

Instructor: Evgeny Pobachienko

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Policy Search

Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

[Video: HELICOPTER]

Q-Learning and Least Squares

Linear Approximation: Regression

Prediction: $\hat{y} = w_0 + w_1 f_1(x)$

Prediction: $\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$

Optimization: Least Squares

Loss Function

total error =
$$\sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} \left(y_i - \sum_k w_k f_k(x_i) \right)^2$$

Gradients

$$y = x_1^2 + x_2^2 \qquad \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
$$\frac{\partial y}{\partial x_1} = 2x_1 \qquad \nabla y = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \end{bmatrix}$$

- Partial derivative: the immediate change of output for a change of input, or slope, or rate.
- Gradient: vector of partial derivatives, one per input scalar.
- Defines tangent plane.
- Gradient points in the direction of fastest increase.
 - Actually, on the tangent plane, so only in a region around the dot for the actual function.

Gradients

$$\Delta y = \nabla y * (\Delta_1 x + \Delta_2 x)$$
$$\Delta y = \nabla y * \Delta_1 x + \nabla y * \Delta_2 x$$
$$\Delta y = \nabla y * \Delta_1 x + 0$$

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$
$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = - \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$
$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

"prediction"

"target"

1

0∟ 0

"Rotating" w

Prediction: $\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$ 40 20

20

Overfitting: Why Limiting Capacity Can Help*

Actor-Critic Algorithms

- Analogous to Policy Iteration, we will have V^{π} and π .
- π is no longer deterministic. Policy is now P(a|s).

- 1. take action a based on $\pi(a|s)$, get (s, a, s', r)
- 2. update V^{π} based on $r + \gamma V^{\pi}(s')$
- 3. update π based on $r + \gamma V^{\pi}(s') V^{\pi}(s)$ weighted by $\nabla \log \pi(a|s)$
 - 1. pretend it's weighted by features of $\pi(a|s)$

Optimism

Double Deep Q-Network

Deep Q-Network = Deep Neural Network estimating Q values.

- 1. checkpoint DQN into Q'
- 2. iterate:
 - 1. collect samples (s, a, s', r)
 - 1. ideally, some are based on Q
 - 2. update Q based on $r + \gamma Q(s', a = argmax Q') Q(s, a)$

Generalization

online RL setting

offline RL setting

Why Off-Policy

Why Multiple Algorithms

Pieter Abbeel -- UC Berkeley | Gradescope | Covariant.Al