
Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

o We want to track multiple variables over time, using
multiple sources of evidence

o Idea: Repeat a fixed Bayes net structure at each time

o Variables from time t can condition on those from t-1

o Dynamic Bayes nets are a generalization of HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3

DBNs and HMMs

o Every HMM is a single-variable DBN

o Every discrete DBN is an HMM
o HMM state is Cartesian product of DBN state variables

o Sparse dependencies => exponentially fewer parameters in DBN
o E.g., 20 state variables, 3 parents each;

DBN has 20 x 23 = 160 parameters, HMM has 220 x 220 =~ 1012 parameters

Xt+1Xt

Yt+1Yt

Zt+1Zt

XYZt+1XYZt

Exact Inference in DBNs

o Variable elimination applies to dynamic Bayes nets

o Procedure: “unroll” the network for T time steps, then eliminate variables until
P(XT|e1:T) is computed

o Online belief updates: Eliminate all variables from the previous time step; store
factors for current time only

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

G3
a

E3
a E3

b

G3
b

t =1 t =2 t =3

G3
b

DBN Particle Filters

o A particle is a complete sample for a time step

o Initialize: Generate prior samples for the t=1 Bayes net

o Example particle: G1
a = (3,3) G1

b = (5,3)

o Elapse time: Sample a successor for each particle

o Example successor: G2
a = (2,3) G2

b = (6,3)

o Observe: Weight each entire sample by the likelihood of the evidence
conditioned on the sample

o Likelihood: P(E1
a |G1

a) * P(E1
b |G1

b)

o Resample: Select prior samples (tuples of values) in proportion to their
likelihood

CS 188: Artificial Intelligence

Midterm Review

Instructors: Evgeny Pobachienko – UC Berkeley

(Slides Credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart
Russell, Satish Rao, Ketrina Yim, and many others)

Midterm: Topics in Scope

o Utilities and Rationality, MEU Principle

o Search and Planning

o Constraint Satisfaction Programming

o Game Trees, Minimax, Pruning, Expectimax

o Probabilistic Inference, Bayesian Networks, Variable
Elimination, D-Separation, Sampling

o Markov Models, HMMs

Agents and environments

o An agent perceives its environment through sensors and acts
upon it through actuators (or effectors, depending on whom
you ask)

o The agent function maps percept sequences to actions

o It is generated by an agent program running on a machine

Agent

?

Sensors

Actuators

Environment

Percepts

Actions

The task environment - PEAS

o Performance measure
o -1 per step; + 10 food; +500 win; -500 die;

+200 hit scared ghost

o Environment
o Pacman dynamics (incl ghost behavior)

o Actuators
o Left Right Up Down or NSEW

o Sensors
o Entire state is visible (except power pellet

duration)

Agent design

o The environment type largely determines the agent design
o Partially observable => agent requires memory (internal state)

o Stochastic => agent may have to prepare for contingencies

oMulti-agent => agent may need to behave randomly

o Static => agent has time to compute a rational decision

o Continuous time => continuously operating controller

oUnknown physics => need for exploration

oUnknown perf. measure => observe/interact with human principal

Utilities and Rationality

o Utility: map state of world to real value

o Rational Preferences

Orderability: (A > B) ∨ (B > A) ∨ (A ~ B)
Transitivity: (A > B) ∧ (B > C) ⇒ (A > C)
Continuity: (A > B > C) ⇒ ∃p [p, A; 1-p, C] ~ B
Substitutability: (A ~ B) ⇒ [p, A; 1-p, C] ~ [p, B; 1-p, C]
Monotonicity: (A > B) ⇒

(p ≥ q) ⇔ [p, A; 1-p, B] ≥ [q, A; 1-q, B]

Given Rational Preferences, Exists U(X) s.t.
U(A) ≥ U(B) ⇔ A ≥ B

U([p1,S1; … ; pn,Sn]) = p1U(S1) + … + pnU(Sn)

Maximize Your
Expected Utility

Search Problems

Search Problems

o A search problem consists of:

o A state space

o A successor function
(with actions, costs)

o A start state and a goal test

o A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”,
1.0

“E”, 1.0

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
We construct
only what we

need on demand

Each NODE in
in the search

tree is an
entire PATH in

the state
space graph.

Search TreeState Space Graph

General Tree Search

o Important ideas:
o Fringe
o Expansion
o Exploration strategy

o Main question: which fringe nodes to explore?

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand a deepest node
first

Implementation: Fringe is a LIFO
stack

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a shallowest node
first

Implementation: Fringe is a FIFO
queue

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority:

cumulative cost)

S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost contours

2

Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal

▪ Designed for a particular search problem

▪ Pathing?

▪ Examples: Manhattan distance, Euclidean distance

10

5

11.2

Greedy Search

Greedy Search

o Expand the node that seems closest…
o Move to smallest heuristic value

o Is it optimal?
o No. Resulting path to Bucharest is not the shortest!

A* Search

Combining UCS and Greedy

o Uniform-cost orders by path cost, or backward cost g(n)

o Greedy orders by goal proximity, or forward cost h(n)

o A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1
1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg
Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

When should A* terminate?

o Should we stop when we enqueue a goal?

o No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2

h = 1

h = 2

h = 0h = 3

S 0 3 3

g h +

S->A 2 2 4

S->B 2 1 3

S->B->G 5 0 5

S->A->G 4 0 4

Admissible Heuristics

o A heuristic h is admissible (optimistic) iff:

where is the true cost to a nearest goal

o Examples:

o Coming up with admissible heuristics is most of what’s
involved in using A* in practice.

15 11.5
0.0

Creating Admissible Heuristics

o Most of the work in solving hard search problems optimally is in
coming up with admissible heuristics

o Often, admissible heuristics are solutions to relaxed problems, where
new actions are available

o Inadmissible heuristics are often useful too

15

366

Graph Search

Graph Search Pseudo-Code

Consistency of Heuristics

o Main idea: estimated heuristic costs ≤ actual costs
o Admissibility: heuristic cost ≤ actual cost to goal

h(v) ≤ h*(v) for all v ∈ V

Underestimate the true cost to the goal!

o Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(u) – h(v) ≤ d(u, v) for all (u, v) ∈ E

Underestimate the weight of every edge!

o Consequences of consistency:
o The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

o A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Optimality of A* Search

o With a admissible heuristic, Tree A* is optimal.

o With a consistent heuristic, Graph A* is optimal.
o With h=0, the same proof shows that UCS is optimal.

Constraint Satisfaction Problems

Constraint Satisfaction Problems

N variables

x1

x2

domain D

constraints

states goal test successor function
partial assignment complete; satisfies constraints assign an unassigned variable

Backtracking Search

o Backtracking search is the basic uninformed algorithm for solving CSPs

o Idea 1: One variable at a time
o Variable assignments are commutative, so fix ordering -> better branching factor!
o I.e., [WA = red then NT = green] same as [NT = green then WA = red]
o Only need to consider assignments to a single variable at each step

o Idea 2: Check constraints as you go
o I.e. consider only values which do not conflict previous assignments
o Might have to do some computation to check the constraints
o “Incremental goal test”

o Depth-first search with these two improvements
is called backtracking search (not the best name)

o Can solve n-queens for n ≈ 25

Backtracking Example

[Demo: coloring -- backtracking]

Backtracking Search

o Backtracking = DFS + variable-ordering + fail-on-
violation

o What are the choice points?

Filtering: Forward Checking

o Filtering: Keep track of domains for unassigned variables and cross off bad
options

o Forward checking: Cross off values that violate a constraint when added to the
existing assignment

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]

Filtering: Constraint Propagation

o Forward checking propagates information from assigned to unassigned
variables, but doesn't provide early detection for all failures:

o NT and SA cannot both be blue!
o Why didn’t we detect this yet?
o Constraint propagation: reason from constraint to constraint

WA
SA

NT Q

NSW

V

Consistency of A Single Arc

o An arc X → Y is consistent iff for every x in the tail there is some y in the head
which could be assigned without violating a constraint

Forward checking?
Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA
SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

o Runtime: O(n2d3), can be reduced to O(n2d2)
o … but detecting all possible future problems is NP-hard – why?

K-Consistency

o Increasing degrees of consistency

o 1-Consistency (Node Consistency): Each single node’s domain
has a value which meets that node’s unary constraints

o 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

o K-Consistency: For each k nodes, any consistent assignment to
k-1 can be extended to the kth node.

o Higher k more expensive to compute

o (You need to know the k=2 case: arc consistency)

Ordering: Minimum Remaining Values

o Variable Ordering: Minimum remaining values (MRV):
o Choose the variable with the fewest legal left values in its domain

o Why min rather than max?

o Also called “most constrained variable”

o “Fail-fast” ordering

Ordering: Least Constraining Value

o Value Ordering: Least Constraining
Value
o Given a choice of variable, choose the least

constraining value

o I.e., the one that rules out the fewest values in
the remaining variables

o Note that it may take some computation to
determine this! (E.g., rerunning filtering)

o Why least rather than most?

o Combining these ordering ideas makes
1000 queens feasible

Iterative Algorithms for CSPs

o Local search methods typically work with “complete” states, i.e., all variables
assigned

o To apply to CSPs:
o Take an assignment with unsatisfied constraints
o Operators reassign variable values
o No fringe! Live on the edge.

o Algorithm: While not solved,
o Variable selection: randomly select any conflicted variable
o Value selection: min-conflicts heuristic:

o Choose a value that violates the fewest constraints
o I.e., hill climb with h(x) = total number of violated constraints

Hill Climbing

Tree-Structured CSPs

o Algorithm for tree-structured CSPs:
o Order: Choose a root variable, order variables so that parents precede

children

o Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
o Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

o Runtime: O(n d2) (why?)

Game Playing: Search with other agents

Adversarial Search

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Value of a state:
The best outcome

from that state

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Minimax Implementation (Dispatch)

def value(state):
if the state is terminal: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Game Tree Pruning

Alpha-Beta Implementation

α: MAX’s best option on path to root
β: MIN’s best option on path to root

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

Alpha-Beta Example

2

Alpha-Beta Quiz 2

10

10

>=100 2

<=2

Multi-Agent Utilities

o What if the game is not zero-sum, or has multiple players?

o Generalization of minimax:
o Terminals have utility tuples
o Node values are also utility tuples
o Each player maximizes its own component
o Can give rise to cooperation and

competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

1,6,6

Chance Nodes

o We don’t know what the result of an action will be:
o Explicit randomness: rolling dice
o Unpredictable opponents
o Actions can fail

o Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

o Expectimax search: compute the average score under
optimal play
o Max nodes as in minimax search
o Chance nodes: calculate expected utilities

10 4 5 7

max

chance

10 10 9 100

Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Bayesian Networks

Probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

~h ~s

h s

U

𝑃 ℎ = 𝑃 ℎ, 𝑠 + 𝑃(ℎ, ~𝑠) 𝑃 𝑠|ℎ =
𝑃(𝑠, ℎ)

𝑃(ℎ)

~h ~s

h s

U

~h ~s

h s

U

Summing Out
Bayes’ Rule/ Def. of Conditional Probability

Chain Rule

𝑃 𝑠, ℎ = 𝑃 𝑠|ℎ ∗ 𝑃(ℎ)

Normalization

𝑃 𝑠|ℎ =
𝑃(𝑠, ℎ)

𝑃 ℎ, 𝑠 + 𝑃(ℎ, ~𝑠)

Conditional Independence

o X and Y are independent iff

o Given Z, we say X and Y are conditionally independent iff

o (Conditional) independence is a property of a distribution
~h

~s

h

s

U ~h

~s

h

s

U

Bayesian Networks

o A directed acyclic graph (DAG), one node per
random variable

o A conditional probability table (CPT) for each node

o Probability of X, given a combination of values for
parents.

o Bayes nets implicitly encode joint distributions as a
product of local conditional distributions

o To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

Independence Assumptions

o Definition: Each node, given its
parents, is conditionally independent
of all its non-descendants in the graph

Each node, given its MarkovBlanket, is
conditionally independent of all other
nodes in the graph

MarkovBlanket refers to the parents,
children, and children's other parents.

Inference by Enumeration

o General case:
o Evidence variables:
o Query* variable:
o Hidden variables: All variables

▪ We want:

▪ Step 1: Select the
entries consistent
with the evidence

▪ Step 2: Sum out H to get joint
of Query and evidence

▪ Step 3: Normalize

Traffic Domain

o Inference by EnumerationT

L

R

▪ Variable Elimination

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

Eliminate t

Marginalizing Early (Variable Elimination)

Variable Elimination

General Variable Elimination

o Query:

o Start with initial factors:
o Local CPTs (but instantiated by evidence)

o While there are still hidden variables
(not Q or evidence):
o Pick a hidden variable H

o Join all factors mentioning H

o Eliminate (sum out) H

o Join all remaining factors and
normalize

Independence Assumptions in a Bayes Net

o Assumptions we are required to make to define the
Bayes net when given the graph:

o Important for modeling: understand assumptions
made when choosing a Bayes net graph

Active / Inactive Paths

o Question: Are X and Y conditionally independent
given evidence variables {Z}?
o Yes, if X and Y “d-separated” by Z
o Consider all (undirected) paths from X to Y
o No active paths = independence!

o A path is active if each triple is active:
o Causal chain A -> B -> C where B is unobserved (either direction)
o Common cause A <- B -> C where B is unobserved
o Common effect (aka v-structure)

A -> B <- C where B or one of its descendants is observed

o All it takes to block a path is a single inactive
segment

Active Triples Inactive Triples

▪ Query:

▪ Check all (undirected!) paths between and

▪ If one or more active paths, then independence not guaranteed

▪ Otherwise (i.e. if all paths are inactive),

then independence is guaranteed

D-Separation

?

Another Perspective: Bayes Ball

X

Y

Z

Topology Limits Distributions

o Given some graph topology G,
only certain joint distributions
can be encoded

o The graph structure guarantees
certain (conditional)
independences

o (There might be more
independence)

o Adding arcs increases the set of
distributions, but has several
costs

o Full conditioning can encode
any distribution

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

Approximate Inference: Sampling

Prior Sampling

o For i = 1, 2, …, n in topological order

o Sample xi from P(Xi | Parents(Xi))

o Return (x1, x2, …, xn)

Rejection Sampling

o Input: evidence instantiation

o For i = 1, 2, …, n in topological order
o Sample xi from P(Xi | Parents(Xi))

o If xi not consistent with evidence
o Reject: return – no sample is generated in this cycle

o Return (x1, x2, …, xn)

Likelihood Weighting

o Input: evidence instantiation

o w = 1.0

o for i = 1, 2, …, n in topological order
o if Xi is an evidence variable

o Xi = observation xi for Xi

o Set w = w * P(xi | Parents(Xi))

o else

o Sample xi from P(Xi | Parents(Xi))

o return (x1, x2, …, xn), w

▪ Step 2: Initialize other variables
▪ Randomly

Gibbs Sampling

o Step 1: Fix evidence
o R = +r

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

▪ Steps 3: Repeat:
▪ Choose a non-evidence variable X

▪ Resample X from P(X | MarkovBlanket(X))

Hidden Markov Models

Markov Chains

o Value of X at a given time is called the state

rain sun

0.9

0.7

0.3

0.1

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

P(X0)

sun rain

1 0.0

State Transition Diagram
(Flow Graph)

State Trellis

X2X1 X3 X4

Mini-Forward Algorithm

o Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

▪ Stationary distribution:
▪ The distribution we end up with is

called the stationary distribution
of the chain

▪ It satisfies

Stationary Distribution

o For most chains:
o Influence of the initial distribution

gets less and less over time.

o The distribution we end up in is
independent of the initial
distribution

Hidden Markov Models

o Markov chains not so useful for most agents
o Need observations to update your beliefs

o Hidden Markov models (HMMs)
o Underlying Markov chain over states Xi

o You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4

E

5

Inference tasks

Filtering: P(Xt|e1:t)
X

2

e

1

X

1

X

3

X

4

e

2

e

3

e

4

X

2

e

1

X

1

X

3

X

4

e

2

e

3

e

4

X

2

e

1

X

1

X

3

X

4

e

2

e

3

e

4

X

2

e

1

X

1

X

3

X

4

e

2

e

3

Prediction: P(Xt+k|e1:t)

Smoothing: P(Xk|e1:t), k<t Explanation: P(X1:t|e1:t)

Inference: Find State Given Evidence

o We are given evidence at each time and want to know

o Idea: start with P(X1) and derive P(Xt | e1:t) in terms of P(Xt-1 | e1:t–1)

o Two steps: Passage of time + Incorporate Evidence

X2

E1

X1 X3 X4

E2 E3 E4

P(Xt+1 | e1:t)

P(Xt+1 | e1:t+1)P(Xt | e1:t)

	Slide 1: Dynamic Bayes Nets
	Slide 2: Dynamic Bayes Nets (DBNs)
	Slide 3: DBNs and HMMs
	Slide 4: Exact Inference in DBNs
	Slide 5: DBN Particle Filters
	Slide 6: CS 188: Artificial Intelligence
	Slide 7
	Slide 8: Midterm: Topics in Scope
	Slide 9: Agents and environments
	Slide 10: The task environment - PEAS
	Slide 11: Agent design
	Slide 12: Utilities and Rationality
	Slide 13
	Slide 14
	Slide 15: Search Problems
	Slide 16: State Space Graphs vs. Search Trees
	Slide 17: General Tree Search
	Slide 18: Depth-First Search
	Slide 19: Depth-First Search
	Slide 20: Breadth-First Search
	Slide 21: Breadth-First Search
	Slide 22: Cost-Sensitive Search
	Slide 23: Uniform Cost Search
	Slide 24: Uniform Cost Search
	Slide 25: Search Heuristics
	Slide 26: Greedy Search
	Slide 27: Greedy Search
	Slide 28: A* Search
	Slide 29: Combining UCS and Greedy
	Slide 30: When should A* terminate?
	Slide 31: Admissible Heuristics
	Slide 32: Creating Admissible Heuristics
	Slide 33: Graph Search
	Slide 34: Graph Search Pseudo-Code
	Slide 35: Consistency of Heuristics
	Slide 36: Optimality of A* Search
	Slide 37
	Slide 38: Constraint Satisfaction Problems
	Slide 39: Backtracking Search
	Slide 40: Backtracking Example
	Slide 41: Backtracking Search
	Slide 42: Filtering: Forward Checking
	Slide 43: Filtering: Constraint Propagation
	Slide 44: Consistency of A Single Arc
	Slide 45: Enforcing Arc Consistency in a CSP
	Slide 46: K-Consistency
	Slide 47: Ordering: Minimum Remaining Values
	Slide 48: Ordering: Least Constraining Value
	Slide 49: Iterative Algorithms for CSPs
	Slide 50: Hill Climbing
	Slide 51: Tree-Structured CSPs
	Slide 52
	Slide 53: Adversarial Search
	Slide 54: Adversarial Game Trees
	Slide 55: Minimax Values
	Slide 56: Minimax Implementation (Dispatch)
	Slide 57: Game Tree Pruning
	Slide 58: Alpha-Beta Implementation
	Slide 59: Alpha-Beta Example
	Slide 60: Alpha-Beta Quiz 2
	Slide 61: Multi-Agent Utilities
	Slide 62: Chance Nodes
	Slide 63: Expectimax Pseudocode
	Slide 64
	Slide 65: Probability
	Slide 66: Conditional Independence
	Slide 67: Bayesian Networks
	Slide 68: Independence Assumptions
	Slide 69: Inference by Enumeration
	Slide 70: Traffic Domain
	Slide 71: Marginalizing Early (Variable Elimination)
	Slide 72: Variable Elimination
	Slide 73: General Variable Elimination
	Slide 74: Independence Assumptions in a Bayes Net
	Slide 75: Active / Inactive Paths
	Slide 76: D-Separation
	Slide 77: Another Perspective: Bayes Ball
	Slide 78: Topology Limits Distributions
	Slide 79: Approximate Inference: Sampling
	Slide 80: Prior Sampling
	Slide 81: Rejection Sampling
	Slide 82: Likelihood Weighting
	Slide 83: Gibbs Sampling
	Slide 84
	Slide 85: Markov Chains
	Slide 86: Mini-Forward Algorithm
	Slide 87: Stationary Distribution
	Slide 88: Hidden Markov Models
	Slide 89: Inference tasks
	Slide 90: Inference: Find State Given Evidence
	Slide 91

