Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time *t* can condition on those from *t*-1

Dynamic Bayes nets are a generalization of HMMs

DBNs and HMMs

- Every HMM is a single-variable DBN
- Every discrete DBN is an HMM
 - HMM state is Cartesian product of DBN state variables

- Sparse dependencies => exponentially fewer parameters in DBN
 - E.g., 20 state variables, 3 parents each;
 - DBN has $20 \ge 2^3 = 160$ parameters, HMM has $2^{20} \ge 2^{20} = 10^{12}$ parameters

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P(X_T | e_{1:T})$ is computed

 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 Example particle: G₁^a = (3,3) G₁^b = (5,3)
- **Elapse time**: Sample a successor for each particle • Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- **Observe**: Weight each *entire* sample by the likelihood of the evidence conditioned on the sample

• Likelihood: $P(E_1^a | G_1^a) * P(E_1^b | G_1^b)$

• **Resample:** Select prior samples (tuples of values) in proportion to their likelihood

CS 188: Artificial Intelligence

Midterm Review

Instructors: Evgeny Pobachienko – UC Berkeley (Slides Credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, Satish Rao, Ketrina Yim, and many others)

Midterm: Topics in Scope

- o Utilities and Rationality, MEU Principle
- o Search and Planning
- Constraint Satisfaction Programming
- o Game Trees, Minimax, Pruning, Expectimax
- Probabilistic Inference, Bayesian Networks, Variable Elimination, D-Separation, Sampling
- o Markov Models, HMMs

Agents and environments

- An agent *perceives* its environment through *sensors* and *acts* upon it through *actuators* (or *effectors*, depending on whom you ask)
- The *agent function* maps percept sequences to actions
 It is generated by an *agent program* running on a *machine*

The task environment - PEAS

• Performance measure

o -1 per step; + 10 food; +500 win; -500 die;+200 hit scared ghost

o Environment

o Pacman dynamics (incl ghost behavior)

Actuators

o Left Right Up Down or NSEW

o Sensors

 Entire state is visible (except power pellet duration)

Agent design

- **•** The environment type largely determines the agent design
 - o Partially observable => agent requires memory (internal state)
 - o Stochastic => agent may have to prepare for contingencies
 - o Multi-agent => agent may need to behave randomly
 - o Static => agent has time to compute a rational decision
 - o Continuous time => continuously operating controller
 - o Unknown physics => need for exploration
 - o Unknown perf. measure => observe/interact with human principal

Utilities and Rationality

Orderability:
$$(A > B) \lor (B > A) \lor (A \sim B)$$

Transitivity: $(A > B) \land (B > C) \Rightarrow (A > C)$
Continuity: $(A > B > C) \Rightarrow \exists p [p, A; 1-p, C] \sim B$
Substitutability: $(A \sim B) \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$
Monotonicity: $(A > B) \Rightarrow$
 $(p \ge q) \Leftrightarrow [p, A; 1-p, B] \ge [q, A; 1-q, B]$

Given Rational Preferences, Exists U(X) s.t. $U(A) \ge U(B) \iff A \ge B$ $U([p_1, S_1; ...; p_n, S_n]) = p_1 U(S_1) + ... + p_n U(S_n)$

Maximize Your Expected Utility

Search Problems

Search Problems

• A search problem consists of:

o A state space

• A successor function (with actions, costs)

o A start state and a goal test

• A solution is a sequence of actions (a plan) which transforms the start state to a goal state

State Space Graphs vs. Search Trees

Each NODE in in the search tree is an entire PATH in the state space graph. *We construct* only what we need on demand

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

Important ideas:
 Fringe

- o Expansion
- Exploration strategy

• Main question: which fringe nodes to explore?

Depth-First Search

Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe is a FIFO queue

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)

Search Heuristics

- A heuristic is:
 - A function that *estimates* how close a state is to a goal
 - Designed for a particular search problem
 - Pathing?
 - Examples: Manhattan distance, Euclidean distance

Heuristi - Tron

Greedy Search

Is it optimal?
 No. Resulting path to Bucharest is not the shortest!

A* Search

Combining UCS and Greedy

Uniform-cost orders by path cost, or *backward cost* g(n)
Greedy orders by goal proximity, or *forward cost* h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg

h=0

G

When should A* terminate?

• Should we stop when we enqueue a goal?

• No: only stop when we dequeue a goal

Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) iff:

 $0 \leq h(n) \leq h^*(n)$

where $h^*(n)$ is the true cost to a nearest goal

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available

• Inadmissible heuristics are often useful too

Graph Search

Graph Search Pseudo-Code

```
function GRAPH-SEARCH(problem, fringe) return a solution, or failure
   closed \leftarrow an empty set
   fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow \text{REMOVE-FRONT}(fringe)
       if GOAL-TEST(problem, STATE[node]) then return node
       if STATE[node] is not in closed then
           add STATE[node] to closed
           for child-node in EXPAND(STATE[node], problem) do
               fringe \leftarrow \text{INSERT}(child-node, fringe)
           end
   end
```

Consistency of Heuristics

• Main idea: estimated heuristic costs \leq actual costs • Admissibility: heuristic cost \leq actual cost to goal $h(v) \le h^*(v)$ for all $v \in V$ Underestimate the true cost to the goal! • Consistency: heuristic "arc" cost \leq actual cost for each arc $h(u) - h(v) \le d(u, v)$ for all $(u, v) \in E$ Underestimate the weight of every edge! • Consequences of consistency: • The f value along a path never decreases

 $h(A) \le cost(A \text{ to } C) + h(C)$

• A* graph search is optimal

Optimality of A* Search

With a admissible heuristic, Tree A* is optimal.
With a consistent heuristic, Graph A* is optimal.
With h=0, the same proof shows that UCS is optimal.

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering -> better branching factor!
 I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraints
 - o "Incremental goal test"
- Depth-first search with these two improvements is called *backtracking search* (not the best name)
- Can solve n-queens for $n \approx 25$

Backtracking Example

Backtracking Search

- Backtracking = DFS + variable-ordering + fail-onviolation
- What are the choice points?

Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

Filtering: Constraint Propagation

• Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- *Constraint propagation:* reason from constraint to constraint

Consistency of A Single Arc

• An arc $X \rightarrow Y$ is consistent iff for *every* x in the tail there is *some* y in the head which could be assigned without violating a constraint

Enforcing consistency of arcs pointing to each new assignment

Enforcing Arc Consistency in a CSP

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)
      if REMOVE-INCONSISTENT-VALUES (X_i, X_j) then
         for each X_k in NEIGHBORS [X_i] do
             add (X_k, X_i) to queue
function REMOVE-INCONSISTENT-VALUES (X_i, X_j) returns true iff succeeds
   removed \leftarrow false
   for each x in DOMAIN[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x, y) to satisfy the constraint X_i \leftrightarrow X_i
         then delete x from DOMAIN[X<sub>i</sub>]; removed \leftarrow true
   return removed
```

- Runtime: $O(n^2d^3)$, can be reduced to $O(n^2d^2)$
- ... but detecting all possible future problems is NP-hard why?

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
- Higher k more expensive to compute
- (You need to know the k=2 case: arc consistency)

Ordering: Minimum Remaining Values

Variable Ordering: Minimum remaining values (MRV):
 Choose the variable with the fewest legal left values in its domain

o Why min rather than max?
o Also called "most constrained variable"
o "Fail-fast" ordering

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the *least constraining value*
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - o Operators *reassign* variable values
 - No fringe! Live on the edge.
- Algorithm: While not solved,
 - o Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - \circ I.e., hill climb with h(x) = total number of violated constraints

Hill Climbing

Tree-Structured CSPs

• Algorithm for tree-structured CSPs:

• Order: Choose a root variable, order variables so that parents precede children

Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
 Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)

 \circ Runtime: O(n d²) (why?)

Game Playing: Search with other agents

Adversarial Search

Adversarial Game Trees

Minimax Values

V(s) =known

Minimax Implementation (Dispatch)

def value(state):

if the state is terminal: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is MIN: return min-value(state)

Game Tree Pruning

Alpha-Beta Implementation

 α : MAX's best option on path to root β : MIN's best option on path to root

```
\begin{array}{l} \mbox{def max-value(state, } \alpha, \beta): \\ \mbox{initialize } v = -\infty \\ \mbox{for each successor of state:} \\ v = max(v, value(successor, \alpha, \beta)) \\ \mbox{if } v \geq \beta \mbox{ return } v \\ \alpha = max(\alpha, v) \\ \mbox{return } v \end{array}
```

```
\begin{array}{l} \mbox{def min-value(state , \alpha, \beta):} \\ \mbox{initialize } v = +\infty \\ \mbox{for each successor of state:} \\ v = min(v, value(successor, \alpha, \beta)) \\ \mbox{if } v \leq \alpha \mbox{ return } v \\ \beta = min(\beta, v) \\ \mbox{return } v \end{array}
```

Alpha-Beta Example

Alpha-Beta Quiz 2

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

1,6,6

1,6,6

7,1,2

6,**1**,**2**

7,2,1

5,1,7

1,5,2

5,2,5

7,7,1

- Generalization of minimax:
 - o Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own component
 - Can give rise to cooperation and competition dynamically...

Chance Nodes

- We don't know what the result of an action will be:
 - Explicit randomness: rolling dice
 - Unpredictable opponents
 - Actions can fail
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes: calculate expected utilities

Expectimax Pseudocode

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)

def exp-value(state):
 initialize v = 0
 for each successor of state:
 p = probability(successor)
 v += p * value(successor)
 return v

Bayesian Networks

Probability

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Summing Out $P(h) = P(h, s) + P(h, \sim s)$

Bayes' Rule/ Def. of Conditional Probability

$$P(s|h) = \frac{P(s,h)}{P(h)}$$

Chain Rule P(s,h) = P(s|h) * P(h)

Conditional Independence

• X and Y are independent iff

• Given Z, we say X and Y are conditionally independent iff

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) \quad \neg \neg \rightarrow \quad X \perp L Y|Z$$

o (Conditional) independence is a property of a distribution

Bayesian Networks

- A directed acyclic graph (DAG), one node per random variable
- A conditional probability table (CPT) for each node
 - Probability of X, given a combination of values for parents. $P(X|a_1...a_n)$
- Bayes nets implicitly encode joint distributions as a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Independence Assumptions

 Definition: Each node, given its parents, is conditionally independent of all its non-descendants in the graph

Each node, given its MarkovBlanket, is conditionally independent of all other nodes in the graph

MarkovBlanket refers to the parents, children, and children's other parents.

Inference by Enumeration

Traffic Domain

Marginalizing Early (Variable Elimination)

Variable Elimination

P(R))
T	L
+r	0.1
-r	0.9

P(T	R)	
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P(L	<i>T</i>)	
+t	+	0.3
+t	-1	0.7
-t	+	0.1
-t	-	0.9

Join R

	P(<i>R</i> ,	<i>T</i>)	
	+r	+t	0.08
	+r	-t	0.02
	-r	+t	0.09
	-r	-t	0.81

P(<i>L</i>	T)	
+t	+1	0.3
+t	-	0.7
-t	+	0.1
-t	-1	0.9

Sum out R +t 0.17-t 0.83

P(L	T)	
+t	+	0.3
+t	-1	0.7
-t	+	0.1
-t	-	0.9

Join T T,LP(T,L)

+t	+	0.051
+t	-1	0.119
-t	+	0.083
-t	-1	0.747

Sum out T

L

+1	0.134
-I	0.866

General Variable Elimination

• Query:
$$P(Q|E_1 = e_1, ..., E_k = e_k)$$

• Start with initial factors:

• Local CPTs (but instantiated by evidence)

- While there are still hidden variables (not Q or evidence):
 - o Pick a hidden variable H
 - o Join all factors mentioning H
 - o Eliminate (sum out) H
- Join all remaining factors and normalize

Independence Assumptions in a Bayes Net

• Assumptions we are required to make to define the Bayes net when given the graph:

 $P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$

• Important for modeling: understand assumptions made when choosing a Bayes net graph

Active / Inactive Paths

D-Separation

- Query: $X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- Check all (undirected!) paths between X_i and X_j
 - If one or more active paths, then independence not guaranteed

$$X_i \bowtie X_j | \{X_{k_1}, ..., X_{k_n}\}$$

• Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp \perp X_j | \{X_{k_1}, \dots, X_{k_n}\}$$

Another Perspective: Bayes Ball

An undirected path is active if a Bayes ball travelling along it never encounters the "stop" symbol: \longrightarrow

If there are no active paths from X to Y when $\{Z_1, \ldots, Z_k\}$ are shaded, then $X \perp \!\!\!\perp Y \mid \{Z_1, \ldots, Z_k\}.$

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Approximate Inference: Sampling

Prior Sampling

○ For i = 1, 2, …, n in topological order

O Sample x_i from $P(X_i | Parents(X_i))$

• Return $(x_1, x_2, ..., x_n)$

Rejection Sampling

- Input: evidence instantiation
- For i = 1, 2, ..., n in topological order
 - Sample x_i from $P(X_i | Parents(X_i))$
 - $\circ~$ If x_i not consistent with evidence
 - Reject: return no sample is generated in this cycle
- Return $(x_1, x_2, ..., x_n)$

Likelihood Weighting

- Input: evidence instantiation
- w = 1.0
- for i = 1, 2, ..., n in topological order
 - o if X_i is an evidence variable
 - $\circ X_i$ = observation x_i for X_i
 - Set $w = w * P(x_i | Parents(X_i))$
 - o else
 - \circ Sample x_i from P(X_i | Parents(X_i))
- return $(x_1, x_2, ..., x_n)$, w

Gibbs Sampling

Step 1: Fix evidence
R = +r

- Steps 3: Repeat:
 - Choose a non-evidence variable X
 - Resample X from P(X | MarkovBlanket(X))

- Step 2: Initialize other variables
 - Randomly

Hidden Markov Models

Markov Chains

• Value of X at a given time is called the state

P(X ₀)		
sun	rain	
1	0.0	

$$(X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow P(X_1) \qquad P(X_t | X_{t-1})$$

$$P(X_t) = ?$$

X _{t-1}	X _t	P(X _t X _{t-1})
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

State Transition Diagram (Flow Graph)

State Trellis

Mini-Forward Algorithm

• Question: What's P(X) on some day t?

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow$$

 $P(x_1) =$ known

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

=
$$\sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$

Forward simulation

Stationary Distribution

• For most chains:

- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution

• Stationary distribution:

- The distribution we end up with is called the stationary distribution P_{∞} of the chain
- It satisfies

$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

Hidden Markov Models

- Markov chains not so useful for most agents
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - o Underlying Markov chain over states X_i
 - o You observe outputs (effects) at each time step

Inference tasks

Smoothing: $P(X_k | e_{1:t}), k < t$

Inference: Find State Given Evidence

- We are given evidence at each time and want to know $P(X_t|e_{1:t})$
- Idea: start with $P(X_1)$ and derive $P(X_t | e_{1:t})$ in terms of $P(X_{t-1} | e_{1:t-1})$
- Two steps: Passage of time + Incorporate Evidence

