
Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)

o We want to track multiple variables over time, using 
multiple sources of evidence

o Idea: Repeat a fixed Bayes net structure at each time

o Variables from time t can condition on those from t-1

o Dynamic Bayes nets are a generalization of HMMs
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DBNs and HMMs

o Every HMM is a single-variable DBN

o Every discrete DBN is an HMM 
o HMM state is Cartesian product of DBN state variables

o Sparse dependencies => exponentially fewer parameters in DBN
o E.g., 20 state variables, 3 parents each; 

DBN has 20 x 23 = 160 parameters, HMM has 220 x 220 =~ 1012 parameters
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Exact Inference in DBNs

o Variable elimination applies to dynamic Bayes nets

o Procedure: “unroll” the network for T time steps, then eliminate variables until 
P(XT|e1:T) is computed

o Online belief updates: Eliminate all variables from the previous time step; store 
factors for current time only
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DBN Particle Filters

o A particle is a complete sample for a time step

o Initialize: Generate prior samples for the t=1 Bayes net

o Example particle: G1
a = (3,3) G1

b = (5,3) 

o Elapse time: Sample a successor for each particle 

o Example successor: G2
a = (2,3) G2

b = (6,3)

o Observe: Weight each entire sample by the likelihood of the evidence 
conditioned on the sample

o Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b ) 

o Resample: Select prior samples (tuples of values) in proportion to their 
likelihood
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Midterm: Topics in Scope

o Utilities and Rationality, MEU Principle

o Search and Planning

o Constraint Satisfaction Programming

o Game Trees, Minimax, Pruning, Expectimax

o Probabilistic Inference, Bayesian Networks, Variable 
Elimination, D-Separation, Sampling

o Markov Models, HMMs



Agents and environments

o An agent perceives its environment through sensors and acts
upon it through actuators (or effectors, depending on whom 
you ask)

o The agent function maps percept sequences to actions

o It is generated by an agent program running on a machine
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The task environment - PEAS

o Performance measure
o -1 per step; + 10 food; +500 win; -500 die;               

+200 hit scared ghost

o Environment
o Pacman dynamics (incl ghost behavior)

o Actuators
o Left Right Up Down or NSEW

o Sensors
o Entire state is visible (except power pellet 

duration)



Agent design

o The environment type largely determines the agent design
o Partially observable => agent requires memory (internal state)

o Stochastic => agent may have to prepare for contingencies

oMulti-agent => agent may need to behave randomly

o Static => agent has time to compute a rational decision

o Continuous time => continuously operating controller

oUnknown physics => need for exploration

oUnknown perf. measure =>  observe/interact with human principal



Utilities and Rationality

o Utility: map state of world to real value

o Rational Preferences

Orderability: (A  > B) ∨ (B  > A) ∨ (A ~  B) 
Transitivity: (A  > B) ∧ (B  > C) ⇒ (A >  C)
Continuity: (A  > B  > C) ⇒ ∃p [p, A;  1-p, C] ~ B
Substitutability: (A ~  B) ⇒ [p, A;  1-p, C] ~ [p, B;  1-p, C] 
Monotonicity: (A >  B) ⇒

(p ≥ q) ⇔ [p, A;  1-p, B] ≥  [q, A;  1-q, B] 

Given Rational Preferences, Exists U(X) s.t. 
U(A) ≥ U(B)  ⇔ A ≥ B

U([p1,S1; … ; pn,Sn]) = p1U(S1) + … + pnU(Sn) 



Maximize Your
Expected Utility



Search Problems



Search Problems

o A search problem consists of:

o A state space

o A successor function
(with actions, costs)

o A start state and a goal test

o A solution is a sequence of actions (a plan) which 
transforms the start state to a goal state

“N”, 
1.0

“E”, 1.0



State Space Graphs vs. Search Trees
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General Tree Search

o Important ideas:
o Fringe
o Expansion
o Exploration strategy

o Main question: which fringe nodes to explore?



Depth-First Search



Depth-First Search
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Breadth-First Search



Breadth-First Search
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Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path.  We will now cover
a similar algorithm which does find the least-cost path.  
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Uniform Cost Search



Uniform Cost Search
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Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal

▪ Designed for a particular search problem

▪ Pathing? 

▪ Examples: Manhattan distance, Euclidean distance
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Greedy Search



Greedy Search

o Expand the node that seems closest…
o Move to smallest heuristic value 

o Is it optimal?
o No. Resulting path to Bucharest is not the shortest!



A* Search



Combining UCS and Greedy

o Uniform-cost orders by path cost, or backward cost  g(n)

o Greedy orders by goal proximity, or forward cost  h(n)

o A* Search orders by the sum: f(n) = g(n) + h(n)
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When should A* terminate?

o Should we stop when we enqueue a goal?

o No: only stop when we dequeue a goal
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Admissible Heuristics

o A heuristic h is admissible (optimistic) iff:

where               is the true cost to a nearest goal

o Examples:

o Coming up with admissible heuristics is most of what’s 
involved in using A* in practice.
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Creating Admissible Heuristics

o Most of the work in solving hard search problems optimally is in 
coming up with admissible heuristics

o Often, admissible heuristics are solutions to relaxed problems, where 
new actions are available

o Inadmissible heuristics are often useful too

15

366



Graph Search



Graph Search Pseudo-Code



Consistency of Heuristics

o Main idea: estimated heuristic costs ≤ actual costs
o Admissibility: heuristic cost ≤ actual cost to goal

h(v) ≤ h*(v) for all v ∈ V

Underestimate the true cost to the goal!

o Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(u) – h(v) ≤ d(u, v) for all (u, v) ∈ E 

Underestimate the weight of every edge!

o Consequences of consistency:
o The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

o A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2



Optimality of A* Search

o With a admissible heuristic, Tree A* is optimal.

o With a consistent heuristic, Graph A* is optimal.
o With h=0, the same proof shows that UCS is optimal.



Constraint Satisfaction Problems



Constraint Satisfaction Problems

N variables

x1

x2

domain D

constraints

states goal test successor function
partial assignment complete; satisfies constraints assign an unassigned variable



Backtracking Search

o Backtracking search is the basic uninformed algorithm for solving CSPs

o Idea 1: One variable at a time
o Variable assignments are commutative, so fix ordering -> better branching factor! 
o I.e., [WA = red then NT = green] same as [NT = green then WA = red]
o Only need to consider assignments to a single variable at each step

o Idea 2: Check constraints as you go
o I.e. consider only values which do not conflict previous assignments
o Might have to do some computation to check the constraints
o “Incremental goal test”

o Depth-first search with these two improvements
is called backtracking search (not the best name)

o Can solve n-queens for n ≈ 25



Backtracking Example

[Demo: coloring -- backtracking]



Backtracking Search

o Backtracking = DFS + variable-ordering + fail-on-
violation

o What are the choice points?



Filtering: Forward Checking

o Filtering: Keep track of domains for unassigned variables and cross off bad 
options

o Forward checking: Cross off values that violate a constraint when added to the 
existing assignment

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]



Filtering: Constraint Propagation

o Forward checking propagates information from assigned to unassigned 
variables, but doesn't provide early detection for all failures:

o NT and SA cannot both be blue!
o Why didn’t we detect this yet?
o Constraint propagation: reason from constraint to constraint
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V



Consistency of A Single Arc

o An arc X → Y is consistent iff for every x in the tail there is some y in the head 
which could be assigned without violating a constraint

Forward checking?
Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!
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Enforcing Arc Consistency in a CSP

o Runtime: O(n2d3), can be reduced to O(n2d2)
o … but detecting all possible future problems is NP-hard – why?



K-Consistency

o Increasing degrees of consistency

o 1-Consistency (Node Consistency): Each single node’s domain 
has a value which meets that node’s unary constraints

o 2-Consistency (Arc Consistency): For each pair of nodes, any 
consistent assignment to one can be extended to the other

o K-Consistency: For each k nodes, any consistent assignment to 
k-1 can be extended to the kth node.

o Higher k more expensive to compute

o (You need to know the k=2 case: arc consistency)



Ordering: Minimum Remaining Values

o Variable Ordering: Minimum remaining values (MRV):
o Choose the variable with the fewest legal left values in its domain

o Why min rather than max?

o Also called “most constrained variable”

o “Fail-fast” ordering



Ordering: Least Constraining Value

o Value Ordering: Least Constraining 
Value
o Given a choice of variable, choose the least 

constraining value

o I.e., the one that rules out the fewest values in 
the remaining variables

o Note that it may take some computation to 
determine this!  (E.g., rerunning filtering)

o Why least rather than most?

o Combining these ordering ideas makes
1000 queens feasible



Iterative Algorithms for CSPs

o Local search methods typically work with “complete” states, i.e., all variables 
assigned

o To apply to CSPs:
o Take an assignment with unsatisfied constraints
o Operators reassign variable values
o No fringe!  Live on the edge.

o Algorithm: While not solved,
o Variable selection: randomly select any conflicted variable
o Value selection: min-conflicts heuristic:

o Choose a value that violates the fewest constraints
o I.e., hill climb with h(x) = total number of violated constraints



Hill Climbing



Tree-Structured CSPs

o Algorithm for tree-structured CSPs:
o Order: Choose a root variable, order variables so that parents precede 

children

o Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
o Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

o Runtime: O(n d2)  (why?)



Game Playing: Search with other agents



Adversarial Search



Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Value of a state: 
The best outcome 

from that state



Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:



Minimax Implementation (Dispatch)

def value(state):
if the state is terminal: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v



Game Tree Pruning



Alpha-Beta Implementation

α: MAX’s best option on path to root
β: MIN’s best option on path to root

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v



Alpha-Beta Example

2



Alpha-Beta Quiz 2

10

10

>=100 2

<=2



Multi-Agent Utilities

o What if the game is not zero-sum, or has multiple players?

o Generalization of minimax:
o Terminals have utility tuples
o Node values are also utility tuples
o Each player maximizes its own component
o Can give rise to cooperation and

competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

1,6,6



Chance Nodes

o We don’t know what the result of an action will be:
o Explicit randomness: rolling dice
o Unpredictable opponents
o Actions can fail

o Values should now reflect average-case (expectimax) 
outcomes, not worst-case (minimax) outcomes

o Expectimax search: compute the average score under 
optimal play
o Max nodes as in minimax search
o Chance nodes: calculate expected utilities

10 4 5 7

max

chance

10 10 9 100



Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v



Bayesian Networks



Probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

~h ~s

h s

U

𝑃 ℎ = 𝑃 ℎ, 𝑠 + 𝑃(ℎ, ~𝑠) 𝑃 𝑠|ℎ =
𝑃(𝑠, ℎ)

𝑃(ℎ)

~h ~s

h s

U

~h ~s

h s

U

Summing Out
Bayes’ Rule/ Def. of Conditional Probability

Chain Rule

𝑃 𝑠, ℎ = 𝑃 𝑠|ℎ ∗ 𝑃(ℎ)

Normalization

𝑃 𝑠|ℎ =
𝑃(𝑠, ℎ)

𝑃 ℎ, 𝑠 + 𝑃(ℎ, ~𝑠)



Conditional Independence

o X and Y are independent iff

o Given Z, we say X and Y are conditionally independent iff

o (Conditional) independence is a property of a distribution
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Bayesian Networks

o A directed acyclic graph (DAG), one node per 
random variable

o A conditional probability table (CPT) for each node

o Probability of X, given a combination of values for 
parents.

o Bayes nets implicitly encode joint distributions as a 
product of local conditional distributions

o To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



Independence Assumptions

o Definition: Each node, given its 
parents, is conditionally independent 
of all its non-descendants in the graph

Each node, given its MarkovBlanket, is 
conditionally independent of all other 
nodes in the graph

MarkovBlanket refers to the parents, 
children, and children's other parents.



Inference by Enumeration

o General case:
o Evidence variables: 
o Query* variable:
o Hidden variables: All variables

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize



Traffic Domain

o Inference by EnumerationT

L

R

▪ Variable Elimination

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

Eliminate t



Marginalizing Early (Variable Elimination)



Variable Elimination



General Variable Elimination

o Query:

o Start with initial factors:
o Local CPTs (but instantiated by evidence)

o While there are still hidden variables 
(not Q or evidence):
o Pick a hidden variable H

o Join all factors mentioning H

o Eliminate (sum out) H

o Join all remaining factors and 
normalize



Independence Assumptions in a Bayes Net

o Assumptions we are required to make to define the 
Bayes net when given the graph:

o Important for modeling: understand assumptions 
made when choosing a Bayes net graph



Active / Inactive Paths

o Question: Are X and Y conditionally independent 
given evidence variables {Z}?
o Yes, if X and Y “d-separated” by Z
o Consider all (undirected) paths from X to Y
o No active paths = independence!

o A path is active if each triple is active:
o Causal chain A ->  B -> C where B is unobserved (either direction)
o Common cause A <- B -> C where B is unobserved
o Common effect (aka v-structure)

A -> B <- C where B or one of its descendants is observed

o All it takes to block a path is a single inactive 
segment

Active Triples Inactive Triples



▪ Query:

▪ Check all (undirected!) paths between        and 

▪ If one or more active paths, then independence not guaranteed

▪ Otherwise (i.e. if all paths are inactive),

then independence is guaranteed

D-Separation

?



Another Perspective: Bayes Ball
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Topology Limits Distributions

o Given some graph topology G, 
only certain joint distributions 
can be encoded

o The graph structure guarantees 
certain (conditional) 
independences

o (There might be more 
independence)

o Adding arcs increases the set of 
distributions, but has several 
costs

o Full conditioning can encode 
any distribution
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Approximate Inference: Sampling



Prior Sampling

o For i = 1, 2, …, n in topological order

o Sample xi from P(Xi | Parents(Xi))

o Return (x1, x2, …, xn)



Rejection Sampling

o Input: evidence instantiation

o For i = 1, 2, …, n in topological order
o Sample xi from P(Xi | Parents(Xi))

o If xi not consistent with evidence
o Reject: return – no sample is generated in this cycle

o Return (x1, x2, …, xn)



Likelihood Weighting

o Input: evidence instantiation

o w = 1.0

o for i = 1, 2, …, n in topological order
o if Xi is an evidence variable

o Xi = observation xi for Xi

o Set w = w * P(xi | Parents(Xi))

o else

o Sample xi from P(Xi | Parents(Xi))

o return (x1, x2, …, xn), w



▪ Step 2: Initialize other variables 
▪ Randomly

Gibbs Sampling

o Step 1: Fix evidence
o R = +r
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▪ Steps 3: Repeat:
▪ Choose a non-evidence variable X

▪ Resample X from P( X | MarkovBlanket(X))



Hidden Markov Models



Markov Chains

o Value of X at a given time is called the state
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Mini-Forward Algorithm

o Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4



▪ Stationary distribution:
▪ The distribution we end up with is 

called the stationary distribution   
of the chain

▪ It satisfies

Stationary Distribution

o For most chains:
o Influence of the initial distribution 

gets less and less over time.

o The distribution we end up in is 
independent of the initial 
distribution



Hidden Markov Models

o Markov chains not so useful for most agents
o Need observations to update your beliefs

o Hidden Markov models (HMMs)
o Underlying Markov chain over states Xi

o You observe outputs (effects) at each time step
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Inference tasks

Filtering: P(Xt|e1:t)
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Inference: Find State Given Evidence

o We are given evidence at each time and want to know

o Idea: start with P(X1) and derive P(Xt | e1:t) in terms of P(Xt-1 | e1:t–1)

o Two steps: Passage of time + Incorporate Evidence

X2

E1

X1 X3 X4

E2 E3 E4

P(Xt+1 | e1:t)

P(Xt+1 | e1:t+1)P(Xt | e1:t)
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