Reinforcement Learning
Basic idea:

- Receive feedback in the form of **rewards**
- Agent’s utility is defined by the reward function
- Must (learn to) act so as to **maximize expected rewards**
- All learning is based on observed samples of outcomes!
Example: Learning to Walk

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

Initial

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK – initial]
Example: Learning to Walk

[Video: AIBO WALK – training]

Training

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK – finished]
Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]
The Crawler!
Video of Demo Crawler Bot
Still assume a Markov decision process (MDP):

- A set of states \(s \in S \)
- A set of actions (per state) \(A \)
- A model \(T(s,a,s') \)
- A reward function \(R(s,a,s') \)

Still looking for a policy \(\pi(s) \)

New twist: don’t know \(T \) or \(R \)

- I.e. we don’t know which states are good or what the actions do
- Must actually try out actions and states to learn
Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning
Model-Based Learning
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

- **Step 2: Solve the learned MDP**
 - For example, use value iteration, as before
Example: Model-Based Learning

Input Policy π

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>

Assume: $\gamma = 1$

Observed Episodes (Training)

- **Episode 1**
 - B, east, C, -1
 - C, east, D, -1
 - D, exit, x, +10

- **Episode 2**
 - B, east, C, -1
 - C, east, D, -1
 - D, exit, x, +10

- **Episode 3**
 - E, north, C, -1
 - C, east, D, -1
 - D, exit, x, +10

- **Episode 4**
 - E, north, C, -1
 - C, east, A, -1
 - A, exit, x, -10

Learned Model

$\hat{T}(s, a, s')$
- $T(B, \text{east}, C) = 1.00$
- $T(C, \text{east}, D) = 0.75$
- $T(C, \text{east}, A) = 0.25$
- ...

$\hat{R}(s, a, s')$
- $R(B, \text{east}, C) = -1$
- $R(C, \text{east}, D) = -1$
- $R(D, \text{exit}, x) = +10$
- ...

Model-Free Learning
Passive Reinforcement Learning
Passive Reinforcement Learning

- **Simplified task: policy evaluation**
 - Input: a fixed policy $\pi(s)$
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - **Goal: learn the state values**

- **In this case:**
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.
Direct Evaluation

- **Goal:** Compute values for each state under π
- **Idea:** Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- **This is called direct evaluation**
Example: Direct Evaluation

Input Policy π

Observed Episodes (Training)

<table>
<thead>
<tr>
<th>Episode 1</th>
<th>Episode 2</th>
</tr>
</thead>
</table>
| B, east, C, -1
C, east, D, -1
D, exit, x, +10 | B, east, C, -1
C, east, D, -1
D, exit, x, +10 |

<table>
<thead>
<tr>
<th>Episode 3</th>
<th>Episode 4</th>
</tr>
</thead>
</table>
| E, north, C, -1
C, east, D, -1
D, exit, x, +10 | E, north, C, -1
C, east, A, -1
A, exit, x, -10 |

Output Values

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>-10</td>
<td>+8</td>
<td>+4</td>
<td>+10</td>
</tr>
</tbody>
</table>

Assume: $\gamma = 1$
Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>+8</td>
<td>+4</td>
<td>+10</td>
<td>-2</td>
</tr>
</tbody>
</table>

If B and E both go to C under this policy, how can their values be different?
Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^\pi(s) = 0$$

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?
Example: Expected Age

Goal: Compute expected age of cs188 students

Known P(A)

\[E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots \]

Without P(A), instead collect samples \([a_1, a_2, \ldots a_N]\)

Unknown P(A): “Model Based”

\[
\hat{P}(a) = \frac{\text{num}(a)}{N}
\]

\[
E[A] \approx \sum_a \hat{P}(a) \cdot a
\]

Why does this work? Because eventually you learn the right model.

Unknown P(A): “Model Free”

\[
E[A] \approx \frac{1}{N} \sum_i a_i
\]

Why does this work? Because samples appear with the right frequencies.
Sample-Based Policy Evaluation?

- We want to improve our estimate of \(V \) by computing these averages:

\[
V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]
\]

- Idea: Take samples of outcomes \(s' \) (by doing the action!) and average

\[
sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^\pi(s'_1) \\

\[
sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^\pi(s'_2) \\

\[
\vdots \\

\[
sample_n = R(s, \pi(s), s'_n) + \gamma V_k^\pi(s'_n) \\

\]

\[
V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_i sample_i
\]
Temporal Difference Learning
Temporal Difference Learning

- **Big idea:** learn from every experience!
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- **Temporal difference learning of values**
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

\[
sample = R(s, \pi(s), s') + \gamma V^\pi(s')
\]

Update to $V(s)$:
\[
V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample
\]

Same update:
\[
V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))
\]
Exponential Moving Average

- Exponential moving average
 - The running interpolation update: \(\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \)

 - Makes recent samples more important:

 \[
 \bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots}
 \]

 - Forgets about the past (distant past values were wrong anyway)

- Decreasing learning rate (alpha) can give converging averages
Example: Temporal Difference Learning

Assume: $\gamma = 1, \alpha = 1/2$

$$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]$$
Problems with TD Value Learning

- TD value learning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:

 \[\pi(s) = \arg \max_a Q(s, a) \]

 \[Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right] \]

- Idea: learn Q-values, not values.
- Makes action selection model-free too!
Active Reinforcement Learning
Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - Goal: learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...
Detour: Q-Value Iteration

- **Value iteration:** find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ q-values for all q-states:
 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]
Q-Learning

- Q-Learning: sample-based Q-value iteration
 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]

- Learn Q(s,a) values as you go
 - Receive a sample \((s,a,s',r)\)
 - Consider your old estimate: \(Q(s, a)\)
 - Consider your new sample estimate:
 \[
 \text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a')
 \]
 - Incorporate the new estimate into a running average:
 \[
 Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \text{[sample]}
 \]
Video of Demo Q-Learning -- Gridworld
Video of Demo Q-Learning -- Crawler
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called off-policy learning

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)
The Story So Far: MDPs and RL

Known MDP: Offline Solution

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute (V^, Q^, \pi^*)</td>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Evaluate a fixed policy (\pi)</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Based

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute (V^, Q^, \pi^*)</td>
<td>VI/PI on approx. MDP</td>
</tr>
<tr>
<td>Evaluate a fixed policy (\pi)</td>
<td>PE on approx. MDP</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Free

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute (V^, Q^, \pi^*)</td>
<td>Q-learning</td>
</tr>
<tr>
<td>Evaluate a fixed policy (\pi)</td>
<td>Value Learning</td>
</tr>
</tbody>
</table>
Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes
 \[(s, a, r, s', a', r', s'', a'', r'', s''', \ldots)\]
 - Update estimates each transition \((s, a, r, s')\)
 - Over time, updates will mimic Bellman updates
Q-Learning

- We’d like to do Q-value updates to each Q-state:

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- But can’t compute this update without knowing T, R

- Instead, compute average as we go
 - Receive a sample transition (s,a,r,s')
 - This sample suggests

\[Q(s, a) \approx r + \gamma \max_{a'} Q(s', a') \]

- But we want to average over results from (s,a) (Why?)
- So keep a running average

\[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right] \]
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called **off-policy learning**

- **Caveats:**
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)
Video of Demo Q-Learning Auto Cliff Grid
Exploration vs. Exploitation
How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability $1-\varepsilon$, act on current policy

- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]
Video of Demo Q-learning – Manual Exploration – Bridge Grid
Video of Demo Q-learning – Epsilon-Greedy – Crawler
Exploration Functions

□ When to explore?
 ▪ Random actions: explore a fixed amount
 ▪ Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

□ Exploration function
 ▪ Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$

\[
\begin{align*}
\text{Regular Q-Update:} & \quad Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q(s', a') \\
\text{Modified Q-Update:} & \quad Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))
\end{align*}
\]

□ Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]
Video of Demo Q-learning – Exploration Function – Crawler
Regret

- Even if you learn the optimal policy, you still make mistakes along the way.
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards.
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal.
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret.
Approximate Q-Learning
Generalizing Across States

- Basic Q-Learning keeps a table of all q-values

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we’ll see it over and over again
Example: Pacman

Let’s say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!
Video of Demo Q-Learning Pacman – Tiny – Watch All
Video of Demo Q-Learning Pacman – Tiny – Silent Train
Video of Demo Q-Learning Pacman – Tricky – Watch All
Feature-Based Representations

- **Solution:** describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!
Approximate Q-Learning

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- **Q-learning with linear Q-functions:**

 transition \(= (s, a, r, s') \)

 difference \(= \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \)

 \[Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \]

 \[w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \]

- **Intuitive interpretation:**
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features

- **Formal justification:** online least squares
Example: Q-Pacman

\[Q(s, a) = 4.0 f_{DO T}(s, a) - 1.0 f_{GST}(s, a) \]

\[f_{DO T}(s, \text{NORTH}) = 0.5 \]
\[f_{GST}(s, \text{NORTH}) = 1.0 \]

\[Q(s, \text{NORTH}) = +1 \]
\[r + \gamma \max_{a'} Q(s', a') = -500 + 0 \]

\[\text{difference} = -501 \]

\[w_{DO T} \leftarrow 4.0 + \alpha [-501] 0.5 \]
\[w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 f_{DO T}(s, a) - 3.0 f_{GST}(s, a) \]

[Demo: approximate Q-learning pacman (L11D10)]
Video of Demo Approximate Q-Learning -- Pacman