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Bayesian Networks: Recall…
o A directed acyclic graph (DAG), one node per 

random variable
o A conditional probability table (CPT) for each node

o Probability of X, given a combination of values for 
parents.

o Bayes nets implicitly encode joint distributions as a 
product of local conditional distributions
o To see what probability a BN gives to a full assignment, 

multiply all the relevant conditionals together:



Independence Assumptions so far…

o Each node, given its parents, is 
conditionally independent of all its 
non-descendants in the graph

Each node, given its MarkovBlanket, is 
conditionally independent of all other 
nodes in the graph

MarkovBlanket refers to the parents, 
children, and children's other parents.



Example: Alarm Network
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Conditional Independence

o X and Y are independent iff

o Given Z, we say X and Y are conditionally independent iff

o (Conditional) independence is a property of a distribution

o Example: 



Bayes Nets: Assumptions

o Assumptions we are required to make to define the 
Bayes net when given the graph:

o Important for modeling: understand assumptions 
made when choosing a Bayes net graph



Example

o Conditional independence assumptions directly from simplifications in chain rule:

o Additional implied conditional independence assumptions?

X Y Z W



Independence in a BN

o Important question about a BN:
o Are two nodes independent given certain evidence?
o Question: are X and Z guaranteed to be independent?

o Answer: no.  Example: low pressure causes rain, which causes traffic.
o X can influence Z, Z can influence X (via Y)
o Addendum: they could be independent: how?

X Y Z



D-separation: Outline



D-separation: Outline

o Study independence properties for triples
oWhy triples?

o Analyze complex cases in terms of member triples

o D-separation: a condition / algorithm for answering 
such queries



Causal Chains
o This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

Is X guaranteed to be independent of Z?  
No!

One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.
Example:

Low pressure causes rain causes traffic, 
high pressure causes no rain causes no 
traffic

In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

X Y Z



Causal Chains
o This configuration is a “causal chain” Given Y, is X guaranteed to be independent 

of Z?

Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic

X Y Z



Common Causes
o This configuration is a “common cause” Guaranteed X independent of Z ?  

No!

One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

Example:

Project due causes both forums busy 
and lab full 

In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy Z: Lab full

X

Y

Z



Common Cause
o This configuration is a “common cause” Guaranteed X and Z independent given 

Y?

Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy Z: Lab full

X

Y

Z



Common Effect
o Last configuration: two causes of 

one effect (v-structures)

Z: Traffic

Are X and Y independent?
Yes: the ballgame and the rain cause traffic, but 
they are not correlated

Proof:
X: Raining Y: Ballgame

X Y

Z



Common Effect
o Last configuration: two causes of 

one effect (v-structures)

Z: Traffic

Are X and Y independent?
Yes: the ballgame and the rain cause traffic, but 
they are not correlated

(Proved previously)

Are X and Y independent given Z?

No: seeing traffic puts the rain and the ballgame 
in competition as explanation.

This is backwards from the other cases

Observing an effect activates influence between 
possible causes.

X: Raining Y: Ballgame

X Y

Z



The General Case



The General Case

o General question: in a given BN, are two variables 
independent (given evidence)?

o Solution: analyze the graph

o Any complex example can be broken
into repetitions of the three canonical cases



Active / Inactive Paths

o Question: Are X and Y conditionally independent 
given evidence variables {Z}?
o Yes, if X and Y “d-separated” by Z
o Consider all (undirected) paths from X to Y
o No active paths = independence!

o A path is active if each triple is active:
o Causal chain A ->  B -> C where B is unobserved (either 

direction)
o Common cause A <- B -> C where B is unobserved
o Common effect (aka v-structure)

A -> B <- C where B or one of its descendants is observed

o All it takes to block a path is a single inactive 
segment

Active Triples Inactive Triples



Query:

Check all (undirected!) paths between        and 
If one or more active paths, then independence not guaranteed

Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

D-Separation

?



Example
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Example
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Example

o Variables:
o R: Raining
o T: Traffic
oD: Roof drips
o S: I’m sad

o Questions:
T

S

D

R

Yes



Another Perspective: Bayes Ball



Structure Implications

o Given a Bayes net structure, can run d-
separation algorithm to build a complete 
list of conditional independences that are 
necessarily true of the form

o This list determines the set of probability 
distributions that can be represented 



X
Y

Z

Topology Limits Distributions
o Given some graph topology G, 

only certain joint distributions 
can be encoded

o The graph structure guarantees 
certain (conditional) 
independences

o (There might be more 
independence)

o Adding arcs increases the set of 
distributions, but has several 
costs

o Full conditioning can encode 
any distribution

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z X

Y

Z X
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Y
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Bayes Nets Representation Summary

o Bayes nets compactly encode joint distributions (by 
making use of conditional independences!) 

o Guaranteed independencies of distributions can be 
deduced from BN graph structure

o D-separation gives precise conditional 
independence guarantees from graph alone

o A Bayes net’s joint distribution may have further 
(conditional) independence that is not detectable 
until you inspect its specific distribution



Bayesian Networks: Sampling

Instructor: Evgeny Pobachienko – UC Berkeley
[Slides credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, Ketrina Yim, and many others]



Approximate Inference: Sampling



Sampling
o Sampling is a lot like repeated 

simulation

o Predicting the weather, basketball 
games, …

o Basic idea

o Draw N samples from a sampling 
distribution S

o Compute an approximate 
posterior probability

o Show this converges to the true 
probability P

Why sample?
Learning: get samples from a 
distribution you don’t know
Inference: getting a sample is faster 
than computing the right answer (e.g. 
with variable elimination)



Sampling

o Sampling from given 
distribution

o Step 1: Get sample u from uniform 
distribution over [0, 1)
o E.g. random() in python

o Step 2: Convert this sample u into 
an outcome for the given 
distribution by having each target 
outcome associated with a sub-
interval of [0,1) with sub-interval 
size equal to probability of the 
outcome

Example

If random() returns u = 0.83, 
then our sample is C = blue
E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3



Sampling in Bayes’ Nets

o Prior Sampling

o Rejection Sampling

o Likelihood Weighting

o Gibbs Sampling



Prior Sampling



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c
+s 0.1
-s 0.9

-c
+s 0.5
-s 0.5

+c
+r 0.8
-r 0.2

-c
+r 0.2
-r 0.8

+s +r
+w 0.99
-w 0.01

-r
+w 0.90
-w 0.10

-s +r
+w 0.90
-w 0.10

-r
+w 0.01
-w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w

…



Prior Sampling

o For i = 1, 2, …, n in topological order

o Sample xi from P(Xi | Parents(Xi))

o Return (x1, x2, …, xn)



Prior Sampling

o This process generates samples with probability:

…i.e. the BN’s joint probability

o Let the number of samples of an event be

o Then

o I.e., the sampling procedure is consistent



Example

o We’ll get a bunch of samples from the BN:
+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

o If we want to know P(W)
oWe have counts <+w:4, -w:1>
oNormalize to get P(W) = <+w:0.8, -w:0.2>
oThis will get closer to the true distribution with more samples

oWhat about P(C | +r, +w)?

S R

W

C



Rejection Sampling



Rejection Sampling

o Let’s say we want P(C)
o Just tally counts of C as we go

o Let’s say we want P(C | +s)
o Same thing: tally C outcomes, 

but ignore (reject) samples 
which don’t have S=+s

o We can toss out samples early!
o It is also consistent for 

conditional probabilities (i.e., 
correct in the limit)

S R

W

C



Rejection Sampling
o Input: evidence instantiation
o For i = 1, 2, …, n in topological order

o Sample xi from P(Xi | Parents(Xi))
o If xi not consistent with evidence

o Reject: return – no sample is generated in this cycle
o Return (x1, x2, …, xn)



Likelihood Weighting



Idea: fix evidence variables and sample 
the rest

Problem: sample distribution not consistent!
Solution: weight by probability of evidence 
given parents

Likelihood Weighting

o Problem with rejection sampling:
o If evidence is unlikely, rejects lots of 

samples
o Consider P( Shape | blue )

Shape ColorShape Color

pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue



Likelihood Weighting

+c 0.5
-c 0.5

+c
+s 0.1
-s 0.9

-c
+s 0.5
-s 0.5

+c
+r 0.8
-r 0.2

-c
+r 0.2
-r 0.8

+s +r
+w 0.99
-w 0.01

-r
+w 0.90
-w 0.10

-s +r
+w 0.90
-w 0.10

-r
+w 0.01
-w 0.99

Samples:

+c, +s, +r, +w
-c, +s, -r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

w = 1.0 x 0.1 x 0.99
w = 1.0 x 0.5 x 0.90



Likelihood Weighting

o Input: evidence instantiation
o w = 1.0
o for i = 1, 2, …, n in topological order

o if Xi is an evidence variable
o Xi = observation xi for Xi

o Set w = w * P(xi | Parents(Xi))
o else

o Sample xi from P(Xi | Parents(Xi))

o return (x1, x2, …, xn), w



Likelihood Weighting

o Sampling distribution if z sampled and e fixed evidence

o Now, samples have weights

o Together, weighted sampling distribution is consistent



Likelihood Weighting
o Likelihood weighting is good

o All samples are used
o More of our samples will reflect the state 

of the world suggested by the evidence
o Values of downstream variables are 

influenced by upstream evidence

Likelihood weighting doesn’t solve all our 
problems

The values of upstream variables are unaffected by 
downstream evidence
With evidence in k leaf nodes, weights will be O(2-k)
With high probability, one lucky sample will have much 
larger weight than the others, dominating the result

We would like to consider evidence when 
we sample every variable (leads to Gibbs 
sampling)

S R

W

C



Example: Car Insurance: P(PropertyCost|e)



Gibbs Sampling



Markov Chain Monte Carlo

o Gibbs sampling is a MCMC technique (Metropolis-
Hastings)

o MCMC (Markov chain Monte Carlo) is a family of randomized 
algorithms for approximating some quantity of interest over a very 
large state space
o Markov chain = a sequence of randomly chosen states (“random walk”), 

where each state is chosen conditioned on the previous state
o Monte Carlo = a very expensive city in Monaco with a famous casino
o Monte Carlo = an algorithm (usually based on sampling) that has some 

probability of producing an incorrect answer
o MCMC = wander around for a bit, average what you see



Gibbs sampling

o A particular kind of MCMC
o States are complete assignments to all variables

o (local search: closely related to simulated annealing!)
o Evidence variables remain fixed, other variables change
o To generate the next state, pick a variable and sample a value for it 

conditioned on all the other variables:   Xi’ ~ P(Xi | x1,..,xi–1,xi+1,..,xn)
o Will tend to move towards states of higher probability, but can go down too
o In a Bayes net, P(Xi | x1,..,xi–1,xi+1,..,xn) = P(Xi | markovblanket(Xi))

o Theorem: Gibbs sampling is consistent*
o Provided all Gibbs distributions are bounded away from 0 and 1 and variable selection is fair



Step 2: Initialize other variables 
Randomly

Gibbs Sampling Example: P( S | +r)

o Step 1: Fix evidence
o R = +r

S +r

W

C

S +r

W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

Steps 3: Repeat:
Choose a non-evidence variable X
Resample X from P( X | MarkovBlanket(X))



Resampling of One Variable

o Sample from P(S | +c, +r, -w)

o Many things cancel out – only CPTs with S remain!
o More generally: only CPTs that have resampled variable need to be considered, 

and joined together

S +r

W

C



Why would anyone do this?

Samples soon begin to 
reflect all the evidence 
in the network

Eventually they are 
being drawn from the 
true posterior!



Car Insurance: P(PropertyCost | e)



Car Insurance: P(Age | costs)



Why does it work? (see AIMA 13.4.2 for details)

o Suppose we run it for a long time and predict the probability of 
reaching any given state at time t: πt(x1,...,xn) or πt(x) 

o Each Gibbs sampling step (pick a variable, resample its value) applied 
to a state x has a probability k(x’| x) of reaching a next state x’

o So πt+1(x’) = ∑x k(x’| x) πt(x) or, in matrix/vector form πt+1 = Kπt
o When the process is in equilibrium πt+1 = πt = π so Kπ = π
o This has a unique* solution π = P(x1, ..., xn | e1, ..., ek)
o So for large enough t the next sample will be drawn from the true 

posterior
o “Large enough” depends on CPTs in the Bayes net; takes longer if nearly 

deterministic



Bayes’ Net Sampling Summary
o Prior Sampling  P( Q )

o Likelihood Weighting  P( Q | e)

Rejection Sampling  P( Q | e )

Gibbs Sampling  P( Q | e )



CS 188: Artificial Intelligence

Hidden Markov Models

Instructor: Evgeny Pobachienko — UC Berkeley

[Slides Credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, and many others]



Reasoning over Time or Space

o Often, we want to reason about a sequence of 
observations
o Speech recognition
o Robot localization
o User attention
o Medical monitoring

o Need to introduce time (or space) into our models



Example Markov Chain: Weather

o States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

§ Initial distribution:

§ CPT P(Xt | Xt-1):

P(X0)

sun rain

1 0.0



Markov Chains

o Value of X at a given time is called the state

o Transition probabilities (dynamics): P(Xt | Xt–1) specify how the state 
evolves over time 

X2X1 X3 X4
P(Xt) =?



Markovian Assumption

o Basic conditional independence:
o Given the present, the future is independent of the 

past! 
o Each time step only depends on the previous
o This is called the (first order) Markov property



Example Markov Chain: Weather

o Initial distribution: 1.0 sun

o What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1

P(X2 = sun)= Â
x1

P(x1, X2 = sun)= Â
x1

P(X2 = sun|x1)P(x1)


