CS 188: Artificial Intelligence
Hidden Markov Models II

Summer 2024: Eve Fleisig & Evgeny Pobachienko
[Slides adapted from Saagar Sanghavi, Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell]



Markov Chains

o Value of X at a given time is called the state

O O®  py

P(X1) P(X3[X¢—1)

o Transition probabilities (dynamics): P(X, | X,_;) specify how the state
evolves over time

0.9
0.3

0.7
0.1



Hidden Markov Models

o Hidden Markov models (HMMs) 00

o Underlying Markov chain over states X;
o You observe outputs (effects) at each time step

o An HMM is defined by:

o Initial distribution: P(X7)
o Transitions: P(X; | X¢—1)
o Emissions: P(FE: | Xy)

Q000 -~ -




Inference

)

: Base Cases




Passage of Time

o Assume we have current belief P(X | evidence to date)

P(Xt‘el:t)

o Then, after one time step passes:

P(Xt—l—llelzt) — ZP(XtJrlafCt‘el:t)

= Z P(Xiq1|xe, e1:4)P(xe]ers)

— ZP(Xt_i_l’xt)P(wt‘el:t)

o Basic idea: beliefs get “pushed” through the transitions



Observation

o Assume we have current belief P(X | previous evidence):

P(Xiy1lert)

o Then, after evidence comes in:

P(Xt+1’€1:t—|—1) — P(Xt—l—la6t—|—1|€1:t)/P(6t—|—1‘61:t)
XXi41 P(Xi11,erv1]er:t)

— P(€t+1 61:t,Xt+1)P(Xt+1|€1:t)
= P(€t+1 Xt—l—l)P(Xt-i-l‘eltt)

= Basic idea: beliefs “reweighted” by likelihood of evidence
= Unlike passage of time, we have to renormalize




Online Beliet Updates

o Every time step, we start with current P(X | evidence)
o We update for time:

P(xileq:—1) = Z P(xi_1le1:4—1) - P(x¢|rs—1) @_’@

Lt—1

o We update for evidence: @

P(x¢ler+) xx P(xiler+—1) - Plet|xt)

o The forward algorithm does both at once (and doesn't normalize)



The Forward Algorithm

o We are given evidence at each time and want to know

P(Xt|€1:t)

o We can derive the following updates

P(wile1:t) ocx, P(ay, e1:) =

We can normalize as we go if we
want to have P(x|e) at each time
step, or just once at the end...

= > P(z4_1,2t,€1:¢)

Li—1

= 3" P(x_1,e1:4-1)P(xt|ws_1) P(et|at)

Lt—1

= P(etlxt) Y, P(wtlwp—1)P(xi—1,€1:4—1)

Lt—1




Video of Demo Pacman — Sonar (with beliefs)




Most Likely Explanation

o PR




HMMs: MLSE Queries

o HMMs detined by
o States X
o Observations E
o Initial distribution: P(X1)
o Transitions: P(X|X_1)
o Emissions: P(E|X)

o New query: most likely explanation: arg max P(x1:¢|e1:¢)
L1t

o New method: the Viterbi algorithm



Most likely explanation = most probable path

o State trellis: graph of states and transitions over time

< sun

rain

X1

Each arc represents some transition X; 1 - X;

sun

rain

X))

sun

rain

sun

rain

X

argmax,, Plxq, | eq.)
= argmaxxlztp(xlzt/ el:t)

= argmax,, , P(xq) I1; PGx; | x,1) Pe; | x;)

Each arc has weight P(x; | x;_1) P(e; | x;) (arcs to initial states have weight P(x;) )

The product of weights on a path is proportional to that state seq’s probability

Forward algorithm: sums of paths

Viterbi algorithm: best paths

o Dynamic Programming: solve subproblems, combine them as you go along



Forward / Viterbi Algorithms

sun sun sun sun
rain rain rain rain
X1 X - Xy
Forward Algorithm (Sum) Viterbi Algorithm (Max)
For each state at time #, keep track of the For each state at time ¢, keep track of the
total probability of all paths to it maximum probability of any path to it
filzd = P(ax4, e1-4) mylz] = max P(zy:t—1, 2t €1:1)
= P(et|lws) > P(xt|we—1) fr1lze—1] = P(et|rt) @t?fp(wtlxt—l)mt—l[xt—l]

Lt—1



Viterbi algorithm

Rt Rt+1 P( Rt+1 | Rt)

+r +r 0.7
+r -r 0.3
-r +r 0.1
-r -r 0.9

Rt Ut P(Utl Rt)

+r | +u 0.9
+r | -u 0.1
-r | +u 0.2
-r | -u 0.8
Time complexity? Space complexity? Number of paths?

O(1X127T) O(1XIT) o(x1T)



Viterbi in negative log space

2.47

0.47

2.47

sun

sun sun sun
T

S <
41) ¢
1.0 ™ rain rain rain 0667 ‘{ rain

G

argmax of product of probabilities

= argmin of sum of negative log probabilities
= minimum-cost path

Viterbi is essentially uniform cost graph search

W4 P(W,|W,,)
sun rain
sun 0.9 0.1
rain 0.3 0.7
W, P(U,|W,)
true false
sun 0.2 0.8
rain 0.9 0.1




Viterbi Algorithm Pseudocode

function VITERBI(O,S,II,Y,A,B): X

for each state 1=1,2,...,K do
T [’L, ].] — ;e Biyl
15 [i, ].] «—0
end for
for each observation j3=2,3,...,7 do

for each state 1=1,2,...,K do

T [’l:, ]] — m]?x (T1 [k,_] — ].] C Akz 0 Biyj)
T2 [Za]] < arg ml?x (Tl [k’] o 1] ) Akz ’ Biyj)

end for
end for
2T ¢ argmax (T1 [k, T))

IT < Szp
for ;=T,T—-1,...,2 do
Zj—1 < Ty [Zj,j]
Tj—1 < Szj 1
end for
return X
end function

Observation Space O = {01, 02,
State Space S = {s1, s2,
Initial probabilities II = (m,m2,
Observations
Transition Matrix
Emission Matrix

AeRKXK
BeRKXN

Y = (y1,92,-.

...,(?A;}
“ o ,S}(}
...,Tr[\")

. -.111)

Matrix T,[j, j] stores probabilities of
most likely path so far with x; = 5,

Matrix T,[i, j] stores x; ; of most

likely path so far with x; = s;



Particle Filtering




Avg absolute error

Approximate Inference on HMMs

o When | X | is more than 10° or so (e.g., 3 ghosts in a 10x20 world),
exact inference becomes infeasible

o Likelihood weighting fails completely — number of samples needed
grows exponentially with T

1 T T T T T NPT /+/¥¥4%]ﬁ-¥\i,w£
LW(25) — o ¢ ,+/ e
4 .
LW(100)
0g | LW(000) o g A 7]
8 T LW(10000) < ¢ . .
ER/SOF(25) -+ 4 s o x P ———
% ﬂl/ ,D’ X
4 I
0.6 B 7 ’," EIE‘ X n
1 N i
/ ;
S /#/*4 DE‘ ¥
4 /+ B‘VV X
04 | ’ ]
+ ; ;
4 % b * o ’ N, X
» A Al %
¥ | [ A i X
AR v X N D DS i '><' >'><
02 | * Bitgm x5 x X |
. & / /
>
/ B X
[ 4 pead X
/ ; )
’ ﬁﬁlﬁfg%\%ézé P - VNI NN SN SIS NI NP
O Hmbsex 1 I 1 1

0O 5 10 15 20 25 30 35 40 45 50
Time step



We need a new idea!

o The problem: Sam]flle state trajectories go off into low-probability
regions, ignoring the evidence; too few “reasonable” samples

o Solution: kill the bad ones, make more of the good ones
o This way the population of samples stays in the high-probability region
o This is called resampling or survival of the fittest



Particle Filtering

Filtering: approximate solution

Sometimes | X | is too big to use exact inference
= | X| may be too big to even store P(X | e;.7)

Solution: approximate inference
= Track samples of X, not all values
Samples are called particles
Time per step is linear in the number of samples
But: number needed may be large
In memory: list of particles, not states

This is how robot localization works in practice

0.0 | 0.1 | 00

0.0 | 0.0 | 0.2

0.0 | 02 | 05
O

o0

o0 | o0




Representation: Particles

o Our representation of P(X) is now a list of N particles
(samples)
o Generally, N << [ X|

o P(x) approximated by number of particles with value x
o So, many x may have P(x) = 0!
o More particles, more accuracy

o For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)




Particle Filtering: Elapse Time

= Each particle is moved by sampling its next

Particles:

position from the transition model 33 - :o:\
(3,3)
/ / (3,2) ® @ \
x' = sample(P(X"'|x)) et ®
(1.2)
o : : , : (3,3)
= This is like prior sampling — sample’s frequencies (3,3)
reflect the transition probabilities 23)
= Here, most samples move clockwise, but some
move in another direction or stay in place Pa(rticl;es:
3,2
= This captures the passage of time 23) o Io
3,2) @ ® ®
» If enough samples, close to exact values before 3,1)

(
(
(
and after (consistent) o O *.
(
(
(
(




Particle Filtering: Incorporate Observation

Particles:

= After observing Evidence e,: (32 o o
: o
. . 3.2 e | o
= Don’t sample observation, fix it (3,1) o
(3.3) @ |0
= Similar to likelihood weighting, downweight e ®
samples based on the evidence 2,3) ®
(3,2)
2.2)
w(z) = P(e|x)
/
B(X) X P(€|X)B (X) Particles:
(3,2) w=.9
(2,3) w=.2 ° @
o (3,2) w=.9 ° ®
= As before, the probabilities don’t sum to one, (3,1) w=4
since all have been downweighted (in fact gi; e °
they now sum to (N times) an approximation (1.3) w-1
Of P(e)) (3:2) w;:9 ®
(2,2) w=.4




Particle Filtering: Resample

Particles:
Rather than tracking weighted samples, we 8;; W
resample (3.2) W=
(3,1) w=.4
. . (3,3) w=.4
N times, we choose from our weighted (3,2) w=.9
sample distribution (i.e. draw with 8;; o
replacement) % (32) w=.9
(2,2) w=.4
This is equivalent to renormalizing the ew) Taicles
distribution (2.2)
(3,2)
. . (2,3)
Now the update is complete for this time (3,3)
step, continue with the next one )
(2,3)
(3,2)
(

e’




Recap: Particle Filtering

Weight

Elapse

o | o O

) )

O ® ® o2

@

Particles: Particles:

(3,3) (3,2)
(2,3) (2,3)
(3,3) (3,2)
(3,2) (3,1)
(3,3) (3,3)
(3,2) (3,2)
(1,2) (1,3)
(3,3) (2,3)
(3,3) (3,2)
(2,3) (2,2)

Particles:

Resample

o Particles: track samples of states rather than an explicit distribution

(New) Particles:
(3,2)




Video of Demo — Moderate Number of Particles




Video of Demo — One Particle




Video of Demo — Huge Number of Particles




Robot Localization

o In robot localization:
o Know the map, but not the robot’s position
o Observations may be vectors of range finder readings

o State space and readings typically continuous (very fine grid)
and so we cannot store P(X, | e,)

o Particle filtering is a main technique




Particle Filter Localization (Sonar)

Global localization with
© SONAr SENSOrs '

ieter Fox, et al.] [Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Laser)

[Dieter Fox, et al.] [Video: global-floor.gif]



Robot Mapping

o SLAM: Simultaneous Localization And
Mapping
o We do not know the map or our location
o State consists of position AND map!

o Main techniques: Kalman filtering (Gaussian
HMMs) and particle methods

o

' L
%, |
i P

I

JUBPRI r "__—;__H—J/__——-"——J"_——" : : o s
- —————«———’\ [

e o

DP-SLAM, Ron Parr

[Demo: PARTICLES-SLAM-mappingl-new.avi]



Particle Filter SLAM — Video

[Demo: PARTICLES-SLAM-fastslam.avi]



