
CS 188: Artificial Intelligence
Hidden Markov Models II

Summer 2024: Eve Fleisig & Evgeny Pobachienko
[Slides adapted from Saagar Sanghavi, Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell]

Markov Chains
o Value of X at a given time is called the state

o Transition probabilities (dynamics): P(Xt | Xt–1) specify how the state
evolves over time

X2X1 X3 X4
P(Xt) =?

rain sun

0.9

0.7

0.3

0.1

Hidden Markov Models

o Hidden Markov models (HMMs)
oUnderlying Markov chain over states Xi
o You observe outputs (effects) at each time step

o An HMM is defined by:
o Initial distribution:
o Transitions:
o Emissions:

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

P (Xt | Xt�1)
P (Et | Xt)

Inference: Base Cases

E1

X1

X2X1

P(X1|e1) =
P(X1, e1)

Âx1
P(x1, e1)

P(X2) = Â
x1

P(x1, X2)

P(X2) = Â
x1

P(X2|x1)P(x1)P(X1|e1) =
P(e1|X1)P(X1)

Âx1
P(e1|x1)P(x1)

Passage of Time
o Assume we have current belief P(X | evidence to date)

o Then, after one time step passes:

o Basic idea: beliefs get “pushed” through the transitions

X2X1

=
X

xt

P (Xt+1, xt|e1:t)

=
X

xt

P (Xt+1|xt, e1:t)P (xt|e1:t)

=
X

xt

P (Xt+1|xt)P (xt|e1:t)

P (Xt+1|e1:t)

Observation
o Assume we have current belief P(X | previous evidence):

o Then, after evidence comes in: E1

X1

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

§ Basic idea: beliefs “reweighted” by likelihood of evidence
§ Unlike passage of time, we have to renormalize

Online Belief Updates

o Every time step, we start with current P(X | evidence)
o We update for time:

o We update for evidence:

o The forward algorithm does both at once (and doesn't normalize)

X2X1

X2

E2

The Forward Algorithm
o We are given evidence at each time and want to know

o We can derive the following updates
We can normalize as we go if we
want to have P(x|e) at each time

step, or just once at the end…t

Video of Demo Pacman – Sonar (with beliefs)

Most Likely Explanation

HMMs: MLSE Queries

o HMMs defined by
o States X
o Observations E
o Initial distribution:
o Transitions:
o Emissions:

o New query: most likely explanation:

o New method: the Viterbi algorithm

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

Most likely explanation = most probable path
o State trellis: graph of states and transitions over time

o Each arc represents some transition Xt–1 ® Xt
o Each arc has weight P(xt | xt–1) P(et | xt) (arcs to initial states have weight P(x0))
o The product of weights on a path is proportional to that state seq’s probability
o Forward algorithm: sums of paths
o Viterbi algorithm: best paths

o Dynamic Programming: solve subproblems, combine them as you go along

argmaxx1:tP(x1:t | e1:t)
= argmaxx1:tP(x1:t , e1:t)
= argmaxx1:t P(x0) Õt P(xt | xt-1) P(et | xt)

sun

rain

sun

rain

sun

rain

sun

rain

X1 X2 … XT

Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum)
For each state at time t, keep track of the
total probability of all paths to it

Viterbi Algorithm (Max)
For each state at time t, keep track of the
maximum probability of any path to it

Viterbi algorithm

Time complexity?
O(|X|2 T)

X0 X1 X2 X3

sun

rain

sun

rain

sun

rain

sun

rain

U1 = +u U2 = –u U3 = +u

0.5

0.5

0.18

0.63

0.09

0.06

0.72

0.07

0.01

0.24

0.18

0.63

0.09

0.06

Space complexity?
O(|X|T)

0.5

0.5

0.09

0.315

0.076

0.022

0.0136080

0.0138495

Number of paths?
O(|X|T)

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.1

-r -r 0.9

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Viterbi in negative log space

argmax of product of probabilities
= argmin of sum of negative log probabilities
= minimum-cost path

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

1.0

1.0

2.47

0.67

3.47

4.06

0.47

3.84

6.64

2.06

2.47

0.67

3.47

4.06
S

G

Viterbi is essentially uniform cost graph search

Viterbi Algorithm Pseudocode

Observation Space
State Space
Initial probabilities
Observations
Transition Matrix A ∈ ℝK x K

Emission Matrix B ∈ ℝK x N

Matrix T1[i, j] stores probabilities of
most likely path so far with xj = si

Matrix T2[i, j] stores xj–1 of most
likely path so far with xj = si

Particle Filtering

Approximate Inference on HMMs

o When |X| is more than 106 or so (e.g., 3 ghosts in a 10x20 world),
exact inference becomes infeasible

o Likelihood weighting fails completely – number of samples needed
grows exponentially with T

X1X0 X2 X3

E1 E2 E3

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Av
g a

bs
olu

te
err

or

Time step

LW(25)
LW(100)

LW(1000)
LW(10000)

ER/SOF(25)

We need a new idea!

o The problem: sample state trajectories go off into low-probability
regions, ignoring the evidence; too few “reasonable” samples

o Solution: kill the bad ones, make more of the good ones
o This way the population of samples stays in the high-probability region
o This is called resampling or survival of the fittest

t=2 t=7

Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

§ Filtering: approximate solution

§ Sometimes |X| is too big to use exact inference
§ |X| may be too big to even store P(X | e1:T)

§ Solution: approximate inference
§ Track samples of X, not all values
§ Samples are called particles
§ Time per step is linear in the number of samples
§ But: number needed may be large
§ In memory: list of particles, not states

§ This is how robot localization works in practice

Representation: Particles

o Our representation of P(X) is now a list of N particles
(samples)
o Generally, N << |X|

o P(x) approximated by number of particles with value x
o So, many x may have P(x) = 0!
o More particles, more accuracy

o For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Elapse Time

§ Each particle is moved by sampling its next
position from the transition model

§ This is like prior sampling – sample’s frequencies
reflect the transition probabilities

§ Here, most samples move clockwise, but some
move in another direction or stay in place

§ This captures the passage of time
§ If enough samples, close to exact values before

and after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

§ After observing Evidence et+1:
§ Don’t sample observation, fix it

§ Similar to likelihood weighting, downweight
samples based on the evidence

§ As before, the probabilities don’t sum to one,
since all have been downweighted (in fact
they now sum to (N times) an approximation
of P(e))

Particle Filtering: Incorporate Observation

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particle Filtering: Resample

o Rather than tracking weighted samples, we
resample

o N times, we choose from our weighted
sample distribution (i.e. draw with
replacement)

o This is equivalent to renormalizing the
distribution

o Now the update is complete for this time
step, continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

Recap: Particle Filtering
o Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

Video of Demo – Moderate Number of Particles

Video of Demo – One Particle

Video of Demo – Huge Number of Particles

Robot Localization

o In robot localization:
o Know the map, but not the robot’s position
o Observations may be vectors of range finder readings
o State space and readings typically continuous (very fine grid)

and so we cannot store P(Xt | e1:t)
o Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi][Dieter Fox, et al.]

Particle Filter Localization (Laser)

[Video: global-floor.gif][Dieter Fox, et al.]

Robot Mapping
o SLAM: Simultaneous Localization And

Mapping
o We do not know the map or our location
o State consists of position AND map!
o Main techniques: Kalman filtering (Gaussian

HMMs) and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video

[Demo: PARTICLES-SLAM-fastslam.avi]

