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Policy Search



Policy Search

▪ Problem: often the feature-based policies that work well (win games, maximize 
utilities) aren’t the ones that approximate V / Q best
▪ E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they 

still produced good decisions

▪ Q-learning’s priority: get Q-values close (modeling)

▪ Action selection priority: get ordering of Q-values right (prediction)

▪ We’ll see this distinction between modeling and prediction again later in the course

▪ Solution: learn policies that maximize rewards, not the values that predict them

▪ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing 
on feature weights



Policy Search

▪ Simplest policy search:

▪ Start with an initial linear value function or Q-function

▪ Nudge each feature weight up and down and see if your policy is better than before

▪ Problems:

▪ How do we tell the policy got better?

▪ Need to run many sample episodes!

▪ If there are a lot of features, this can be impractical

▪ Better methods exploit lookahead structure, sample wisely, change 
multiple parameters…



RL: Helicopter Flight

[Andrew Ng] [Video: HELICOPTER]



Q-Learning and Least Squares
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Linear Approximation: Regression
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Optimization: Least Squares
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Loss Function
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Gradients
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• Partial derivative: the immediate change of output for a change of 
input, or slope, or rate.

• Gradient: vector of partial derivatives, one per input scalar.

• Defines tangent plane.

• Gradient points in the direction of fastest increase.

• Actually, on the tangent plane, so only in a region around the dot for 
the actual function.



Gradients
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Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”
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Prediction:



Updating w

▪ “Rotating” w
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Updating w

▪ Bias
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Updating w

▪ Bias
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Overfitting: Why Limiting Capacity Can Help*



Actor-Critic Algorithms

▪ Analogous to Policy Iteration, we will have 𝑉𝜋 and 𝜋.

▪ 𝜋 is no longer deterministic. Policy is now 𝑃(𝑎|𝑠).

1. take action 𝑎 based on 𝜋(𝑎|𝑠), get 𝑠, 𝑎, 𝑠′, 𝑟

2. update 𝑉𝜋 based on 𝑟 + 𝛾𝑉𝜋(𝑠′)

3. update 𝜋 based on 𝑟 + 𝛾𝑉𝜋 𝑠′ − 𝑉𝜋 𝑠  weighted by 
∇log 𝜋(𝑎|𝑠)

1. pretend it’s weighted by features of 𝜋(𝑎|𝑠)



Optimism



Double Deep Q-Network

▪ Deep Q-Network = Deep Neural Network estimating Q values.

1. checkpoint DQN into Q’

2. iterate:

1. collect samples 𝑠, 𝑎, 𝑠′, 𝑟

1. ideally, some are based on Q

2. update Q based on 𝑟 + 𝛾𝑄 𝑠′, 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄′ − 𝑄(𝑠, 𝑎)



Generalization



Why Off-Policy



Why Multiple Algorithms

• simpler optimization math

• less finicky 

hyperparameters

• faster update steps

• on-policy



RL: Learning Locomotion

[Video: GAE][Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]



RL: Learning Soccer

[Bansal et al, 2017]



RL: Learning Manipulation

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]



RL: NASA SUPERball

[Geng*, Zhang*, Bruce*, Caluwaerts, Vespignani, Sunspiral, Abbeel, Levine, ICRA 2017]
Pieter Abbeel -- UC Berkeley | Gradescope | 

Covariant.AI



RL: In-Hand Manipulation

Pieter Abbeel -- UC Berkeley | Gradescope | 

Covariant.AI



OpenAI: Dactyl

Trained with domain randomization

[OpenAI]
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