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Policy Search




Policy Search

Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best

= E.g.your value functions from project 2 were probably horrible estimates of future rewards, but they
still produced good decisions

= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)
= We'll see this distinction between modeling and prediction again later in the course

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights



Policy Search

= Simplest policy search:
= Start with an initial linear value function or Q-function

"= Nudge each feature weight up and down and see if your policy is better than before

" Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
" |f there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change
multiple parameters...



[Video: HELICOPTER]



Q-Learning and Least Squares




Linear Approximation: Regression
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Prediction:
Yy = wo + wi f1(x)

Prediction:

y; = wo + wiy f1(x) + wafo(x)



Optimization: Least Squares
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Loss Function
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Gradients

Partial derivative: the immediate change of output for a change of
input, or slope, or rate.

Gradient: vector of partial derivatives, one per input scalar.
Defines tangent plane.

Gradient points in the direction of fastest increase.

e Actually, on the tangent plane, so only in a region around the dot for
the actual function.
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Gradients

Ay =Vy * Aqx +Vy * A, x
Ay =Vy *Aix+ 0




Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:
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error(w) = % (y - Zwkf’f(x))
k
0 e(;ror(’lU) — _ (y _ Zwkfk(aj)) fm(x)
Wm k

Wm = Wm + & (y - Zwkfk(ff)) fm(z)
k
Approximate q update explained:

W — w4 |7+ MaxQ(s',a') — Q(s, a) | fm(s,a)

“target” “prediction”



Updating w

Prediction:
Y; = wo + wy f1(x) + wafo(x)




Updating w

o ”Rotating” W Prediction:
y; = wo + wi f1(x) + woafolx)
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Overfitting: Why Limiting Capacity Can Help*




Actor-Critic Algorithms

= Analogous to Policy Iteration, we will have V™ and .

"TT

is no longer deterministic. Policy is now P(a|s).

1. take action a based on (als), get (s,a,s’,r)

2. U
3. u

v

1.

odate V™ based onr + yV™(s")
odate w based onr + yV(s’") — V™ (s) weighted by

log m(als)
pretend it’s weighted by features of m(a|s)



Optimism
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Double Deep Q-Network

= Deep Q-Network = Deep Neural Network estimating Q values.

1. checkpoint DQN into Q’
2. iterate:

1. collect samples (s,a,s’,r)

1. ideally, some are based on Q

2. update Qbasedonr 4+ yQ(s’,a = argmax Q') — Q(s,a)



online RL setting
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Generalization

offline RL setting




Why Off-Policy

standard real




More efficient
(fewer samples)

Why Multiple Algorithms

« simpler optimization math

* less finicky
hyperparameters

» faster update steps

< » + on-policy

Less efficient
(more samples)

—

model-based model-based off-policy actor-critic  on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free

learning methods algorithms algorithms
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