CS 188: Artificial Intelligence

Reinforcement Learning

Instructor: Evgeny Pobachienko

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

Reinforcement Learning

\

Agent \

State: s .
Reward: r Actions: a
(nvironment
= Basic idea:

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]

Example: Learning to Walk

Training
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — training]

Example: Learning to Walk

-

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]

The Crawler!

[Demo: Crawler Bot (L10D1)]

Video of Demo Crawler Bot

Reinforcement Learning

= Still assume a Markov decision process (MDP):

= Asetofstatess e S
= A set of actions (per state) A

= A model T(s,a,s’)

= A reward function R(s,a,s’)

Overheated

= Still looking for a policy m(s)

= New twist: don’t know T or R
= |.e. we don’t know which states are good or what the actions do
= Must actually try out actions and states to learn

Offline (MDPs) vs. Online (RL)

-

J
ﬁa
a

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

= Model-Based Idea:

= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Normalize to give an estimate of 7'(s, a, s)
= Discover each R(s,a,s’) when we experience (s, a, s’)

= Step 2: Solve the learned MDP

= For example, use value iteration, as before

Example: Model-Based Learning

Input Policy ©

Assume:y=1

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

' +
% D, exit, X, 10)

Episode 3

4 N
E, north, C, -1
C,east, D, -1

' +
\D’ exit, X, 10)

Episode 2

-
B, east, C, -1
C, east, D, -1

' +
% D, exit, X, 10)

Episode 4

4 N
E, north, C, -1
C, east, A, -1

% A, exit, X, '10/

Learned Model

T(s,a,s")

_

-

T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

~

J

R(s,a,s")

-

_

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

~

J

Model-Free Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

= Simplified task: policy evaluation
= |nput: a fixed policy m(s)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
" Goal: learn the state values

" |n this case:
= Learner is “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

= Goal: Compute values for each state under &t

" |dea: Average together observed sample values

= Act accordingtom

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be

= Average those samples

= This is called direct evaluation

Example: Direct Evaluation

Input Policy & Observed Episodes (Training) Output Values
Episode 1 Episode 2

4 N\
B, east, C, -1 B, east, C, -1
C, east, D, -1 C, east, D, -1
% D, exit, X, +10) % D, exit, X, +1O)

Episode 3 Episode 4

4 N\ N
E, north, C, -1 E, north, C, -1
C,east, D, -1 C, east, A, -1
Assume:y=1 i i -
% D, exit, X, +1O) % A, exit, X, 10)

Problems with Direct Evaluation

= What’s good about direct evaluation? Output Values

" |t's easy to understand

" |t doesn’t require any knowledge of T, R

" |t eventually computes the correct average values,
using just sample transitions

= \What bad about it?

® |t wastes information about state connections

If Band E both go to C

under this policy, how can
= So, it takes a long time to learn their values be different?

= Each state must be learned separately

Why Not Use Policy Evaluation?

= Simplified Bellman updates calculate V for a fixed policy:

* Each round, replace V with a one-step-look-ahead layer over V m(s)

Vo(s) =0 L 7(s)

ka_l_l(s) — ZT(S, 7(s),s)[R(s,7(s),s) + q/VkW(S’)] ‘,S;ﬁ{(s),s’
S, A SI

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

= Key question: how can we do this update to V without knowing T and R?
" |n other words, how to we take a weighted average without knowing the weights?

Example: Expected Age

Goal: Compute expected age of cs188 students

Known P(A)

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... a,]

/ Unknown P(A): “Model Based” \

Why does this
work? Because
eventually you
learn the right
model.

num(a)

/ Unknown P(A): “Model Free”

~

ElA] =~ %Zai

Why does this
work? Because
samples appear

with the right

frequencies.

—

Sample-Based Policy Evaluation?

= \We want to improve our estimate of V by computing these averages:

ka—|—1(3) — ZT(S,?T(S), SHIR(s,7(s),s") + WV,{W(S’)]

" |dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s, m(s), 8’1) + ’YV]{W(Sll)
samples = R(s,m(s),s5) + YV (s5) ’(i; \
sample, = R(s, m(s), S;@) + ”YV/?(S%,) > A 7

1
Vig1(8) < - > sample;
()

Temporal Difference Learning

Temporal Difference Learning

= Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s) +~4V™(s")
Update to V(s): VT(s) + (1 —a)V"(s) 4+ (a)sample

Same update: V7T (s) < V™(s) + a(sample — V" (s))

Exponential Moving Average

= Exponential moving average
* The running interpolation update: x,, = (1 — CI{) +Tp—1 + Q- Tn

= Makes recent samples more important:

Tp+(1—a) Tp1+(1—a)? zp_o+...
I1+(1—-a)+(1—-a)2+...

Ly =

= Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

States

5 lclo

Assume:y=1,a=1/2

Observed Transitions

[B, east, C, -2] [C, east, D, -2]

oo o] alo]e] (a3]

V7(s) = (1 = a)V7(s) +a |R(s,m(s),s) +4V7(s")

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:
w(s) = argmaxQ(s,a)
a

Q(s,a) = ZT(S, a,s') [R(S, a,s') + ny(s’)}

|dea: learn Q-values, not values

Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

= Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
" You choose the actions now
= Goal: learn the optimal policy / values

" |n this case:
= Learner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world and
find out what happens...

Detour: Q-Value Iteration

= Value iteration: find successive (depth-limited) values
= Start with V,(s) = 0, which we know is right
= GivenV,, calculate the depth k+1 values for all states:

Vip1(s) < max > T(s,a,s") |R(s,a,8") + V()

= But Q-values are more useful, so compute them instead
= Start with Qg(s,a) = 0, which we know is right
= Given Q,, calculate the depth k+1 g-values for all g-states:

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)

Q-Learning

" Q-Learning: sample-based Q-value iteration

Qt1(s,a) « S T(s,a,8) |R(s,a,8) +7 maxQu(s',a')

" Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) + max Q(s',a")

a

" |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

" Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough

" You have to eventually make the learning rate
small enough

= .. but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique
Compute V*, Q*, n* Value / policy iteration
\ Evaluate a fixed policy & Policy evaluation J
Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique Goal Technique
Compute V*, Q*, * VI/PI on approx. MDP Compute V*, Q*, * Q-learning
Evaluate a fixed policy & PE on approx. MDP Evaluate a fixed policy & Value Learning

- _/ - _/

Model-Free Learning

* Model-free (temporal difference) learning

= Experience world through episodes

(s,a,r,s,a ,r',s" a" r" s"...)

= Update estimates each transition (S, a,r, S’)

= Over time, updates will mimic Bellman updates

Q-Learning

= We'd like to do Q-value updates to each Q-state:
Qt1(s,a) = S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)
s’ a

= But can’t compute this update without knowing T, R

» |nstead, compute average as we go

= Receive a sample transition (s,a,r,s’)

This sample suggests
Qs,a) ~r+ymaxQ(s', ')
a

But we want to average over results from (s,a) (Why?)

So keep a running average

Qs,a) — (1=)Qs,a) + (@) |r + 7 MaxQ(s',)

Q-Learning Properties

" Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough
" You have to eventually make the learning rate

small enough

= .. but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning — auto — cliff grid (L11D1)]

Video of Demo Q-Learning Auto Cliff Grid

Exploration vs. Exploitation

How to Explore?

= Several schemes for forcing exploration

» Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-g, act on current policy

= Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning — Manual Exploration — Bridge Grid

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) <a R(s,a,5") +ymaxQ(s',a’)
a

Modified Q-Update: Q(s,a) <—a R(s,a,s") +ymax f(Q(s",a’), N(s',a"))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Video of Demo Q-learning — Exploration Function — Crawler

Regret

= Even if you learn the optimal policy,
you still make mistakes along the way

= Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

= Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

= Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Approximate Q-Learning

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

®" Too many states to visit them all in training

®= Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)],[Demo: Q-learning — pacman — tiny — silent train (L11D6)], [Demo: Q-learning — pacman — tricky — watch all (L11D7)]

Video of Demo Q-Learning Pacman — Tiny — Watch All

Video of Demo Q-Learning Pacman — Tiny — Silent Train

Video of Demo Q-Learning Pacman — Tricky — Watch All

Feature-Based Representations

= Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) =wif1(s) +wafa(s) + ... + wnfn(s)
Q(s,a) = wi f1(s,a)Fwafa(s,a)+...+wnfn(s,a)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

QGs,0) = wifa(s,) twnfa(s @)+ Funalsia) |

= Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(S,Cb)
Q(s,a) « Q(s,a) + «[difference] Exact Q’s

difference = [7" + v max Q(s',a")
a

w; <+ w; + « [difference] f;(s,a) Approximate Qs

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

= Formal justification: online least squares

Example:

Q-Pacman

Q(S,CL) — 4'OfDOT(Saa) — 1'OfGST(Saa)

fDOT(Sa NORTH) = 0.5

fasr(s, NORTH) = 1.0

) 4

a = NORTH /
r = —500

J -

Q(s,NORTH) = +1

r + vy max Q(s',a’) = -500+0
a

Q(Slv) =0

{difference — —501 >

wpor — 4.0 + a[-501]0.5
was — —1.0 + a [-501] 1.0

Q(S, CL) — 30fDOT(S, CL) — 30fGST(S, CL) [Demo: approximate Q-

learning pacman (L11D10)]

Video of Demo Approximate Q-Learning -- Pacman

	Slide 1: CS 188: Artificial Intelligence
	Slide 2: Reinforcement Learning
	Slide 3: Reinforcement Learning
	Slide 4: Example: Learning to Walk
	Slide 5: Example: Learning to Walk
	Slide 6: Example: Learning to Walk
	Slide 7: Example: Learning to Walk
	Slide 9: Example: Toddler Robot
	Slide 10: The Crawler!
	Slide 11: Video of Demo Crawler Bot
	Slide 12: Reinforcement Learning
	Slide 13: Offline (MDPs) vs. Online (RL)
	Slide 14: Model-Based Learning
	Slide 15: Model-Based Learning
	Slide 16: Example: Model-Based Learning
	Slide 17: Model-Free Learning
	Slide 18: Passive Reinforcement Learning
	Slide 19: Passive Reinforcement Learning
	Slide 20: Direct Evaluation
	Slide 21: Example: Direct Evaluation
	Slide 22: Problems with Direct Evaluation
	Slide 23: Why Not Use Policy Evaluation?
	Slide 24: Example: Expected Age
	Slide 25: Sample-Based Policy Evaluation?
	Slide 26: Temporal Difference Learning
	Slide 27: Temporal Difference Learning
	Slide 28: Exponential Moving Average
	Slide 29: Example: Temporal Difference Learning
	Slide 30: Problems with TD Value Learning
	Slide 31: Active Reinforcement Learning
	Slide 32: Active Reinforcement Learning
	Slide 33: Detour: Q-Value Iteration
	Slide 34: Q-Learning
	Slide 35: Video of Demo Q-Learning -- Gridworld
	Slide 36: Video of Demo Q-Learning -- Crawler
	Slide 37: Q-Learning Properties
	Slide 38: The Story So Far: MDPs and RL
	Slide 39: Model-Free Learning
	Slide 40: Q-Learning
	Slide 41: Q-Learning Properties
	Slide 42: Video of Demo Q-Learning Auto Cliff Grid
	Slide 43: Exploration vs. Exploitation
	Slide 44: How to Explore?
	Slide 45: Video of Demo Q-learning – Manual Exploration – Bridge Grid
	Slide 46: Video of Demo Q-learning – Epsilon-Greedy – Crawler
	Slide 47: Exploration Functions
	Slide 48: Video of Demo Q-learning – Exploration Function – Crawler
	Slide 49: Regret
	Slide 50: Approximate Q-Learning
	Slide 52: Generalizing Across States
	Slide 53: Example: Pacman
	Slide 54: Video of Demo Q-Learning Pacman – Tiny – Watch All
	Slide 55: Video of Demo Q-Learning Pacman – Tiny – Silent Train
	Slide 56: Video of Demo Q-Learning Pacman – Tricky – Watch All
	Slide 57: Feature-Based Representations
	Slide 58: Linear Value Functions
	Slide 59: Approximate Q-Learning
	Slide 60: Example: Q-Pacman
	Slide 61: Video of Demo Approximate Q-Learning -- Pacman

