
CS 188: Artificial Intelligence
Markov Decision Processes

Instructor: Evgeny Pobachienko – UC Berkeley
[Slides adapted from Dan Klein, Pieter Abbeel, Ketrina Yim, Stuart Russell, Satish Rao, and many others.]
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Non-Deterministic Search



Example: Grid World

▪ A maze-like problem

▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as 
planned

▪ 80% of the time, the action North takes the agent 
North (if there is no wall there)

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have 
been taken, the agent stays put

▪ The agent receives rewards

▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of rewards



Grid World Actions

Deterministic Grid World Stochastic Grid World



Markov Decision Processes

o An MDP is defined by:
o A set of states s  S
o A set of actions a  A
o A transition function T(s, a, s’)

o Probability that a from s leads to s’, i.e., P(s’| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s’) 
o Sometimes just R(s) or R(s’)

o A start state
o Maybe a terminal state

[Demo – gridworld manual intro (L8D1)]



Video of Demo Gridworld Manual Intro



What is Markov about MDPs?

o “Markov” generally means that given the present state, the 
future and the past are independent

o For Markov decision processes, “Markov” means action 
outcomes depend only on the current state

o This is just like search, where the successor function could 
only depend on the current state (not the history)

Andrey Markov 
(1856-1922)



Policies

o In deterministic single-agent search 
problems, we wanted an optimal plan, or 
sequence of actions, from start to a goal

o For MDPs, we want an optimal 

 policy *: S → A
o A policy  gives an action for each state

o An optimal policy is one that maximizes        
expected utility if followed

o An explicit policy defines a reflex agent
Optimal policy when R(s, a, s’) = -0.03 

for all non-terminals s



Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



Example: Racing



Example: Racing

o A robot car wants to travel far, quickly

o Three states: Cool, Warm, Overheated

o Two actions: Slow, Fast

o Going faster gets double reward
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Racing Search Tree



MDP Search Trees

o Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state



Utilities of Sequences



Utilities of Sequences

o What preferences should an agent have over reward sequences?

o More or less?

o Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Discounting

o It’s reasonable to maximize the sum of rewards

o It’s also reasonable to prefer rewards now to rewards later

o One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Discounting

o How to discount?
o Each time we descend a level, we 

multiply in the discount once

o Why discount?
o Reward now is better than later

o Can also think of it as a 1-gamma 
chance of ending the process at 
every step

o Also helps our algorithms 
converge

o Example: discount of 0.5
o U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

o U([1,2,3]) < U([3,2,1])



Stationary Preferences

o Theorem: if we assume stationary preferences:

o Then: there is only ways to define utilities

o Additive discounted utility:



Quiz: Discounting

o Given:

o Actions: East, West, and Exit (only available in exit states a, e)

o Transitions: deterministic

o Quiz 1: For  = 1, what is the optimal policy?

o Quiz 2: For  = 0.1, what is the optimal policy?

o Quiz 3: For which  are West and East equally good when in state d?

<- <- <-

<- <- ->

1=10 3



Infinite Utilities?!

▪ Problem: What if the game lasts forever?  Do we get infinite 
rewards?

▪ Solutions:

▪ Finite horizon: (similar to depth-limited search)
▪ Terminate episodes after a fixed T steps (e.g. life)

▪ Gives nonstationary policies ( depends on time left)

▪ Discounting: use 0 <  < 1

▪ Smaller  means smaller “horizon” – shorter term focus

▪ Absorbing state: guarantee that for every policy, a terminal state will 
eventually be reached (like “overheated” for racing)



Recap: Defining MDPs

o Markov decision processes:
o Set of states S
o Start state s0

o Set of actions A
o Transitions P(s’|s,a) (or T(s,a,s’))
o Rewards R(s,a,s’) (and discount )

o MDP quantities so far:
o Policy = Choice of action for each state
oUtility = sum of (discounted) rewards

a

s

s, a

s,a,s’

s’



Solving MDPs



Recall: Racing MDP

o A robot car wants to travel far, quickly

o Three states: Cool, Warm, Overheated

o Two actions: Slow, Fast

o Going faster gets double reward
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Racing Search Tree



Racing Search Tree



Racing Search Tree

o We’re doing way too much 
work with expectimax!

o Problem: States are repeated 
o Idea: Only compute needed 

quantities once

o Problem: Tree goes on 
forever
o Idea: Do a depth-limited 

computation, but with 
increasing depths until change 
is small

o Note: deep parts of the tree 
eventually don’t matter if γ < 1



Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s 

and acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s 
and (thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state



Gridworld V* Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld Q* Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Values of States: Bellman Equation

o Recursive definition of value:

a

s

s, a

s,a,s’

s’



Time-Limited Values

o Key idea: time-limited values

o Define Vk(s) to be the optimal value of s if the game 
ends in k more time steps
o Equivalently, it’s what a depth-k expectimax would give 

from s

[Demo – time-limited values (L8D4)]



k=0
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k=1
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k=5
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k=6
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k=7
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k=8
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k=9
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k=10
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k=11

Noise = 0.2
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Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Computing Time-Limited Values



Solving MDPs



The Bellman Equations

How to be optimal:

    Step 1: Take correct first action

    Step 2: Keep being optimal



Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s 

and acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s 
and (thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state



Value Iteration



Value Iteration

o Bellman equations characterize the optimal values:

o Value iteration computes them:

“Bellman Update”

o Value iteration is just a fixed point solution method
o … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)



Similarly, can have Q-Value Iteration

o Bellman Equation: recursive definition of Q-values

o 𝑄∗ 𝑠, 𝑎  = σ𝑠′ 𝑇 𝑠, 𝑎, 𝑠′ [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)]

o Q-Value Iteration: Dynamic Programming 

o 𝑄𝑘+1 𝑠, 𝑎 = σ𝑠′ 𝑇 𝑠, 𝑎, 𝑠′ [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

 𝑄𝑘 𝑠′, 𝑎′ ]

 

57



Value Iteration: Dynamic Programming

o Start with V0(s) = 0: no time steps left means an expected reward sum of zero

o Given vector of Vk(s) values, do one ply of expectimax from each state:

o V = B(V) Where B is the Bellman update operator

o Repeat until convergence, which yields V*

o Complexity of each iteration: O(S2A)

o Theorem: Value Iteration will converge to unique optimal values
o Basic idea: approximations get refined towards optimal values
o Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Example: Value Iteration

0             0             0

S: 1

Assume no discount!

F: .5*2+.5*2=2



Example: Value Iteration

0             0             0

2

Assume no discount!

S: .5*1+.5*1=1

F: -10



Example: Value Iteration

0             0             0

2

Assume no discount!

1 0



Example: Value Iteration

0             0             0

2

Assume no discount!

1 0

S: 1+2=3
F: .5*(2+2)+.5*(2+1)=3.5



Example: Value Iteration

0             0             0

2

Assume no discount!

1 0

3.5 2.5 0



Convergence

o How do we know the Vk vectors are going to 
converge? (assuming 0 < γ < 1)

o Proof Sketch: 

o For any state Vk and Vk+1 can be viewed as depth k+1 
expectimax results in nearly identical search trees

o The difference is that on the bottom layer, Vk+1 has 
actual rewards while Vk has zeros

o That last layer is at best all RMAX 

o It is at worst RMIN 

o But everything is discounted by γk that far out

o So Vk and Vk+1 are at most γk max|R| different

o So as k increases, the values converge



Convergence of Value Iteration: Contraction

o New concept: contraction

o If some operator F is a contraction by a factor, it brings any pair of objects 
closer to each other (according to some metric d( , ))
o For any x, y, we have 𝑑 𝐹(𝑥), 𝐹(𝑦) ≤ 𝑐𝑑(𝑥, 𝑦)  where c < 1

o If F is a contraction it has a unique fixed point z (i.e., F(z)=z)

o Since Value iteration is just Vk+1 = B(Vk), the Bellman update B is a 
contraction by 𝛾

o Metric is the max norm: 𝑉 − 𝑊 = max
𝑠

|𝑉 𝑠 −  𝑊 𝑠 |

o What’s the fixed point for B?

o BV* = V*



Speed of Convergence

o Look at what happens to the distance between Vk and V*

o | 𝑉𝑘+1 − 𝑉∗ |

o = 𝐵𝑉𝑘 − 𝑉∗  (definition of Vk+1 from VI update)

o = 𝐵𝑉𝑘 − 𝐵𝑉∗  (V* is the fixed point of B)

o ≤ 𝛾 𝑉𝑘 − 𝑉∗  (B is a contraction by 𝛾)

o I.e., the error is reduced by at least a factor 𝛾 on every 
iteration

o Exponentially fast convergence!
66



Correctness of Convergence

o Don’t usually converge exactly; stops when change <
𝜖(1−𝛾)

𝛾

o I.e. ||V𝑘+1 − 𝑉𝑘|| <
𝜖 1−𝛾

𝛾
 

o What about | 𝑉𝑘+1 − 𝑉∗ | when ||V𝑘+1 − 𝑉𝑘|| <
𝜖 1−𝛾

𝛾
 

o Useful properties:

oContraction: 𝑉𝑘+1 − 𝑉∗ ≤ 𝛾 𝑉𝑘 − 𝑉∗  

o Triangle inequality: 𝑉𝑘 − 𝑉∗ ≤ 𝑉𝑘+1 − 𝑉𝑘 + 𝑉𝑘+1 − 𝑉∗



Correctness of Convergence

o Value Iteration: stop when ||V𝑘+1 − 𝑉𝑘|| <
𝜖 1−𝛾

𝛾
 

o What about | 𝑉𝑘+1 − 𝑉∗ | when ||V𝑘+1 − 𝑉𝑘|| <
𝜖 1−𝛾

𝛾
 ?

o Triangle inequality: 𝑉𝑘 − 𝑉∗ ≤ 𝑉𝑘+1 − 𝑉𝑘 + 𝑉𝑘+1 − 𝑉∗  

o
1

𝛾
𝑉𝑘+1 − 𝑉∗ ≤ 𝑉𝑘+1 − 𝑉𝑘 + 𝑉𝑘+1 − 𝑉∗  B(V) is contraction by 𝛾

o
1

𝛾
− 1 𝑉𝑘+1 − 𝑉∗ ≤ 𝑉𝑘+1 − 𝑉𝑘

o
1

𝛾
− 1 𝑉𝑘+1 − 𝑉∗ ≤

𝜖 1−𝛾

𝛾
  when we have converged

o 𝑉𝑘+1 − 𝑉∗ ≤ 𝜖 68



Policy Extraction



Computing Actions from Values

o Let’s imagine we have the optimal values V*(s)

o How should we act?

o It’s not obvious!

o We need to do a mini-expectimax (one step)

o This is called policy extraction, since it gets the policy implied by the 
values



Computing Actions from Q-Values

o Let’s imagine we have the optimal

 q-values:

o How should we act?

o Completely trivial to decide!

o Important lesson: actions are easier to select from q-values than 
values!



Policy Methods



Problems with Value Iteration

o Value iteration repeats the Bellman updates:

o Problem 1: It’s slow – O(S2A) per iteration

o Problem 2: The “max” at each state rarely changes

o Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’

s’



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Policy Iteration

o Alternative approach for optimal values:

o Step 1: Policy Evaluation: calculate utilities for some fixed policy (not optimal 
utilities!) until convergence

o Step 2: Policy Improvement: update policy using one-step look-ahead with 
resulting converged (but not optimal!) utilities as future values

o Repeat steps until policy converges

o This is Policy Iteration

o It’s still optimal!

o Can converge (much) faster under some conditions



Policy Evaluation



Fixed Policies

o Expectimax trees max over all actions to compute the optimal values

o If we fixed some policy (s), then the tree would be simpler – only one action 
per state
o … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’

s’

Do the optimal action Do what  says to do



Utilities for a Fixed Policy

o Another basic operation: compute the utility of a state s 
under a fixed (generally non-optimal) policy

o Define the utility of a state s, under a fixed policy :
V(s) = expected total discounted rewards starting in s and 

following 

o Recursive relation (one-step look-ahead / Bellman 
equation):

(s)

s

s, (s)

s, (s),s’

s’



Policy Evaluation

o How do we calculate the V’s for a fixed policy ?

o Idea 1: Turn recursive Bellman equations into updates
 (like value iteration)

o Efficiency: O(S2) per iteration

o Idea 2: Without the maxes, the Bellman equations are just a linear system
o Solve the system of equations

(s)

s

s, (s)

s, (s),s’

s’



Example: Policy Evaluation

Always Go Right Always Go Forward



Example: Policy Evaluation

Always Go Right Always Go Forward



Policy Iteration



Policy Iteration

o Evaluation: For fixed current policy , find values with policy evaluation:
o Iterate until values converge:

o Improvement: For fixed values, get a better policy using policy extraction
o One-step look-ahead:



Comparison

o Both value iteration and policy iteration compute the same thing (all optimal values)

o In value iteration:

o Every iteration updates both the values and (implicitly) the policy

o We don’t track the policy, but taking the max over actions implicitly recomputes it

o In policy iteration:

o We do several passes that update utilities with fixed policy (each pass is fast because we 
consider only one action, not all of them)

o After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

o The new policy will be better (or we’re done)

o Both are dynamic programming approaches for solving MDPs



Summary: MDP Algorithms

o So you want to….

o Compute optimal values: use value iteration or policy iteration

o Compute values for a particular policy: use policy evaluation

o Turn your values into a policy: use policy extraction (one-step lookahead)

o These all look the same!

o They basically are – they are all variations of Bellman updates

o They all use one-step lookahead expectimax fragments

o They differ only in whether we plug in a fixed policy or max over actions



Double Bandits



Double-Bandit MDP

o Actions: Blue, Red

o States: Win, Lose

W L

$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0

No discount

100 time steps

Both states have 
the same value



Offline Planning

o Solving MDPs is offline planning

o You determine all quantities through computation

o You need to know the details of the MDP

o You do not actually play the game!

Play Red

Play Blue

Value

No discount

100 time steps

Both states have 
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0



Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0



Online Planning

o Rules changed!  Red’s win chance is different.

W L

$1

1.0

$1

1.0

?? $0

?? 
$2

?? $2

?? 
$0



Let’s Play!

$0 $0 $0 $2 $0

$2 $0 $0 $0 $0



What Just Happened?

o That wasn’t planning, it was learning!

o Specifically, reinforcement learning

o There was an MDP, but you couldn’t solve it with just computation

o You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up

o Exploration: you have to try unknown actions to get information

o Exploitation: eventually, you have to use what you know

o Regret: even if you learn intelligently, you make mistakes

o Sampling: because of chance, you have to try things repeatedly

o Difficulty: learning can be much harder than solving a known MDP
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