CS 188: Artificial Intelligence

Hidden Markov Models II

Summer 2024: Eve Fleisig & Evgeny Pobachienko

[Slides adapted from Saagar Sanghavi, Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell]

Markov Chains

o Value of X at a given time is called the state

$$
(X_1 \rightarrow (X_2) \rightarrow (X_3 \rightarrow (X_4) \rightarrow \rightarrow \rightarrow P(X_t) = ?
$$
\n
$$
P(X_1) \quad P(X_t|X_{t-1})
$$

 \circ Transition probabilities (dynamics): $P(X_t | X_{t-1})$ specify how the state evolves over time

Hidden Markov Models

o Hidden Markov models (HMMs)

- \circ Underlying Markov chain over states X_i
- o You observe outputs (effects) at each time step

o An HMM is defined by:

- \circ Initial distribution: $P(X_1)$
- o Transitions:
- o Emissions:

Inference: Base Cases

Passage of Time

- \circ Assume we have current belief P(X | evidence to date) $P(X_t|e_1 \cdot_t)$
- Then, after one time step passes: $P(X_{t+1}|e_{1:t}) = \sum P(X_{t+1}, x_t|e_{1:t})$ *xt* $=\sum P(X_{t+1}|x_t, e_{1:t})P(x_t|e_{1:t})$ *xt* $= \sum P(X_{t+1}|x_t)P(x_t|e_{1:t})$ *xt*
- Basic idea: beliefs get "pushed" through the transitions

Observation

- \circ Assume we have current belief P(X | previous evidence): $P(X_{t+1} | e_{1:t})$
- \circ Then, after evidence comes in: $\left(E_1\right)$

$$
P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t})/P(e_{t+1}|e_{1:t})
$$

\n
$$
\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t})
$$

\n
$$
= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})
$$

\n
$$
= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})
$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Online Belief Updates

 \circ Every time step, we start with current $P(X \mid evidence)$ o We update for time:

$$
P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})
$$

 X_2

 E_2

o We update for evidence:

 $P(x_t|e_1 \cdot t) \propto_X P(x_t|e_1 \cdot t-1) \cdot P(e_t|x_t)$

o The forward algorithm does both at once (and doesn't normalize)

The Forward Algorithm

- o We are given evidence at each time and want to know $P(X_t|e_{1:t})$
- \circ We can derive the following updates $\overline{\hspace{1cm}}$ We can normalize as we go if we
- want to have $P(x|e)$ at each time $P(x_t|e_{1:t}) \propto_{X_t} P(x_t, e_{1:t})$ \longrightarrow want to have P(x|e) at each time. $= \sum P(x_{t-1}, x_t, e_{1:t})$ x_{t-1} $= \sum P(x_{t-1}, e_{1:t-1}) P(x_t | x_{t-1}) P(e_t | x_t)$ x_{t-1} $= P(e_t|x_t) \sum P(x_t|x_{t-1}) P(x_{t-1}, e_{1:t-1})$ x_{t-1}

Video of Demo Pacman – Sonar (with beliefs)

Most Likely Explanation

HMMs: MLSE Queries

o HMMs defined by

- o States X
- o Observations E
- o Initial distribution:
- o Transitions:
- o Emissions:

 $P(X_1)$ $P(X|X_{-1})$ $P(E|X)$

o New query: most likely explanation: arg max $P(x_{1:t}|e_{1:t})$ $x_{1:t}$

o New method: the Viterbi algorithm

Most likely explanation = most probable path

o **State trellis**: graph of states and transitions over time

$$
\arg\max_{x_{1:t}} P(x_{1:t} \mid e_{1:t})
$$
\n= $\arg\max_{x_{1:t}} P(x_{1:t}, e_{1:t})$
\n= $\arg\max_{x_{1:t}} P(x_0) \prod_t P(x_t \mid x_{t-1}) P(e_t \mid x_t)$

- \circ Each arc represents some transition $X_{t-1} \to X_t$
- \circ Each arc has weight $P(x_t | x_{t-1}) P(e_t | x_t)$ (arcs to initial states have weight $P(x_0)$)
- o The **product** of weights on a path is proportional to that state seq's probability
- o Forward algorithm: sums of paths
- o **Viterbi algorithm:** best paths
	- o Dynamic Programming: solve subproblems, combine them as you go along

Forward / Viterbi Algorithms

Forward Algorithm (Sum) For each state at time *t*, keep track of the *total probability of all paths* to it

 $f_t[x_t] = P(x_t, e_{1:t})$ = $P(e_t|x_t)$ $\sum_{x_{t-1}} P(x_t|x_{t-1})f_{t-1}[x_{t-1}]$

Viterbi Algorithm (Max) For each state at time *t*, keep track of the *maximum probability of any path* to it

$$
m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})
$$

= $P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1})m_{t-1}[x_{t-1}]$

Viterbi algorithm

Time complexity? **O(|X|2 T)**

Space complexity? **O(|X|T)**

Number of paths? $O(|X|^{T})$

Viterbi in negative log space

argmax of product of probabilities

- = argmin of sum of negative log probabilities
- = minimum-cost path

Viterbi is essentially uniform cost graph search

Viterbi Algorithm Pseudocode

function $VITERBI(O, S, \Pi, Y, A, B): X$ for each state $i=1,2,\ldots,K$ do $T_1[i,1] \leftarrow \pi_i \cdot B_{iy_1}$ $T_2[i,1] \leftarrow 0$ end for for each observation $j=2,3,\ldots,T$ do for each state $i=1,2,\ldots,K$ do $T_1[i,j] \leftarrow \max_k \left(T_1[k,j-1] \cdot A_{ki} \cdot B_{iy_j}\right)$ $T_2[i,j] \leftarrow \arg\max\limits_{l} \left(T_1[k,j-1] \cdot A_{ki} \cdot B_{iy_j}\right)$ end for end for $z_T \leftarrow \arg\max_k \left(T_1[k,T]\right)$ $x_T \leftarrow s_{z_T}$ for $j = T, T - 1, ..., 2$ do $z_{i-1} \leftarrow T_2[z_i,j]$ $x_{j-1} \leftarrow s_{z_{j-1}}$ end for return X end function

 $O = \{o_1, o_2, \ldots, o_N\}$ Observation Space State Space $S = \{s_1, s_2, \ldots, s_K\}$ Initial probabilities $\Pi = (\pi_1, \pi_2, \dots, \pi_K)$ Observations $Y = (y_1, y_2, \dots, y_T)$ Transition Matrix $A \in \mathbb{R}^{K \times K}$ Emission Matrix $B \in \mathbb{R}^{K \times N}$

Matrix $T_1[i, j]$ stores probabilities of most likely path so far with $x_i = s_i$

Matrix $T_2[i, j]$ stores x_{i-1} of most likely path so far with $x_i = s_i$

Particle Filtering

Approximate Inference on HMMs

- \circ When $|X|$ is more than 10⁶ or so (e.g., 3 ghosts in a 10x20 world), exact inference becomes infeasible
- o Likelihood weighting fails completely number of samples needed grows *exponentially* with *T*

We need a new idea!

- ^o The problem: sample state trajectories go off into low-probability regions, ignoring the evidence; too few "reasonable" samples
- o Solution: kill the bad ones, make more of the good ones
- o This way the population of samples stays in the high-probability region
- o This is called *resampling* or survival of the fittest

Particle Filtering

- Filtering: approximate solution
- Sometimes $|X|$ is too big to use exact inference
	- \blacksquare |X| may be too big to even store $P(X \mid e_{1:T})$
- Solution: approximate inference
	- \blacksquare Track samples of X, not all values
	- Samples are called particles
	- Time per step is linear in the number of samples
	- But: number needed may be large
	- In memory: list of particles, not states
- This is how robot localization works in practice

Representation: Particles

- \circ Our representation of $P(X)$ is now a list of N particles (samples) \circ Generally, N << | X |
- \circ P(x) approximated by number of particles with value x \circ So, many x may have $P(x) = 0!$ o More particles, more accuracy
- o For now, all particles have a weight of 1

Particle Filtering: Elapse Time

■ Each particle is moved by sampling its next position from the transition model

 $x' =$ sample $(P(X'|x))$

- This is like prior sampling sample's frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
	- If enough samples, close to exact values before and after (consistent)

(3,3) (2,3) (3,3) (3,2) (3,3) (3,2) $(1,2)$ (3,3) (3,3) (2,3)

(3,2) (2,3) (3,2) (3,1) (3,3) (3,2) $(1,3)$ (2,3) (3,2) (2,2)

Particle Filtering: Incorporate Observation

- After observing Evidence e_{t+1} :
	- Don't sample observation, fix it
	- Similar to likelihood weighting, downweight samples based on the evidence

 $w(x) = P(e|x)$

- $B(X) \propto P(e|X)B'(X)$
- § As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of $\dot{P}(e)$

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- o N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- o This is equivalent to renormalizing the distribution
- o Now the update is complete for this time step, continue with the next one

Recap: Particle Filtering

o Particles: track samples of states rather than an explicit distribution

Video of Demo – Moderate Number of Particles

Video of Demo – One Particle

Video of Demo – Huge Number of Particles

Robot Localization

o In robot localization:

- o Know the map, but not the robot's position
- o Observations may be vectors of range finder readings
- o State space and readings typically continuous (very fine grid) and so we cannot store $P(X_t | e_{1:t})$
- o Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Dieter Fox, et al.] **[2006]** [Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

[Dieter Fox, et al.] [Video: global-floor.gif]

Robot Mapping

- o SLAM: Simultaneous Localization And Mapping
	- o We do not know the map or our location
	- o State consists of position AND map!
	- o Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video

