CS 188: Artificial Intelligence

Hidden Markov Models II

Summer 2024: Eve Fleisig & Evgeny Pobachienko

[Slides adapted from Saagar Sanghavi, Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell]

Markov Chains

• Value of X at a given time is called the state

o Transition probabilities (dynamics): $P(X_t | X_{t-1})$ specify how the state evolves over time

Hidden Markov Models

Hidden Markov models (HMMs) Underlying Markov chain over states X_i You observe outputs (effects) at each time step An HMM is defined by: Initial distribution: P(X₁) Transitions: P(X_t | X_{t-1}) Emissions: P(E_t | X_t)

Inference: Base Cases

 $P(X_2)$

 $P(X_2) = \sum_{x_1} P(x_1, X_2)$

 $P(X_2) = \sum_{x_1} P(X_2 | x_1) P(x_1)$

Passage of Time

- Assume we have current belief $P(X \mid evidence to date)$ $P(X_t | e_{1:t})$
- Then, after one time step passes: $P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$ $= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$ $= \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$

Observation

- Assume we have current belief P(X | previous evidence): $P(X_{t+1}|e_{1:t})$
- Then, after evidence comes in:

P(

$$\begin{aligned} X_{t+1}|e_{1:t+1}\rangle &= P(X_{t+1}, e_{t+1}|e_{1:t})/P(e_{t+1}|e_{1:t}) \\ &\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t}) \\ &= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t}) \end{aligned}$$

- $= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$
- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Online Belief Updates

Every time step, we start with current P(X | evidence)
We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

*X*₂

*E*₂

• We update for evidence:

 $P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$

• The forward algorithm does both at once (and doesn't normalize)

The Forward Algorithm

- We are given evidence at each time and want to know $P(X_t|e_{1:t})$
- We can derive the following updates
- $P(x_t|e_{1:t}) \propto_{X_t} P(x_t, e_{1:t})$ $= \sum_{x_{t-1}} P(x_{t-1}, x_t, e_{1:t})$ $= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t)$ $= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}, e_{1:t-1})$ want to step, of the step of the st

We can normalize as we go if we want to have P(x|e) at each time step, or just once at the end...

Video of Demo Pacman – Sonar (with beliefs)

Most Likely Explanation

HMMs: MLSE Queries

o HMMs defined by

- o States X
- o Observations E
- \circ Initial distribution: P
- o Transitions:
- o Emissions:

• New query: most likely explanation: $\underset{x_{1:t}}{\operatorname{arg\,max}} P(x_{1:t}|e_{1:t})$

• New method: the Viterbi algorithm

Most likely explanation = most probable path

• **State trellis**: graph of states and transitions over time

$$argmax_{x_{1:t}} P(x_{1:t} | e_{1:t}) = argmax_{x_{1:t}} P(x_{1:t}, e_{1:t}) = argmax_{x_{1:t}} P(x_0) \prod_t P(x_t | x_{t-1}) P(e_t | x_t)$$

- Each arc represents some transition $X_{t-1} \rightarrow X_t$
- Each arc has weight $P(x_t | x_{t-1}) P(e_t | x_t)$ (arcs to initial states have weight $P(x_0)$)
- The **product** of weights on a path is proportional to that state seq's probability
- Forward algorithm: sums of paths
- Viterbi algorithm: best paths
 - Dynamic Programming: solve subproblems, combine them as you go along

Forward / Viterbi Algorithms

Forward Algorithm (Sum) For each state at time *t*, keep track of the *total probability of all paths* to it

 $f_t[x_t] = P(x_t, e_{1:t})$ = $P(e_t | x_t) \sum_{x_{t-1}} P(x_t | x_{t-1}) f_{t-1}[x_{t-1}]$ Viterbi Algorithm (Max) For each state at time *t*, keep track of the *maximum probability of any path* to it

$$m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})$$
$$= P(e_t | x_t) \max_{x_{t-1}} P(x_t | x_{t-1}) m_{t-1}[x_{t-1}]$$

Viterbi algorithm

+r+r0.7+r-r0.3-r+r0.1	R _t	R _{t+1}	$P(R_{t+1} R_t)$
+r -r 0.3 -r +r 0.1	+r	+r	0.7
-r +r 0.1	+r	-r	0.3
	-r	+r	0.1
-r -r 0.9	-r	-r	0.9

R _t	Ut	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Time complexity? O(|X|²T) Space complexity? **O(|X|T)**

Number of paths? O(|X|^T)

Viterbi in negative log space

W _{t-1}	$P(W_{t} W_{t\text{-}1})$		
	sun	rain	
sun	0.9	0.1	
rain	0.3	0.7	

W _t	P(U _t W _t)		
	true	false	
sun	0.2	0.8	
rain	0.9	0.1	

argmax of product of probabilities

= argmin of sum of negative log probabilities= minimum-cost path

Viterbi is essentially uniform cost graph search

Viterbi Algorithm Pseudocode

```
function VITERBI(O, S, \Pi, Y, A, B) : X
       for each state i=1,2,\ldots,K do
             T_1[i,1] \leftarrow \pi_i \cdot B_{iy_1}
             T_2[i,1] \leftarrow 0
      end for
      for each observation j=2,3,\ldots,T do
             for each state i = 1, 2, \ldots, K do
                    T_1[i,j] \leftarrow \max_k \left(T_1[k,j-1] \cdot A_{ki} \cdot B_{iy_j}
ight)
                    T_2[i,j] \leftarrow rg\max_k \left(T_1[k,j-1] \cdot A_{ki} \cdot B_{iy_j}
ight)
             end for
      end for
      z_T \gets rg\max_k \left(T_1[k,T]
ight)
      x_T \leftarrow s_{z_T}
      for j=T,T-1,\ldots,2 do
             z_{j-1} \leftarrow T_2[z_j, j]
             x_{j-1} \leftarrow s_{z_{j-1}}
      end for
      return X
end function
```

Observation Space $O = \{o_1, o_2, \dots, o_N\}$ State Space $S = \{s_1, s_2, \dots, s_K\}$ Initial probabilities $\Pi = (\pi_1, \pi_2, \dots, \pi_K)$ Observations $Y = (y_1, y_2, \dots, y_T)$ Transition Matrix $A \in \mathbb{R}^{K \times K}$ Emission Matrix $B \in \mathbb{R}^{K \times N}$

Matrix T₁[i, j] stores probabilities of most likely path so far with $x_i = s_i$

Matrix T₂[i, j] stores x_{j-1} of most likely path so far with $x_j = s_i$

Particle Filtering

Approximate Inference on HMMs

- When |X| is more than 10⁶ or so (e.g., 3 ghosts in a 10x20 world), exact inference becomes infeasible
- Likelihood weighting fails completely number of samples needed grows *exponentially* with *T*

We need a new idea!

- The problem: sample state trajectories go off into low-probability regions, ignoring the evidence; too few "reasonable" samples
- Solution: kill the bad ones, make more of the good ones
- This way the population of samples stays in the high-probability region
- This is called *resampling* or survival of the fittest

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store $P(X | e_{1:T})$
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 Generally, N << |X|
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1

Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling sample's frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

(3,3) (2,3)(3,3)(3,2)

(3,3)(3,2)(1,2)(3,3)

(3,3) (2,3)

(3,2)

(2,3)(3,2)

(3,1)(3,3)

(3,2)(1,3)(2,3)(3,2) (2,2)

Particle Filtering: Incorporate Observation

- After observing Evidence e_{t+1}:
 - Don't sample observation, fix it
 - Similar to likelihood weighting, downweight samples based on the evidence

w(x) = P(e|x)

 $B(X) \propto P(e|X)B'(X)$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Recap: Particle Filtering

• Particles: track samples of states rather than an explicit distribution

Video of Demo – Moderate Number of Particles

Video of Demo – One Particle

Video of Demo – Huge Number of Particles

Robot Localization

• In robot localization:

- Know the map, but not the robot's position
- o Observations may be vectors of range finder readings
- $\circ~$ State space and readings typically continuous (very fine grid) and so we cannot store $P(X_t \mid e_{1:t})$
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Dieter Fox, et al.]

[Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

[Dieter Fox, et al.]

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video

[Demo: PARTICLES-SLAM-fastslam.avi]