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Markov Chains
o Value of X at a given time is called the state

o Transition probabilities (dynamics): P(Xt | Xt–1) specify how the state 
evolves over time 
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Hidden Markov Models

o Hidden Markov models (HMMs)
oUnderlying Markov chain over states Xi
o You observe outputs (effects) at each time step

o An HMM is defined by:
o Initial distribution:
o Transitions:
o Emissions:
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Inference: Base Cases
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Passage of Time
o Assume we have current belief P(X | evidence to date)

o Then, after one time step passes:

o Basic idea: beliefs get “pushed” through the transitions
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Observation
o Assume we have current belief P(X | previous evidence):

o Then, after evidence comes in: E1

X1

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

§ Basic idea: beliefs “reweighted” by likelihood of evidence
§ Unlike passage of time, we have to renormalize



Online Belief Updates

o Every time step, we start with current P(X | evidence)
o We update for time:

o We update for evidence:

o The forward algorithm does both at once (and doesn't normalize)
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The Forward Algorithm
o We are given evidence at each time and want to know

o We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…t



Video of Demo Pacman – Sonar (with beliefs)



Most Likely Explanation



HMMs: MLSE Queries

o HMMs defined by
o States X
o Observations E
o Initial distribution:
o Transitions:
o Emissions:

o New query: most likely explanation:

o New method: the Viterbi algorithm
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Most likely explanation = most probable path
o State trellis: graph of states and transitions over time

o Each arc represents some transition Xt–1 ® Xt
o Each arc has weight P(xt | xt–1) P(et | xt) (arcs to initial states have weight P(x0) )
o The product of weights on a path is proportional to that state seq’s probability 
o Forward algorithm: sums of paths
o Viterbi algorithm: best paths

o Dynamic Programming: solve subproblems, combine them as you go along

argmaxx1:tP(x1:t | e1:t)
= argmaxx1:tP(x1:t , e1:t)
= argmaxx1:t P(x0) Õt P(xt | xt-1) P(et | xt) 
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Forward / Viterbi Algorithms
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Forward Algorithm (Sum)
For each state at time t, keep track of the 
total probability of all paths to it

Viterbi Algorithm (Max)
For each state at time t, keep track of the 
maximum probability of any path to it



Viterbi algorithm

Time complexity?
O(|X|2 T)
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Viterbi in negative log space

argmax of product of probabilities 
= argmin of sum of negative log probabilities 
= minimum-cost path
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Viterbi is essentially uniform cost graph search



Viterbi Algorithm Pseudocode

Observation Space 
State Space
Initial probabilities  
Observations
Transition Matrix A ∈ ℝK x K

Emission Matrix B ∈ ℝK x N

Matrix T1[i, j] stores probabilities of 
most likely path so far with xj = si

Matrix T2[i, j] stores xj–1 of most 
likely path so far with xj = si



Particle Filtering



Approximate Inference on HMMs

o When |X| is more than 106 or so (e.g., 3 ghosts in a 10x20 world), 
exact inference becomes infeasible

o Likelihood weighting fails completely – number of samples needed 
grows exponentially with T
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We need a new idea!

o The problem: sample state trajectories go off into low-probability 
regions, ignoring the evidence; too few “reasonable” samples

o Solution: kill the bad ones, make more of the good ones
o This way the population of samples stays in the high-probability region
o This is called resampling or survival of the fittest

t=2 t=7



Particle Filtering
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§ Filtering: approximate solution

§ Sometimes |X| is too big to use exact inference
§ |X| may be too big to even store P(X | e1:T)

§ Solution: approximate inference
§ Track samples of X, not all values
§ Samples are called particles
§ Time per step is linear in the number of samples
§ But: number needed may be large
§ In memory: list of particles, not states

§ This is how robot localization works in practice



Representation: Particles

o Our representation of P(X) is now a list of N particles 
(samples)
o Generally, N << |X|

o P(x) approximated by number of particles with value x
o So, many x may have P(x) = 0! 
o More particles, more accuracy

o For now, all particles have a weight of 1

Particles:
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(2,3)
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(3,3)
(3,3)
(2,3)



Particle Filtering: Elapse Time

§ Each particle is moved by sampling its next 
position from the transition model

§ This is like prior sampling – sample’s frequencies 
reflect the transition probabilities

§ Here, most samples move clockwise, but some 
move in another direction or stay in place

§ This captures the passage of time
§ If enough samples, close to exact values before 

and after (consistent)
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§ After observing Evidence et+1:
§ Don’t sample observation, fix it

§ Similar to likelihood weighting, downweight
samples based on the evidence

§ As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact 
they now sum to (N times) an approximation 
of P(e))

Particle Filtering: Incorporate Observation

Particles:
(3,2)  w=.9
(2,3)  w=.2
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Particle Filtering: Resample

o Rather than tracking weighted samples, we 
resample

o N times, we choose from our weighted 
sample distribution (i.e. draw with 
replacement)

o This is equivalent to renormalizing the 
distribution

o Now the update is complete for this time 
step, continue with the next one
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Recap: Particle Filtering
o Particles: track samples of states rather than an explicit distribution
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Elapse Weight Resample
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Video of Demo – Moderate Number of Particles



Video of Demo – One Particle



Video of Demo – Huge Number of Particles



Robot Localization

o In robot localization:
o Know the map, but not the robot’s position
o Observations may be vectors of range finder readings
o State space and readings typically continuous (very fine grid) 

and so we cannot store P(Xt | e1:t)
o Particle filtering is a main technique



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi][Dieter Fox, et al.]



Particle Filter Localization (Laser)

[Video: global-floor.gif][Dieter Fox, et al.]



Robot Mapping
o SLAM: Simultaneous Localization And 

Mapping
o We do not know the map or our location
o State consists of position AND map!
o Main techniques: Kalman filtering (Gaussian 

HMMs) and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video

[Demo: PARTICLES-SLAM-fastslam.avi]


