CS 188: Artificial Intelligence

Decision Networks and VPI

Instructor: Evgeny Pobachienko—University of California, Berkeley

[Slides Credit: Dan Klein, Pieter Abbeel, Anca Dragan, and many others.]

Recap: Utilities and Rationality

- Utilities and Rationality
- Rational Preferences

```
Orderability: (A > B) \lor (B > A) \lor (A \sim B)
Transitivity: (A > B) \land (B > C) \Rightarrow (A > C)
Continuity: (A > B > C) \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B
Substitutability: (A \sim B) \Rightarrow [p, A; \ 1-p, C] \sim [p, B; \ 1-p, C]
Monotonicity: (A > B) \Rightarrow (p \neq A; \ 1-p, B) \geq [q, A; \ 1-q, B]
```

MEU Principle:

Given Rational Preferences, Exists U(X) s.t.

$$U(A) \ge U(B) \iff A \ge B$$

 $U([p_1, S_1; \dots; p_n, S_n]) = p_1 U(S_1) + \dots + p_n U(S_n)$

- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
 - Bayes nets, with new node types for utilities and actions
 - Lets us calculate the expected utility for each action
- New node types:
- Chance nodes (just like Bayes Nets)
- Actions (rectangles, cannot have parents, act as observed evidence)
- Utility node (diamond, depends on action and chance nodes)

Action selection

- Instantiate all evidence
- Set action node(s) each possible way
- Calculate posterior for all parents of utility node, given the evidence
- Calculate expected utility for each action
- Choose maximizing action

Maximum Expected Utility

Umbrella = leave

$$EU(leave) = \sum_{w} P(w)U(leave, w)$$
$$= 0.7 \cdot 100 + 0.3 \cdot 0 = 70$$

Umbrella = take

$$EU(take) = \sum_{w} P(w)U(take, w)$$

$$= 0.7 \cdot 20 + 0.3 \cdot 70 = 35$$

Optimal decision = leave

$$MEU(\emptyset) = \max_{a} EU(a) = 70$$

W	P(W)
sun	0.7
rain	0.3

Α	W	U(A,W)
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decisions as Outcome Trees

Almost exactly like expectimax

Maximum Expected Utility Given Evidence

Maximum Expected Utility Given Evidence

Umbrella = leave

$$EU(\text{leave}|\text{bad}) = \sum_{w} P(w|\text{bad})U(\text{leave}, w)$$

$$= 0.34 \cdot 100 + 0.66 \cdot 0 = 34$$

Umbrella = take

$$EU(take|bad) = \sum_{w} P(w|bad)U(take, w)$$

$$= 0.34 \cdot 20 + 0.66 \cdot 70 = 53$$

Optimal decision = take

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

Α	W	U(A,W)
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decisions as Outcome Trees

Value of Information

Value of Information

- o Idea: compute value of acquiring evidence
 - o Can be done directly from decision network
- Example: buying oil drilling rights
 - o Two blocks A and B, exactly one has oil, worth k
 - o You can drill in one location
 - o Prior probabilities 0.5 each, & mutually exclusive
 - o Drilling in either A or B has EU = k/2, MEU = k/2
- Question: what's the value of information of O?
 - o Value of knowing which of A or B has oil
 - o Value is expected gain in MEU from new info
 - o Survey may say "oil in a" or "oil in b," prob 0.5 each
 - o If we know OilLoc, MEU is k (either way)
 - o Gain in MEU from knowing OilLoc?
 - o VPI(OilLoc) = k/2
 - Fair price of information: k/2

Value of Perfect Information

MEU with no evidence

$$MEU(\emptyset) = \max_{a} EU(a) = 70$$

MEU if forecast is bad

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

MEU if forecast is good

$$MEU(F = good) = \max_{a} EU(a|good) = 89.4$$

Forecast distribution

F	P(F)		VDI = 0.25 (52) + 0.65 (80.4) 70
bad	0.35		VPI = 0.35 (53) + 0.65 (89.4) – 70
good	0.65	1	VPI = 6.66

$$VPI(E'|e) = \left(\sum_{e'} P(e'|e)MEU(e,e')\right) - MEU(e)$$

Α	V	J
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Value of Information

Assume we have evidence E=e. Value if we act now:

$$MEU(e) = \max_{a} \sum_{s} P(s|e) U(s,a)$$

• We see new evidence E' = e'. Value if we act then:

$$MEU(e, e') = \max_{a} \sum_{s} P(s|e, e') U(s, a)$$

- BUT E' is a random variable whose value is unknown, so we don't know what e' will be.
- Expected value if E' is revealed and then we act:

$$MEU(e, E') = \sum_{e'} P(e'|e)MEU(e, e')$$

Value of information: how much MEU goes up
 by revealing E' first then acting, as opposed to acting now:

$$VPI(E'|e) = MEU(e, E') - MEU(e)$$

VPI Properties

Nonnegative

$$\forall E', e : \mathsf{VPI}(E'|e) \geq 0$$

Nonadditive

(think of observing E_i twice)

$$VPI(E_j, E_k|e) \neq VPI(E_j|e) + VPI(E_k|e)$$

Order-independent

$$VPI(E_j, E_k|e) = VPI(E_j|e) + VPI(E_k|e, E_j)$$
$$= VPI(E_k|e) + VPI(E_j|e, E_k)$$

Ghostbusters Decision Network

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You're playing the lottery. The prize will be \$0 or \$100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?

Value of Imperfect Information?

- No such thing
- Information corresponds to the observation of a node in the decision network
- If data is "noisy" that just means we don't observe the original variable, but another variable which is a noisy version of the original one

VPI Question

- VPI(OilLoc) ?
- VPI(ScoutingReport) ?
- o VPI(Scout) ?
- o VPI(Scout | ScoutingReport) ?

Generally:

If Parents(U) $\perp \!\!\! \perp Z \mid CurrentEvidence$ Then VPI($Z \mid CurrentEvidence$) = 0

