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Reinforcement Learning



Reinforcement Learning

▪ Basic idea:
▪ Receive feedback in the form of rewards

▪ Agent’s utility is defined by the reward function

▪ Must (learn to) act so as to maximize expected rewards

▪ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r



Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]



Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]



The Crawler!

[Demo: Crawler Bot (L10D1)]



Video of Demo Crawler Bot



Reinforcement Learning

▪ Still assume a Markov decision process (MDP):

▪ A set of states s  S

▪ A set of actions (per state) A

▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)

▪ Still looking for a policy (s)

▪ New twist: don’t know T or R

▪ I.e. we don’t know which states are good or what the actions do

▪ Must actually try out actions and states to learn



Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning



Model-Based Learning



Model-Based Learning

▪ Model-Based Idea:
▪ Learn an approximate model based on experiences
▪ Solve for values as if the learned model were correct

▪ Step 1: Learn empirical MDP model
▪ Count outcomes s’ for each s, a
▪ Normalize to give an estimate of
▪ Discover each when we experience (s, a, s’)

▪ Step 2: Solve the learned MDP
▪ For example, use value iteration, as before



Example: Model-Based Learning

Input Policy  

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…



Model-Free Learning



Passive Reinforcement Learning



Passive Reinforcement Learning

▪ Simplified task: policy evaluation
▪ Input: a fixed policy (s)

▪ You don’t know the transitions T(s,a,s’)

▪ You don’t know the rewards R(s,a,s’)

▪ Goal: learn the state values

▪ In this case:
▪ Learner is “along for the ride”

▪ No choice about what actions to take

▪ Just execute the policy and learn from experience

▪ This is NOT offline planning!  You actually take actions in the world.



Direct Evaluation

▪ Goal: Compute values for each state under 

▪ Idea: Average together observed sample values

▪ Act according to 

▪ Every time you visit a state, write down what the 
sum of discounted rewards turned out to be

▪ Average those samples

▪ This is called direct evaluation



Example: Direct Evaluation

Input Policy  

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2



Problems with Direct Evaluation

▪ What’s good about direct evaluation?

▪ It’s easy to understand

▪ It doesn’t require any knowledge of T, R

▪ It eventually computes the correct average values, 
using just sample transitions

▪ What bad about it?

▪ It wastes information about state connections

▪ Each state must be learned separately

▪ So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C 
under this policy, how can 
their values be different?



Why Not Use Policy Evaluation?

▪ Simplified Bellman updates calculate V for a fixed policy:
▪ Each round, replace V with a one-step-look-ahead layer over V

▪ This approach fully exploited the connections between the states
▪ Unfortunately, we need T and R to do it!

▪ Key question: how can we do this update to V without knowing T and R?
▪ In other words, how to we take a weighted average without knowing the weights?

(s)

s

s, (s)

s, (s),s’

s’



Example: Expected Age

Goal: Compute expected age of cs188 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.



Sample-Based Policy Evaluation?

▪ We want to improve our estimate of V by computing these averages:

▪ Idea: Take samples of outcomes s’ (by doing the action!) and average

(s)

s

s, (s)

s1's2' s3'

s, (s),s’

s'

Almost!  But we can’t 
rewind time to get sample 
after sample from state s.



Temporal Difference Learning



Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:



Exponential Moving Average

▪ Exponential moving average 

▪ The running interpolation update:

▪ Makes recent samples more important:

▪ Forgets about the past (distant past values were wrong anyway)

▪ Decreasing learning rate (alpha) can give converging averages



Example: Temporal Difference Learning

Assume:  = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States



Problems with TD Value Learning

▪ TD value leaning is a model-free way to do policy evaluation, mimicking 
Bellman updates with running sample averages

▪ However, if we want to turn values into a (new) policy, we’re sunk:

▪ Idea: learn Q-values, not values

▪ Makes action selection model-free too!

a

s

s, a

s,a,s’

s’



Active Reinforcement Learning



Active Reinforcement Learning

▪ Full reinforcement learning: optimal policies (like value iteration)
▪ You don’t know the transitions T(s,a,s’)

▪ You don’t know the rewards R(s,a,s’)

▪ You choose the actions now

▪ Goal: learn the optimal policy / values

▪ In this case:
▪ Learner makes choices!

▪ Fundamental tradeoff: exploration vs. exploitation

▪ This is NOT offline planning!  You actually take actions in the world and 
find out what happens…



Detour: Q-Value Iteration

▪ Value iteration: find successive (depth-limited) values
▪ Start with V0(s) = 0, which we know is right
▪ Given Vk, calculate the depth k+1 values for all states:

▪ But Q-values are more useful, so compute them instead
▪ Start with Q0(s,a) = 0, which we know is right
▪ Given Qk, calculate the depth k+1 q-values for all q-states:



Q-Learning

▪ Q-Learning: sample-based Q-value iteration

▪ Learn Q(s,a) values as you go

▪ Receive a sample (s,a,s’,r)

▪ Consider your old estimate:

▪ Consider your new sample estimate:

▪ Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]



Video of Demo Q-Learning -- Gridworld



Video of Demo Q-Learning -- Crawler



Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even 
if you’re acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

 small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal    Technique

Compute V*, Q*, *  Value / policy iteration

Evaluate a fixed policy   Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal   Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal   Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  Value Learning



Model-Free Learning

▪ Model-free (temporal difference) learning

▪ Experience world through episodes

▪ Update estimates each transition

▪ Over time, updates will mimic Bellman updates

r

a

s

s, a

s’

a’

s’, a’

s’’



Q-Learning

▪ We’d like to do Q-value updates to each Q-state:

▪ But can’t compute this update without knowing T, R

▪ Instead, compute average as we go
▪ Receive a sample transition (s,a,r,s’)

▪ This sample suggests

▪ But we want to average over results from (s,a)  (Why?)

▪ So keep a running average



Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even 
if you’re acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

 small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning – auto – cliff grid (L11D1)]



Video of Demo Q-Learning Auto Cliff Grid



Exploration vs. Exploitation



How to Explore?

▪ Several schemes for forcing exploration
▪ Simplest: random actions (-greedy)

▪ Every time step, flip a coin

▪ With (small) probability , act randomly

▪ With (large) probability 1-, act on current policy

▪ Problems with random actions?
▪ You do eventually explore the space, but keep 

thrashing around once learning is done

▪ One solution: lower  over time

▪ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] 
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]



Video of Demo Q-learning – Manual Exploration – Bridge Grid 



Video of Demo Q-learning – Epsilon-Greedy – Crawler 



Exploration Functions

▪ When to explore?

▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not
 (yet) established, eventually stop exploring

▪ Exploration function

▪ Takes a value estimate u and a visit count n, and
 returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

    

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Video of Demo Q-learning – Exploration Function – Crawler 



Regret

▪ Even if you learn the optimal policy, 
you still make mistakes along the way!

▪ Regret is a measure of your total 
mistake cost: the difference between 
your (expected) rewards, including 
youthful suboptimality, and optimal 
(expected) rewards

▪ Minimizing regret goes beyond 
learning to be optimal – it requires 
optimally learning to be optimal

▪ Example: random exploration and 
exploration functions both end up 
optimal, but random exploration has 
higher regret



Approximate Q-Learning



Generalizing Across States

▪ Basic Q-Learning keeps a table of all q-values

▪ In realistic situations, we cannot possibly learn 
about every single state!
▪ Too many states to visit them all in training

▪ Too many states to hold the q-tables in memory

▪ Instead, we want to generalize:
▪ Learn about some small number of training states from 

experience

▪ Generalize that experience to new, similar situations

▪ This is a fundamental idea in machine learning, and we’ll 
see it over and over again

[demo – RL pacman]



Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)],[Demo: Q-learning – pacman – tiny – silent train (L11D6)], [Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!



Video of Demo Q-Learning Pacman – Tiny – Watch All



Video of Demo Q-Learning Pacman – Tiny – Silent Train



Video of Demo Q-Learning Pacman – Tricky – Watch All



Feature-Based Representations

▪ Solution: describe a state using a vector of 
features (properties)
▪ Features are functions from states to real numbers 

(often 0/1) that capture important properties of the 
state

▪ Example features:
▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.
▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g. 
action moves closer to food)



Linear Value Functions

▪ Using a feature representation, we can write a q function (or value function) for any 
state using a few weights:

▪ Advantage: our experience is summed up in a few powerful numbers

▪ Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

▪ Q-learning with linear Q-functions:

▪ Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features

▪ Formal justification: online least squares

Exact Q’s

Approximate Q’s



Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]



Video of Demo Approximate Q-Learning -- Pacman
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