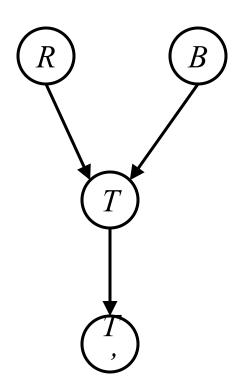
$$X_i \bowtie X_j | \{X_{k_1}, \dots, X_{k_n}\}$$

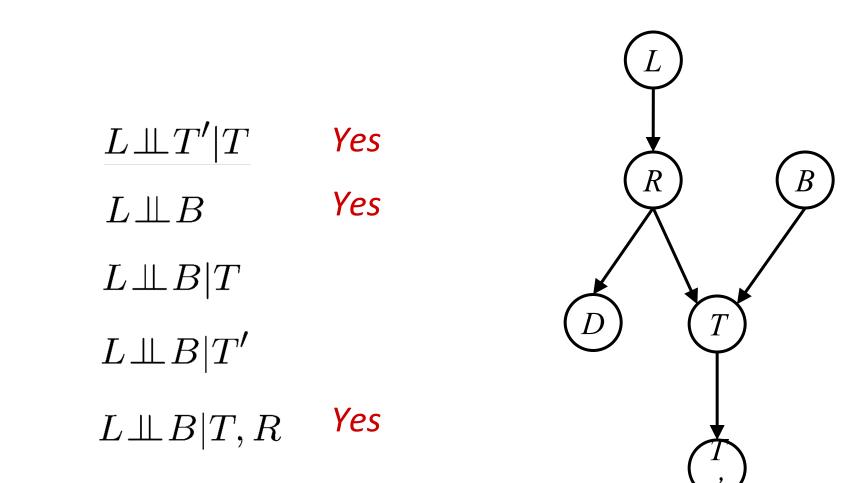
Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp \perp X_j | \{ X_{k_1}, \dots, X_{k_n} \}$$



 $\begin{array}{ll} R \bot B & \text{Yes} \\ R \bot B | T \\ R \bot B | T' \end{array}$ 

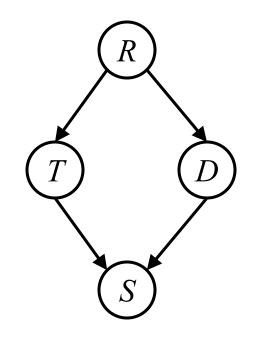




Variables:
Reaining
T: Raining
T: Traffic
D: Roof drips
S: I'm sad

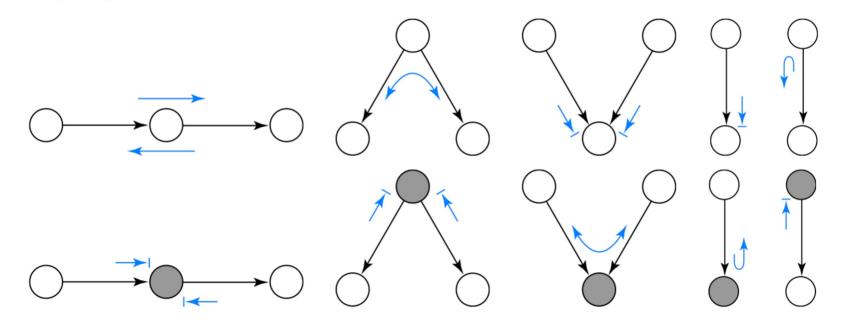
Ouestions:

 $T \perp\!\!\!\perp D$  $T \perp\!\!\!\perp D | R \qquad Yes$  $T \perp\!\!\!\perp D | R, S$ 



## Another Perspective: Bayes Ball

An undirected path is active if a Bayes ball travelling along it never encounters the "stop" symbol:  $\longrightarrow$ 



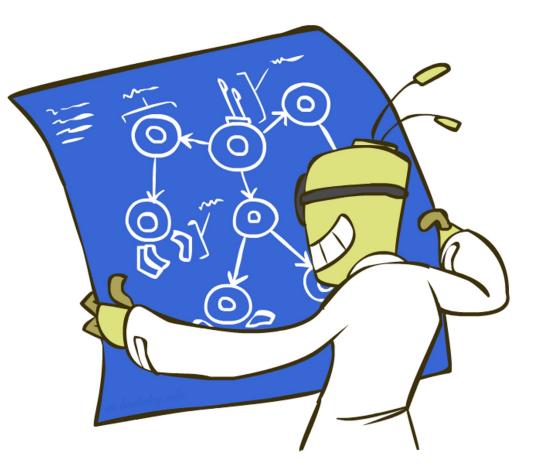
If there are no active paths from X to Y when  $\{Z_1, \ldots, Z_k\}$  are shaded, then  $X \perp \!\!\!\perp Y \mid \{Z_1, \ldots, Z_k\}.$ 

# Structure Implications

 Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

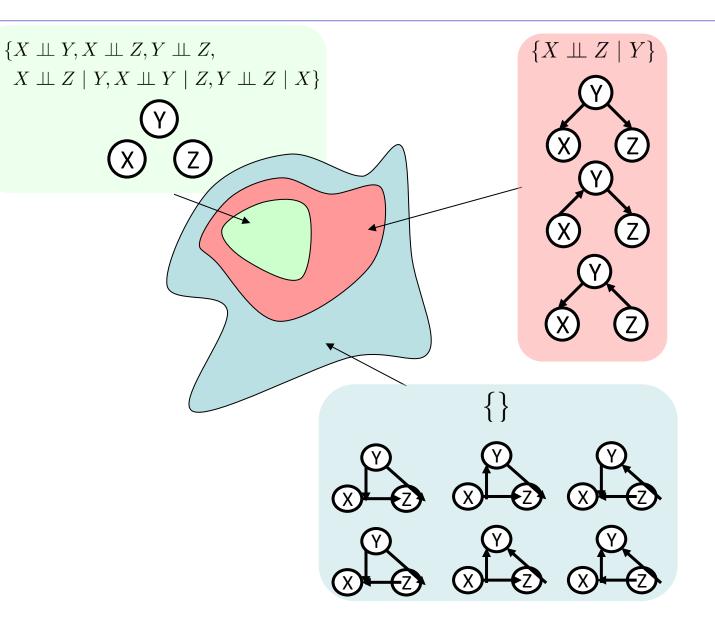
$$X_i \perp \!\!\!\perp X_j | \{ X_{k_1}, ..., X_{k_n} \}$$

• This list determines the set of probability distributions that can be represented



# **Topology Limits Distributions**

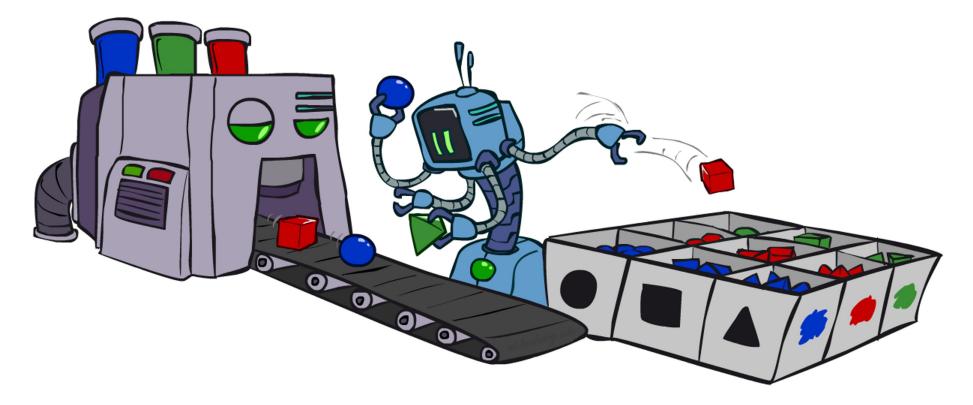
- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution



#### Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions (by making use of conditional independences!)
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

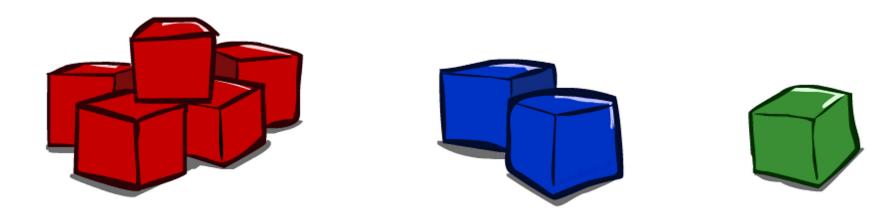
# Bayesian Networks: Sampling



#### Instructor: Evgeny Pobachienko – UC Berkeley

[Slides credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, Ketrina Yim, and many others]

# Approximate Inference: Sampling



# Sampling

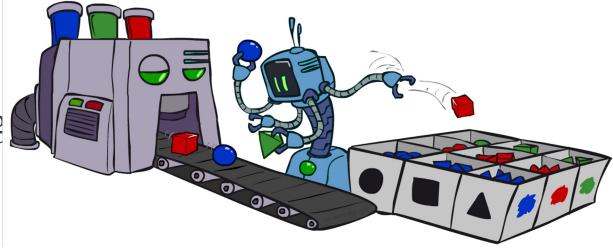
- Sampling is a lot like repeated simulation
  - Predicting the weather, basketball games, ...

#### Why sample?

Learning: get samples from a distribution you don't know Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

#### Basic idea

- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true



# Sampling

- Sampling from given distribution
  - Step 1: Get sample *U* from uniform distribution over [0, 1)

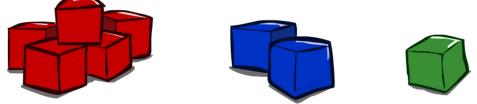
• E.g. random() in python

 Step 2: Convert this sample *U* into an outcome for the given distribution by having each target outcome associated with a subinterval of [0,1) with sub-interval size equal to probability of the outcome

#### Example

 $\begin{array}{l} 0 \leq u < 0.6, \rightarrow C = red \\ 0.6 \leq u < 0.7, \rightarrow C = green \\ 0.7 \leq u < 1, \rightarrow C = blue \end{array}$ 

If random() returns u = 0.83, then our sample is C = blue E.g, after sampling 8 times:



# Sampling in Bayes' Nets

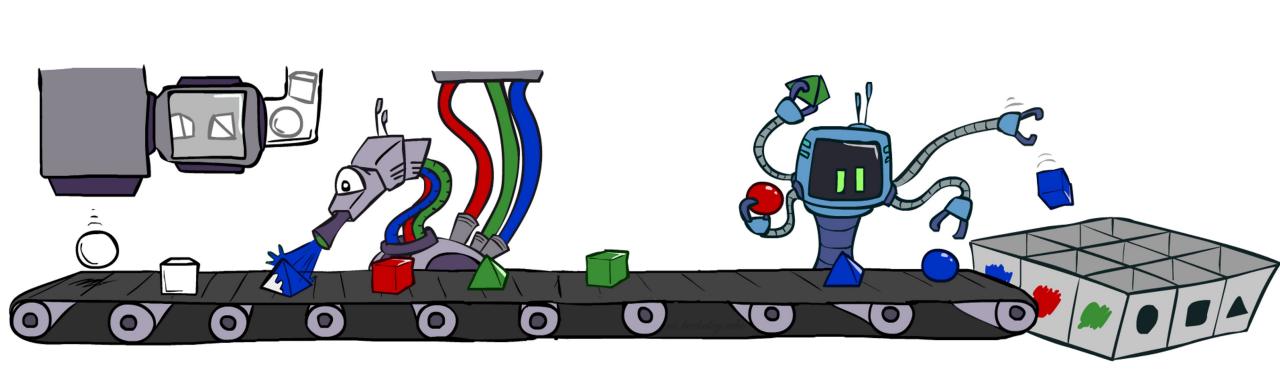
• Prior Sampling

Rejection Sampling

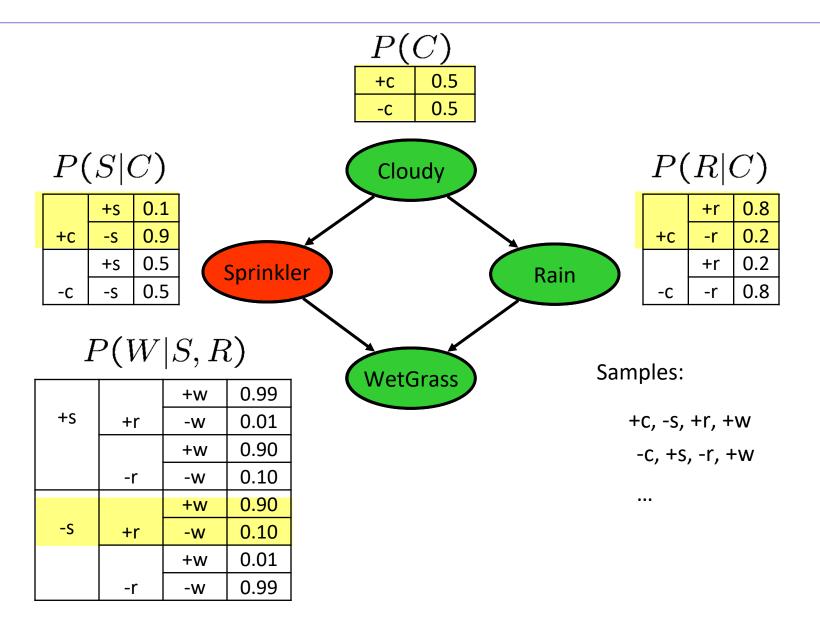
Likelihood Weighting

o Gibbs Sampling

# Prior Sampling



# Prior Sampling

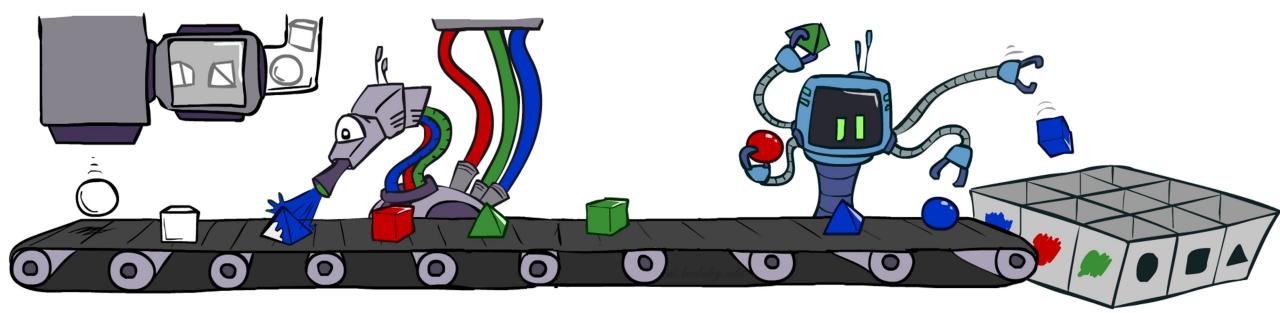


# Prior Sampling

 $\bigcirc$  For i = 1, 2, ..., n in topological order

O Sample  $x_i$  from  $P(X_i | Parents(X_i))$ 

• Return  $(x_1, x_2, ..., x_n)$ 



## Prior Sampling

• This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$

...i.e. the BN's joint probability

• Let the number of samples of an event be  $N_{PS}(x_1...x_n)$ • Then  $\lim_{N \to \infty} \hat{P}(x_1,...,x_n) = \lim_{N \to \infty} N_{PS}(x_1,...,x_n)/N$   $= S_{PS}(x_1,...,x_n)$  $= P(x_1...x_n)$ 

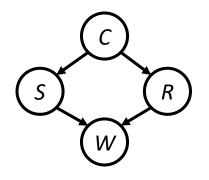
• I.e., the sampling procedure is **consistent** 

## Example

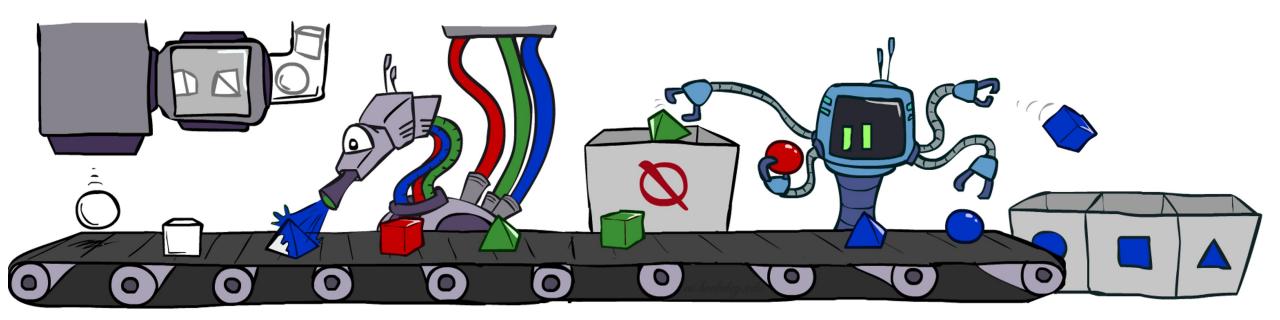
• We'll get a bunch of samples from the BN:

- +c, -s, +r, +w +c, +s, +r, +w -c, +s, +r, -w
- +c, -s, +r, +w
- -c, -s, -r, +w
- If we want to know P(W)
  - We have counts <+w:4, -w:1>
  - o Normalize to get  $P(W) = \langle +w:0.8, -w:0.2 \rangle$

 $\circ$  This will get closer to the true distribution with more samples  $\circ$  What about P(C | +r, +w)?

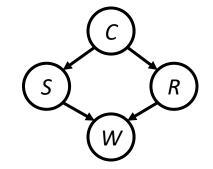


### Rejection Sampling



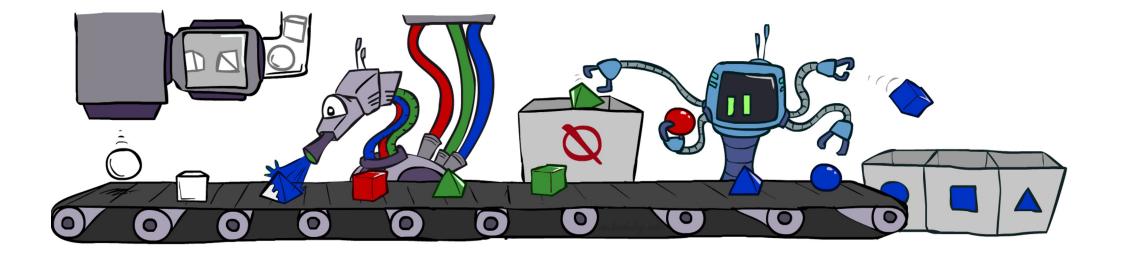
### **Rejection Sampling**

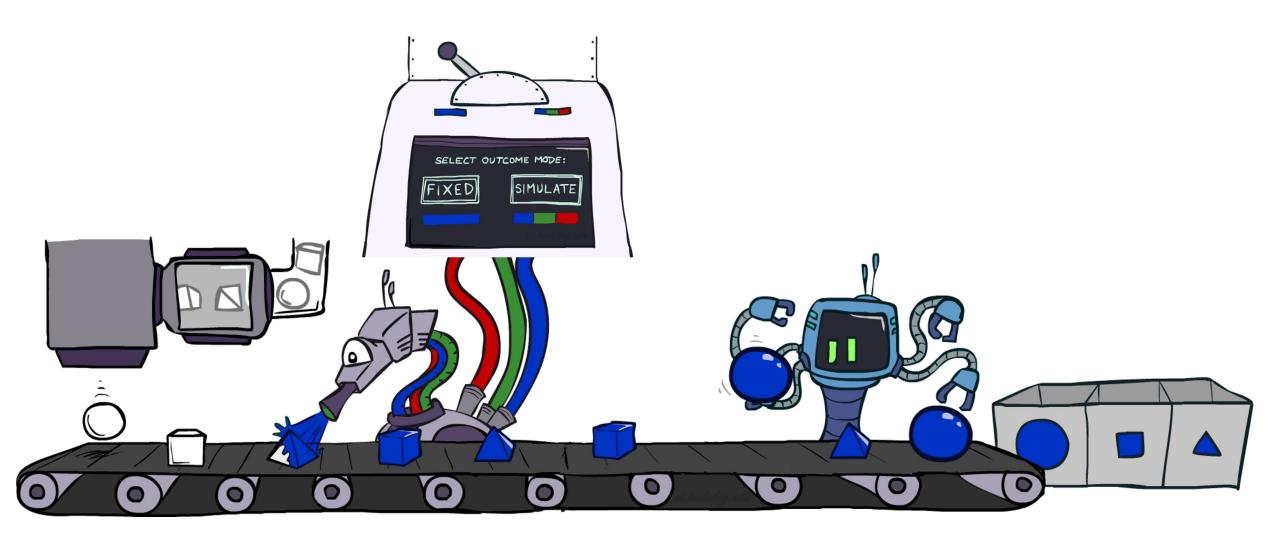
- Let's say we want P(C)
  Just tally counts of C as we go
- Let's say we want P(C | +s)
   Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
  - We can toss out samples early!
  - It is also consistent for conditional probabilities (i.e., correct in the limit)



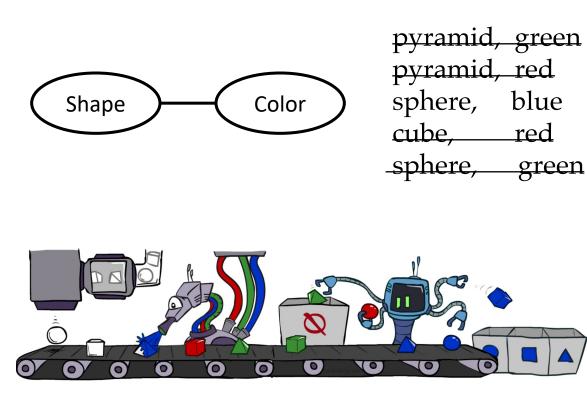
## **Rejection Sampling**

- Input: evidence instantiation
- For i = 1, 2, ..., n in topological order
  - Sample  $x_i$  from  $P(X_i | Parents(X_i))$
  - $\circ~$  If  $x_i$  not consistent with evidence
    - Reject: return no sample is generated in this cycle
- Return  $(x_1, x_2, ..., x_n)$



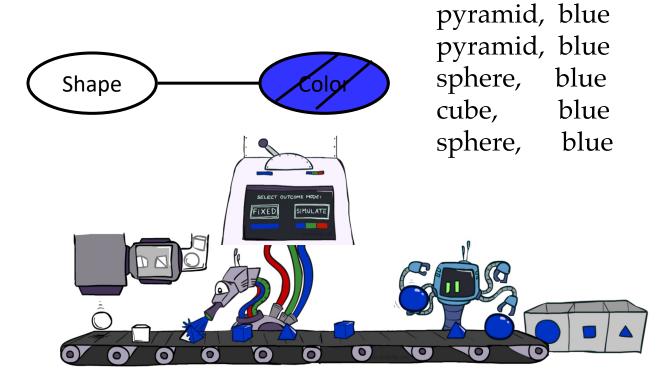


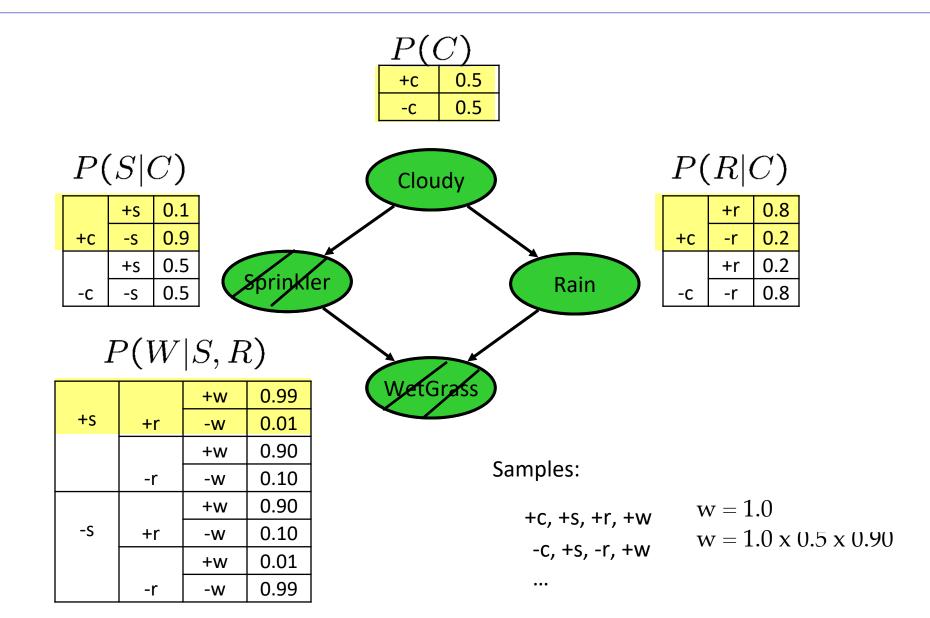
- Problem with rejection sampling:
   If evidence is unlikely, rejects lots of samples
  - Consider P(Shape | blue)



Idea: fix evidence variables and sample the rest

Problem: sample distribution not consistent! Solution: weight by probability of evidence given parents





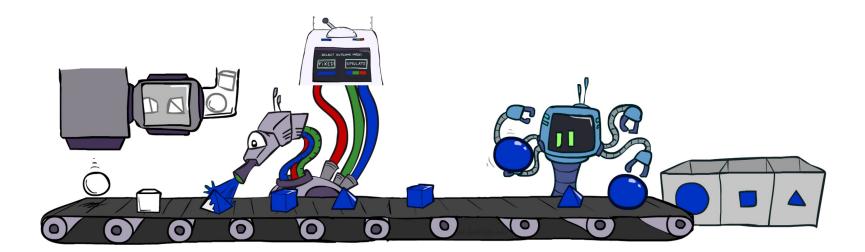
Input: evidence instantiation
w = 1.0
for i = 1, 2, ..., n in topological order

if X<sub>i</sub> is an evidence variable
X<sub>i</sub> = observation x<sub>i</sub> for X<sub>i</sub>
Set w = w \* P(x<sub>i</sub> | Parents(X<sub>i</sub>))

else

Sample x<sub>i</sub> from P(X<sub>i</sub> | Parents(X<sub>i</sub>))

return (x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>), w



• Sampling distribution if z sampled and e fixed evidence

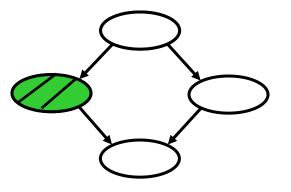
$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

• Now, samples have weights

Ο

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$





$$S_{\text{WS}}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$$
$$= P(z, e)$$

IXED

SIMULATI

#### Likelihood weighting is good

- o All samples are used
- More of our samples will reflect the state of the world suggested by the evidence
- Values of downstream variables are influenced by upstream evidence

## Likelihood weighting doesn't solve all our problems

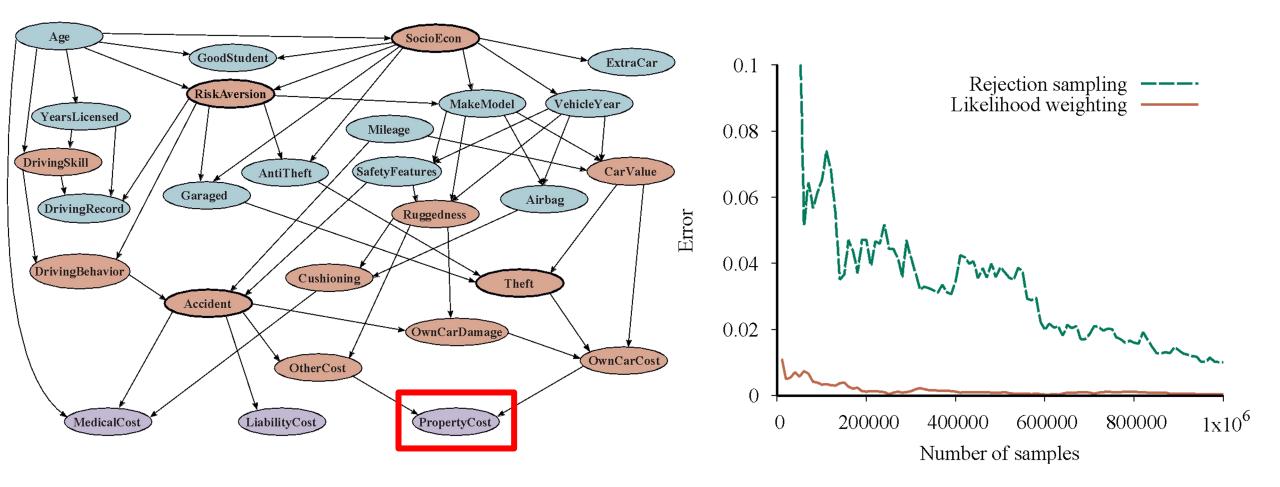
- The values of upstream variables are unaffected by downstream evidence
- With evidence in k leaf nodes, weights will be  $O(2^{-k})$
- With high probability, one lucky sample will have much larger weight than the others, dominating the result

S

R

We would like to consider evidence when we sample every variable (leads to Gibbs sampling)

## Example: Car Insurance: *P*(*PropertyCost* | *e*)



## Gibbs Sampling



### Markov Chain Monte Carlo

- Gibbs sampling is a MCMC technique (Metropolis-Hastings)
- MCMC (Markov chain Monte Carlo) is a family of randomized algorithms for approximating some quantity of interest over a very large state space
  - Markov chain = a sequence of randomly chosen states ("random walk"), where each state is chosen conditioned on the previous state
  - Monte Carlo = a very expensive city in Monaco with a famous casino
  - Monte Carlo = an algorithm (usually based on sampling) that has some probability of producing an incorrect answer
- MCMC = wander around for a bit, average what you see

## Gibbs sampling

#### • A particular kind of MCMC

- o States are complete assignments to all variables
  - o (local search: closely related to simulated annealing!)
- o Evidence variables remain fixed, other variables change
- To generate the next state, pick a variable and sample a value for it conditioned on all the other variables:  $X_i' \sim P(X_i | x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$ 
  - Will tend to move towards states of higher probability, but can go down too

• In a Bayes net,  $P(X_i | x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) = P(X_i | markovblanket(X_i))$ 

### Theorem: Gibbs sampling is consistent\*

• Provided all Gibbs distributions are bounded away from 0 and 1 and variable selection is fair

## Gibbs Sampling Example: P( S | +r)

+r

W

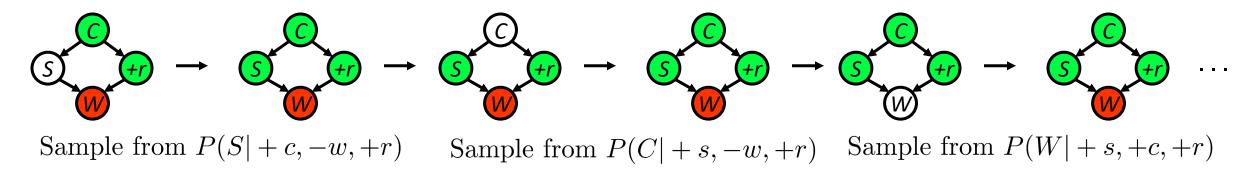
• Step 1: Fix evidence • R = +r

Steps 3: Repeat:

Choose a non-evidence variable X

Resample X from P( X | MarkovBlanket(X))

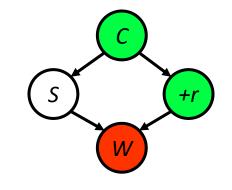
Step 2: Initialize other variables Randomly



## Resampling of One Variable

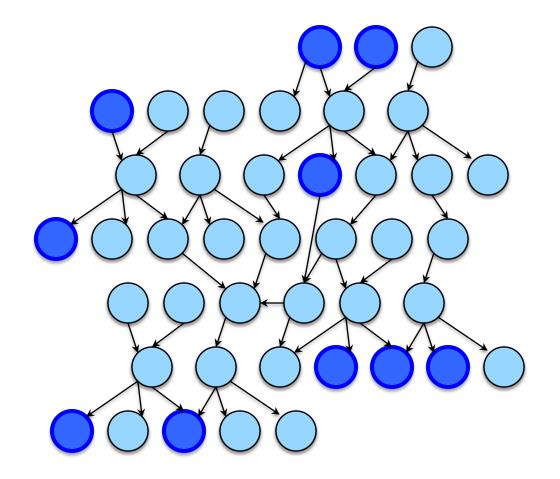
• Sample from P(S | +c, +r, -w)

$$\begin{split} P(S|+c,+r,-w) &= \frac{P(S,+c,+r,-w)}{P(+c,+r,-w)} \\ &= \frac{P(S,+c,+r,-w)}{\sum_s P(s,+c,+r,-w)} \\ &= \frac{P(+c)P(S|+c)P(+r|+c)P(-w|S,+r)}{\sum_s P(+c)P(s|+c)P(+r|+c)P(-w|S,+r)} \\ &= \frac{P(+c)P(S|+c)P(+r|+c)P(-w|S,+r)}{P(+c)P(+r|+c)\sum_s P(s|+c)P(-w|S,+r)} \\ &= \frac{P(S|+c)P(-w|S,+r)}{\sum_s P(s|+c)P(-w|S,+r)} \end{split}$$



- Many things cancel out only CPTs with S remain!
- More generally: only CPTs that have resampled variable need to be considered, and joined together

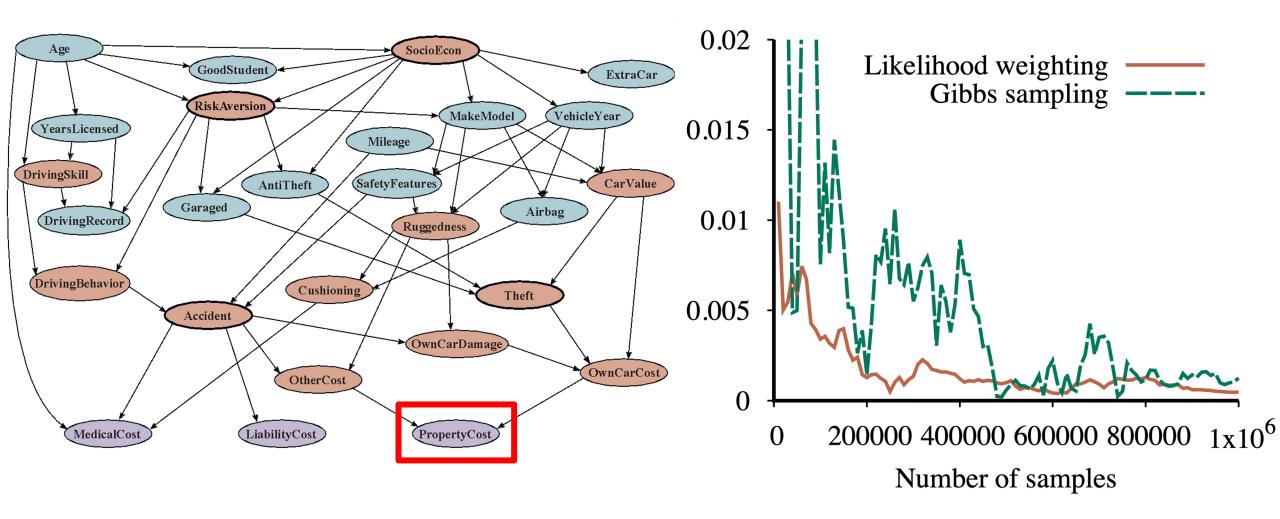
## Why would anyone do this?



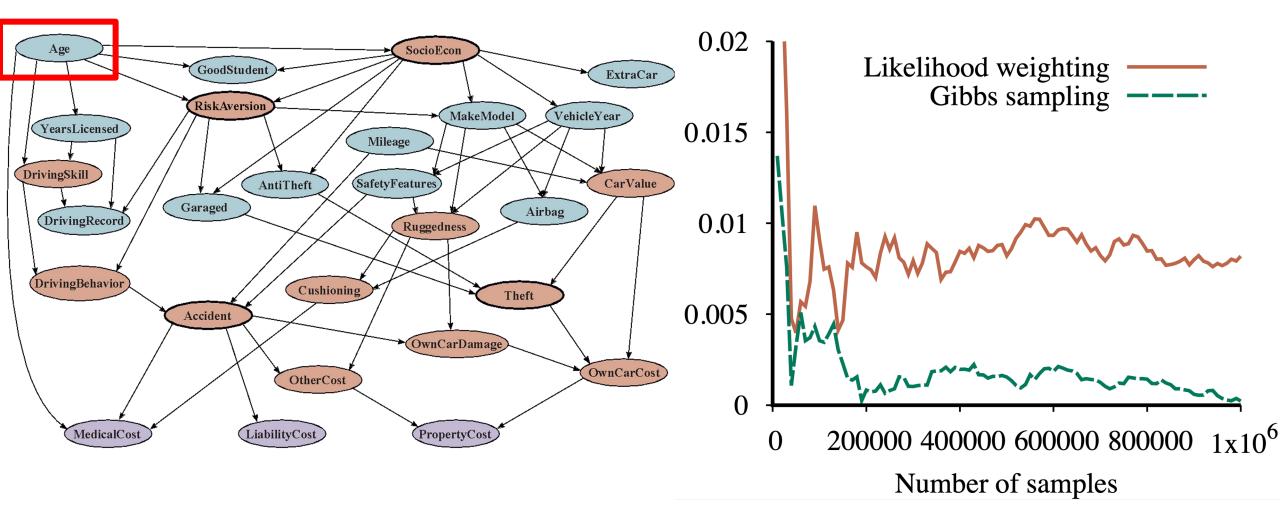
Samples soon begin to reflect all the evidence in the network

Eventually they are being drawn from the true posterior!

### Car Insurance: *P*(*PropertyCost* | *e*)



### Car Insurance: *P*(*Age* | *costs*)



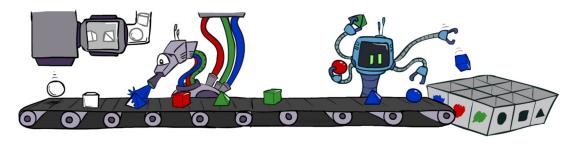
## Why does it work? (see AIMA 13.4.2 for details)

- Suppose we run it for a long time and predict the probability of reaching any given state at time  $t: \pi_t(x_1, ..., x_n)$  or  $\pi_t(\underline{x})$
- Each Gibbs sampling step (pick a variable, resample its value) applied to a state  $\underline{\mathbf{x}}$  has a probability  $k(\underline{\mathbf{x}'} \mid \underline{\mathbf{x}})$  of reaching a next state  $\underline{\mathbf{x}'}$
- So  $\pi_{t+1}(\underline{\mathbf{x}'}) = \sum_{\underline{\mathbf{x}}} k(\underline{\mathbf{x}'} \mid \underline{\mathbf{x}}) \pi_t(\underline{\mathbf{x}})$  or, in matrix / vector form  $\pi_{t+1} = \mathbf{K}\pi_t$
- When the process is in equilibrium  $\pi_{t+1} = \pi_t = \pi$  so  $\mathbf{K}\pi = \pi$
- This has a unique\* solution  $\pi = P(x_1, ..., x_n \mid e_1, ..., e_k)$
- So for large enough *t* the next sample will be drawn from the true posterior
  - "Large enough" depends on CPTs in the Bayes net; takes <u>longer</u> if nearly deterministic

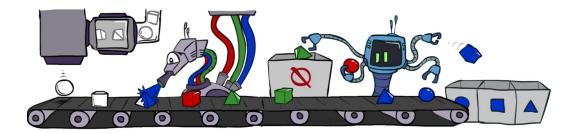
## Bayes' Net Sampling Summary

 $\circ$  Prior Sampling P(Q)

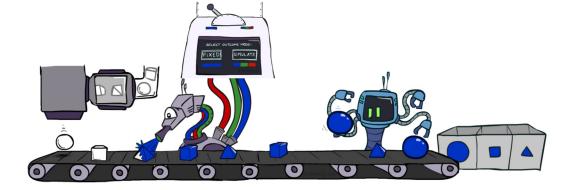
Rejection Sampling P(Q | e)



◦ Likelihood Weighting P(Q | e)



Gibbs Sampling P( $Q \mid e$ )





### CS 188: Artificial Intelligence

### Hidden Markov Models



Instructor: Evgeny Pobachienko — UC Berkeley

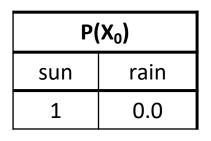
[Slides Credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, and many others]

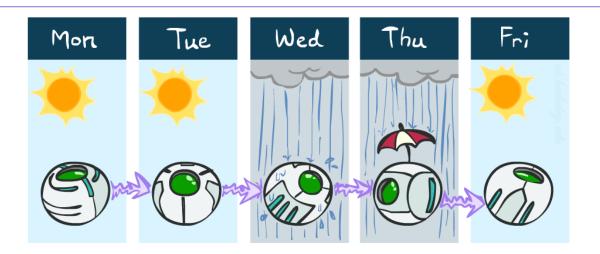
## Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
  - Speech recognition
  - Robot localization
  - User attention
  - Medical monitoring
- Need to introduce time (or space) into our models

### Example Markov Chain: Weather

- States: X = {rain, sun}
- Initial distribution:

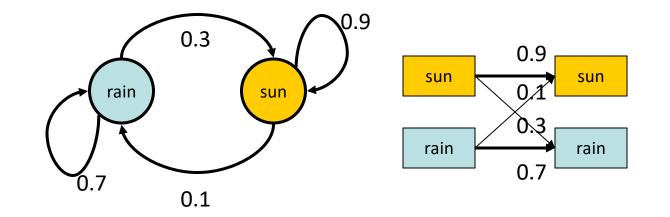




• CPT P(X<sub>t</sub> | X<sub>t-1</sub>):

Two new ways of representing the same CPT

| X <sub>t-1</sub> | Xt   | $P(X_t   X_{t-1})$ |
|------------------|------|--------------------|
| sun              | sun  | 0.9                |
| sun              | rain | 0.1                |
| rain             | sun  | 0.3                |
| rain             | rain | 0.7                |



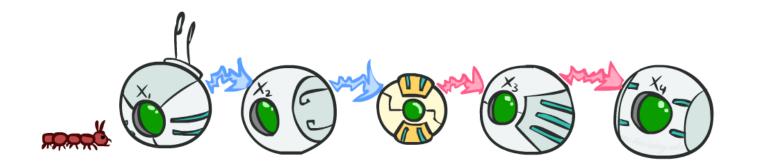
### Markov Chains

• Value of X at a given time is called the state

$$\begin{array}{c} \overbrace{X_1} & \overbrace{X_2} & \overbrace{X_3} & \overbrace{X_4} & \cdots & \\ P(X_1) & P(X_t | X_{t-1}) \end{array} \end{array} P(X_t | X_{t-1}) \end{array} P(X_t) =?$$

• Transition probabilities (dynamics):  $P(X_t | X_{t-1})$  specify how the state evolves over time

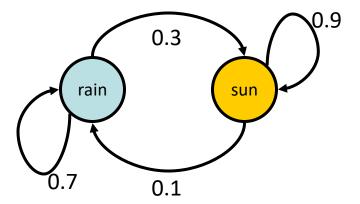
### Markovian Assumption



- Basic conditional independence:
  - Given the present, the future is independent of the past!
  - Each time step only depends on the previous
  - This is called the (first order) Markov property

### Example Markov Chain: Weather

• Initial distribution: 1.0 sun



• What is the probability distribution after one step?

$$P(X_2 = sun) = \sum_{x_1} P(x_1, X_2 = sun) = \sum_{x_1} P(X_2 = sun|x_1)P(x_1)$$

 $P(X_2 = \text{sun}) = P(X_2 = \text{sun}|X_1 = \text{sun})P(X_1 = \text{sun}) + P(X_2 = \text{sun}|X_1 = \text{rain})P(X_1 = \text{rain}) + 0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$