CS 188: Artificial Intelligence

Markov Decision Processes

Instructor: Evgeny Pobachienko — UC Berkeley

[Slides adapted from Dan Klein, Pieter Abbeel, Ketrina Yim, Stuart Russell, Satish Rao, and many others.]
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Non-Deterministic Search




Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as
planned

=  80% of the time, the action North takes the agent
North (if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= [f there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards



Grid World Actions

Deterministic Grid World Stochastic Grid World




Markov Decision Processes

o An MDP is defined by:

o A setofstatess e S
o A setof actionsa € A
o A transition function T(s, a, s”)

o Probability that a from s leads to s’, i.e., P(s’| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s”)
o Sometimes just R(s) or R(s")

o A start state

o Maybe a terminal state

[Demo — gridworld manual intro (L8D1)]



Video of Demo Gridworld Manual Intro




What is Markov about MDDPs?

o “Markov” generally means that given the present state, the
future and the past are independent

o For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St+1 = 8’|5t — StaAt — Ay, St—1 = 8t—1,At—1, ...50 = So)

Andrey Markov
P(St_|_1 — S’|St = Sy, A, = CLt) (1856-1922)

o This is just like search, where the successor function could
only depend on the current state (not the history)



Policies

o In deterministic single-agent search
problems, we wanted an optimal plan, or
sequence of actions, from start to a goal

o For MDPs, we want an optimal

policy n*: S — A

o A policy n gives an action for each state

o An optimal policy is one that maximizes
expected utility if followed

Optimal policy when R(s, a, s") =-0.03
for all non-terminals s

o An explicit policy defines a reflex agent
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Example: Racing




Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0-> +1

Slow

Overheated



Racing Search Tree




MDP Search Trees

o Each MDP state projects an expectimax-like search tree

(s,a,s") called a transition
T(s,a,s") =P(s’|s,a)
R(s,a,s”)




Utilities of Sequences




Utilities of Sequences
o What preferences should an agent have over reward sequences?
o More orless? [1,2,2] or [2,3, 4]

o Now or later? [0,0,1] or [1,0,0]




Discounting

o It's reasonable to maximize the sum of rewards
o It's also reasonable to prefer rewards now to rewards later
o One solution: values of rewards decay exponentially

v 9 &
y 2

o

1

Worth Now Worth Next Step Worth In Two Steps



Discounting

o How to discount?

o Each time we descend a level, we
multiply in the discount once

o Why discount? "
o Reward now is better than later

o Can also think of it as a 1-gamma
chance of ending the process at

every step
o Also helps our algorithms ~
converge ~
<

o Example: discount of 0.5
o U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3 -
o U([1,2,3]) < U([3,2,1])




Stationary Preferences

o Theorem: if we assume stationary preferences:

L 2,
[al,ag,...] >~ [bl,bQ,...] @ \2
s v
ray, a9, ... > [r,bi,ba, .. ]

o Then: there is only ways to define utilities

o Additive discounted utility:

U(lrg,71,72,...]) =rg+~yr1 + 727"2 .



Quiz: Discounting

o Given: 10 1

a b C d =
o Actions: East, West, and Exit (only available in exit states a, e)

o Transitions: deterministic

o Quiz 1: For y =1, what is the optimal policy? 10| < | < | <1

o Quiz 2: For y = 0.1, what is the optimal policy? |[10| < | < | > | 1

o Quiz 3: For which y are West and East equally good when in state d?

1y=10 3



Infinite Utilities?!

= Problem: What if the game lasts forever? Do we get infinite
rewards?

= Solutions:

* Finite horizon: (similar to depth-limited search) {
= Terminate episodes after a fixed T steps (e.g. life)

= Gives nonstationary policies (n depends on time left)

= Discounting: use 0 <y<1

U([ro;---ro0]) = D 7're < Rmax/(1 =)
t=0

* Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached (like “overheated” for racing)



Recap: Detining MDPs

o Markov decision processes:
o Set of states S
o Start state s,
o Set of actions A
o Transitions P(s’|s,a) (or T(s,a,s”))
o Rewards R(s,a,s") (and discount y)

o MDP quantities so far:
o Policy = Choice of action for each state
o Utility = sum of (discounted) rewards




Solving MDPs




Recall: Racing MDP

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0-> +

Slow

Overheated



Racing Search Tree




Racing Search Tree
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Racing Search Tree

o We're doing way too much
work with expectimax!

o Problem: States are repeated

o Idea: Only compute needed
quantities once

e (L[] rm i

forever RN R NN
o Idea: Do a depth-limited
computation, but with Hﬁﬂ ﬁﬂﬁm Hﬁﬂ M Hﬁﬂﬂﬂ
increasing depths until change
is small TR LTI T TRELL

o Note: deep parts of the tree
eventually don’t matter if y <1



Optimal Quantities

= The value (utility) of a state s:
V’(s) = expected utility starting in s
and acting optimally

= The value (utility) of a g-state (s,a):

Q'(s,a) = expected utility starting out
having taken action a from state s
and (thereafter) acting optimally

= The optimal policy:
1 (s) = optimal action from state s

Sis a
state

(s,a)is a
g-state

(s,a,s")1s a
transition



Gridworld V* Values

Cridworld Display

Noise =0.2
Discount =0.9
Living reward =0



Gridworld Q* Values

S
|

Living reward =0



Values of States: Bellman Equation

o Recursive definition of value:

V*(s) = max Q*(s,a)

/’/ ”
.-s8,a,8

Q*(s,a) =) T(s,a,s")[R(s,a,s")+ V*(s’)]x

V*(s) = mc?xZT(s, a,s')[R(s,a,s") + yV*(s')]



Time-Limited Values

o Key idea: time-limited values

o Define V,(s) to be the optimal value of s if the game
ends in k more time steps

o Equivalently, it's what a depth-k expectimax would give
from s

L
Cn o B

[Demo — time-limited values (L8D4)]
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VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0
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VALUES AFTER 2 ITERATIONS Noise = 0.2
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1.00

VALUES AFTER 3 ITERATIONS Noise = 0.2
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k=4

Cridworld Display

VALUES AFTER 4 ITERATIONS Noise = 0.2
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Living reward =0




k=5

Cridworld Display
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k=6

Cridworld Display
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k=7

Cridworld Display
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k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS NF)ise =0.2
Discount =0.9

Living reward =0




k=9

Cridworld Display
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k=10

Cridworld Display
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k=11

Cridworld Display
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k=12

Cridworld Display
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k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




Computing Time-Limited Values
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Solving MDPs




The Bellman Equations

1 How to be optimal:

‘i‘a Step 1: Take correct first action
< | |
QUSRS sep 2fkeep being optima

p fLU

%,\'

Oz




Optimal Quantities

= The value (utility) of a state s:
V’(s) = expected utility starting in s
and acting optimally

= The value (utility) of a g-state (s,a):

Q'(s,a) = expected utility starting out
having taken action a from state s
and (thereafter) acting optimally

= The optimal policy:
1 (s) = optimal action from state s

Sis a
state

(s,a)is a
g-state

(s,a,s")1s a
transition



Value Iteration




Value Iteration

o Bellman equations characterize the optimal values:

V*(s) = mC?XZT(S, a,s’) [R(s,a, s") + ’}/V*(S,)}

o Value iteration computes them:

Vit1(s) maf;lXZT(s, a,s’) {R(s,a,, s + ’)/V]{(S,)}

“Bellman Update”

o Value iteration is just a fixed point solution method
o ... though the V| vectors are also interpretable as time-limited values



Similarly, can have Q-Value Iteration

o Bellman Equation: recursive definition of Q-values
0Q*(s,a) =2sT(s,a,s)[R(s,a,s")+y max Q*(s',a")]

o Q-Value Iteration: Dynamic Programming
O Qk+1(51 Cl) — ZS! T(S, a, S’)[R(S, a, S’) T )4 H}lE,lX Qk (S,, Cl,)]

57
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Value Iteration: Dynamic Programming

Start with V(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vit1(s) maf;lXZT(s, a,s’) {R(s,a, s + nyk(s')}

S

o V =B(V) Where B is the Bellman update operator
Repeat until convergence, which yields V*

Complexity of each iteration: O(S5%A)

Theorem: Value Iteration will converge to unique optimal values
o Basic idea: approximations get refined towards optimal values
o Policy may converge long before values do

Vk+1(s)




Example: Value Iteration

S: 1 Overheated
Vi [ F: 5*2+.572=2 ]
Assume no discount!
v
0 [ 0 0 0 ] Vieg1(s) « mC{:IXZT(s, a,s’) [R(s, a,s’) + 'ka(s’)]
!/

S



Example: Value Iteration

S: .5*1"‘.5*1:1 Overheated
Vi [ 2 F:-10 ]
Assume no discount!
v
’ [ 0 0 0 ] Vit1(s) < maxy T(s,a,s") {R(S, a,s’) + ’YVk;(S’)]
!/

S



Example: Value Iteration

A $ y b

]

Overheated

Assume no discount!

’ ) ] Vier1(s) €« max Y- T(s,0,5)) [A(s,a,8) + 7 Vi)

S




Example: Value Iteration

S: 1+2=3
Va' g 5%4(242)+.5%(2+1)=3.5

Overheated

Assume no discount!

’ ) ] Vier1(s) €« max Y- T(s,0,5)) [A(s,a,8) + 7 Vi)

S



Example: Value Iteration

Assume no discount!

: [ ’ ’ O] Vir1(s) & max 3 T(s,0,8) [R5, a,5) + 7 V()]

S




Convergence

o How do we know the V, vectors are going to
converge? (assuming 0 <y <1) Vi ( S) Vk—|—l ( S)

o Proof Sketch:

o For any state V| and V,; can be viewed as depth k+1
expectimax results in nearly identical search trees

o The ditference is that on the bottom layer, V,; has
actual rewards while V, has zeros

That last layer is at best all Ry;,x
It is at worst Ry
But everything is discounted by y* that far out

So V, and V,, are at most Y* max IR different / \ /

O O O O O

So as k increases, the values converge



Convergence of Value Iteration: Contraction

o New concept: contraction

o If some operator F is a contraction by a factor, it brings any pair of objects
closer to each other (according to some metric d(, ))
o For any x, y, we have d(F(x), F(y)) < cd(x,y) wherec<1

o If F is a contraction it has a unique fixed point z (i.e., F(z)=z)

o Since Value iteration is just V, ;= B(V,), the Bellman update B is a
contraction by y

o Metric is the max norm: HV — WI‘ = max |V (s) — W(s)|
S

o What's the fixed point for B?
o BV*=V*



Speed of Convergence

o Look at what happens to the distance between V, and V*
O [[Vieg1r = V7

o = ||BV, — V*|| (definition of V., from VI update)

O = ‘ BV, — BV~ ‘ (V* is the fixed point of B)

o < |V = V7|

o L.e., the error is reduced by at least a factor y on every
iteration

(B is a contraction by y)

o Exponentially fast convergence!

66



Correctness of Convergence

e(1-vy)
14

o Don’t usually converge exactly; stops when change <

e(1-y)
14

o Le. [V = Vil| <

o What about ||V,+1 — V|| when ||Vi41 — Vi ]| < E(ly_y)

o Usetul properties:

<y|IVk = V7|
o Triangle inequality: ||V, — V*|| < [Vis1 = Viel| + |1Visr — V7

o Contraction: ||Vk+1 — V7




o Value Iteration: stop when ||Vy41 — V]| <

Correctness of Convergence

e(1-y)
Y

o What about |[Visq — V*|| when [|[Visq — Vi || < S22 72

o Triangle inequality: ||V, — V*

1
O ;“Vk+1 -V

O (%—1

O (i—l

O “Vk+1 - V7

)
)

[Vksr — V7

[Vksr — V7

<€

< “Vk+1 _ Vk|

y
| < [Vier1 = Viel| + [IVirr — V7

T “Vk+1 — V7

B(V) is contraction by y

< “Vk+1 o Vk”

<

e(1-y)
Y

when we have converged

68



Policy Extraction
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Computing Actions from Values

o Let’s imagine we have the optimal values V*(s) .ﬂ.
0.95 » 0.98 || 1.00
o How should we act?
4 0.89 -1.00
o It's not obvious!
.. . 0.92 |« 0.21 0.80
o We need to do a mini-expectimax (one step) .

7*(s) = arg QﬂaXZT(s, a,s')[R(s,a,s) +~vV*(s)]

S

o This is called policy extraction, since it gets the policy implied by the
values



Computing Actions from Q-Values

o Let’s imagine we have the optimal v v
q-values; (NN N

2] ]
o How should we act? A A

o Completely trivial to decide!
comspeats DAY

o Important lesson: actions are easier to select from g-values than
values!




Policy Methods




Problems with Value Iteration

o Value iteration repeats the Bellman updates:

Vieg1(s) < m(?XZT(s, a,s) [R(s,a, s + W/Vk(s’)}

S

o Problem 1: It's slow — O(S°A) per iteration

o Problem 2: The “max” at each state rarely changes

o Problem 3: The policy often converges long before the values



k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Policy Iteration

o Alternative approach for optimal values:

o Step 1: Policy Evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

o Step 2: Policy Improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities as future values

o Repeat steps until policy converges

o This is Policy Iteration
o It’s still optimal!
o Can converge (much) faster under some conditions



Policy Evaluation




Fixed Policies

Do the optimal action Do what & says to do

~"S,4,S

\\\
\\
~
y '
A s

o Expectimax trees max over all actions to compute the optimal values

o If we fixed some policy n(s), then the tree would be simpler — only one action
per state
o ... though the tree’s value would depend on which policy we fixed



Utilities for a Fixed Policy

o Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

o Define the utility of a state s, under a fixed policy =:

V7(s) = expected total discounted rewards starting in s and
following w

o Recursive relation (one-step look-ahead / Bellman
equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) + V(5]



O

O

O

O

Policy Evaluation

How do we calculate the V’s for a fixed policy n? S
Idea 1: Turn recursive Bellman equations into updates n(s)
(like value iteration) s, T(s)
V(;T(S) =0 /S;’a:c/(s),S’
A s

ka—l—l(s) — ZT(S,T&'(S), SH[R(s,n(s),s") + ’)/V];T(Sl)]

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
o Solve the system of equations



Example: Policy Evaluation

Always Go Right Always Go Forward




Example: Policy Evaluation

Always Go Right Always Go Forward




Policy Iteration




Policy Iteration

o Evaluation: For fixed current policy r, find values with policy evaluation:

o Iterate until values converge:

Vi1 (s) ZT(s mi(s),8") |R(s,mi(s),s") + vV (s))]

o Improvement: For fixed values, get a better policy using policy extraction
o One-step look-ahead:

mi4+1(s) = arg maXZT(s, a,s’) [R(s, a,s’) + nyWi(s’)}

SI



O

O

O

O

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
o Every iteration updates both the values and (implicitly) the policy
o We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
o We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)
o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
o The new policy will be better (or we're done)

Both are dynamic programming approaches for solving MDPs



Summary: MDP Algorithms

o So you want to....
o Compute optimal values: use value iteration or policy iteration
o Compute values for a particular policy: use policy evaluation
o Turn your values into a policy: use policy extraction (one-step lookahead)

o These all look the same!
o They basically are — they are all variations of Bellman updates
o They all use one-step lookahead expectimax fragments
o They differ only in whether we plug in a fixed policy or max over actions



Double Bandits




Double-Bandit MDP

. . 4
o Actions: Blue, Red No discount

o States: Win, Lose 025 %0 100 time steps

Both states have
the same value




Offline Planning

. . . . [
o Solving MDPs is offline planning No discount
o You determine all quantities through computation 100 time steps
o You need to know the details of the MDP Both states have
the same value

o You do not actually play the game!

-

Value
Play Red 150
Play Blue 100

o /




Let’s Play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0



Online Planning

o Rules changed! Red’s win chance is different.




Let’s Play!

$0 $0 $0 $2 $0
$2 $0 $0 $0 $O



What Just Happened?

o That wasn’t planning, it was learning!

o Specifically, reinforcement learning
o There was an MDP, but you couldn’t solve it with just computation
o You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up
o Exploration: you have to try unknown actions to get information
o Exploitation: eventually, you have to use what you know
o Regret: even if you learn intelligently, you make mistakes
o Sampling: because of chance, you have to try things repeatedly
o Difficulty: learning can be much harder than solving a known MDP
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