
CS 188: Artificial Intelligence
Reinforcement Learning Continued

Instructor: Evgeny Pobachienko

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Policy Search

Policy Search

▪ Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
▪ E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they

still produced good decisions

▪ Q-learning’s priority: get Q-values close (modeling)

▪ Action selection priority: get ordering of Q-values right (prediction)

▪ We’ll see this distinction between modeling and prediction again later in the course

▪ Solution: learn policies that maximize rewards, not the values that predict them

▪ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

▪ Simplest policy search:

▪ Start with an initial linear value function or Q-function

▪ Nudge each feature weight up and down and see if your policy is better than before

▪ Problems:

▪ How do we tell the policy got better?

▪ Need to run many sample episodes!

▪ If there are a lot of features, this can be impractical

▪ Better methods exploit lookahead structure, sample wisely, change
multiple parameters…

RL: Helicopter Flight

[Andrew Ng] [Video: HELICOPTER]

Q-Learning and Least Squares

0 20
0

20

40

0

10
20

30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression

Prediction: Prediction:

Optimization: Least Squares

0 20
0

Error or “residual”

Prediction

Observation

Loss Function

0

10
20

30

40

0

10

20

30

20

22

24

26

Gradients

𝑦 = 𝑥1
2 + 𝑥2

2

𝜕𝑦

𝜕𝑥1
= 2𝑥1

𝜕𝑦

𝜕𝑥2
= 2𝑥2

∇𝑦 =

𝜕𝑦

𝜕𝑥1

𝜕𝑦

𝜕𝑥2

∆𝑦 = ∇𝑦 ∗ ∆𝑥

𝑑𝑦

𝑑𝑥
= lim

∆𝑥→0

Δ𝑦

Δ𝑥

∆𝑦 =

𝜕𝑦

𝜕𝑥1

𝜕𝑦

𝜕𝑥2

∗
∆𝑥1

∆𝑥2
=

𝜕𝑦

𝜕𝑥1
∗ ∆𝑥1 +

𝜕𝑦

𝜕𝑥2
∗ ∆𝑥2

• Partial derivative: the immediate change of output for a change of
input, or slope, or rate.

• Gradient: vector of partial derivatives, one per input scalar.

• Defines tangent plane.

• Gradient points in the direction of fastest increase.

• Actually, on the tangent plane, so only in a region around the dot for
the actual function.

Gradients

∆𝑦 = ∇𝑦 ∗ ∆𝑥
∆𝑦 =

𝜕𝑦

𝜕𝑥1

𝜕𝑦

𝜕𝑥2

∗
∆𝑥1

∆𝑥2

∆𝑦 = ∇𝑦 ∗ (∆1𝑥 + ∆2𝑥)

∆𝑦 = ∇𝑦 ∗ ∆1𝑥 + ∇𝑦 ∗ ∆2𝑥

∆𝑦 = ∇𝑦 ∗ ∆1𝑥 + 0

Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

0

10
20

30

40

0

10

20

30

20

22

24

26

Updating w

Prediction:

Updating w

▪ “Rotating” w

0 20
0

20

40

Prediction:

0 20
0

20

40

Updating w

▪ Bias

0 20
0

20

40

0 20
0

20

40

0 20
0

20

40

Updating w

▪ Bias

0 20
0

20

40

0 20
0

20

40

0 20
0

20

40

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can Help*

Actor-Critic Algorithms

▪ Analogous to Policy Iteration, we will have 𝑉𝜋 and 𝜋.

▪ 𝜋 is no longer deterministic. Policy is now 𝑃(𝑎|𝑠).

1. take action 𝑎 based on 𝜋(𝑎|𝑠), get 𝑠, 𝑎, 𝑠′, 𝑟

2. update 𝑉𝜋 based on 𝑟 + 𝛾𝑉𝜋(𝑠′)

3. update 𝜋 based on 𝑟 + 𝛾𝑉𝜋 𝑠′ − 𝑉𝜋 𝑠 weighted by
∇log 𝜋(𝑎|𝑠)

1. pretend it’s weighted by features of 𝜋(𝑎|𝑠)

Optimism

Double Deep Q-Network

▪ Deep Q-Network = Deep Neural Network estimating Q values.

1. checkpoint DQN into Q’

2. iterate:

1. collect samples 𝑠, 𝑎, 𝑠′, 𝑟

1. ideally, some are based on Q

2. update Q based on 𝑟 + 𝛾𝑄 𝑠′, 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄′ − 𝑄(𝑠, 𝑎)

Generalization

Why Off-Policy

Why Multiple Algorithms

• simpler optimization math

• less finicky

hyperparameters

• faster update steps

• on-policy

RL: Learning Locomotion

[Video: GAE][Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]

RL: Learning Soccer

[Bansal et al, 2017]

RL: Learning Manipulation

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]

RL: NASA SUPERball

[Geng*, Zhang*, Bruce*, Caluwaerts, Vespignani, Sunspiral, Abbeel, Levine, ICRA 2017]
Pieter Abbeel -- UC Berkeley | Gradescope |

Covariant.AI

RL: In-Hand Manipulation

Pieter Abbeel -- UC Berkeley | Gradescope |

Covariant.AI

OpenAI: Dactyl

Trained with domain randomization

[OpenAI]

	Slide 1: CS 188: Artificial Intelligence
	Slide 2: Policy Search
	Slide 3: Policy Search
	Slide 4: Policy Search
	Slide 5: RL: Helicopter Flight
	Slide 6: Q-Learning and Least Squares
	Slide 7: Linear Approximation: Regression
	Slide 8: Optimization: Least Squares
	Slide 9: Loss Function
	Slide 10: Gradients
	Slide 11: Gradients
	Slide 12: Minimizing Error
	Slide 13: Updating w
	Slide 14: Updating w
	Slide 15: Updating w
	Slide 16: Updating w
	Slide 17: Overfitting: Why Limiting Capacity Can Help*
	Slide 18: Actor-Critic Algorithms
	Slide 19: Optimism
	Slide 20: Double Deep Q-Network
	Slide 21: Generalization
	Slide 22: Why Off-Policy
	Slide 23: Why Multiple Algorithms
	Slide 24: RL: Learning Locomotion
	Slide 25: RL: Learning Soccer
	Slide 26: RL: Learning Manipulation
	Slide 27: RL: NASA SUPERball
	Slide 28: RL: In-Hand Manipulation
	Slide 29: OpenAI: Dactyl

