
CS 188: Artificial Intelligence
Machine Learning II: Perceptrons

Summer 2024: Eve Fleisig & Evgeny Pobachienko
[Slides based on those by Nicholas Tomlin, Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. CS188 materials are available at http://ai.berkeley.edu.]

§ Feature design
§ Complexity in feature design vs. model design

§ Evaluation: accuracy, precision & recall, F1 score
§ Generalization, calibration, robustness

Pr
ed

ic
te

d
Cl

as
s

True Class

Demo: Catching AI-Generated Text

Linear Classifiers

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1
...

“2”

Some (Simplified) Biology

§ Very loose inspiration: human neurons

Linear Classifiers

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1

S
f1
f2
f3

w1

w2

w3
>0?

Weights
§ Binary case: compare features to a weight vector
§ Learning: figure out the weight vector from examples

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1
...

Dot product positive
means the positive class

Decision Rules

Binary Decision Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector defines a hyperplane
§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM

w

Weight Updates

Learning: Binary Perceptron

§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!

§ If wrong: adjust the weight vector

Learning: Binary Perceptron

§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by

adding or subtracting the feature
vector. Subtract if y* is -1.

Examples: Perceptron

§ Separable Case

Multiclass Decision Rule

§ If we have multiple classes:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples one by one
§ Predict with current weights

§ If correct, no change!
§ If wrong: lower score of wrong answer,

raise score of right answer

Example: Multiclass Perceptron

BIAS : 1
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

“win the vote”

“win the election”

“win the game”

Properties of Perceptrons

§ Separability: true if some parameters get the training set
perfectly correct

§ Convergence: if the training is separable, perceptron will
eventually converge (binary case)

§ Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability

Separable

Non-Separable

[Bonus] Kernel Trick

Problems with the Perceptron

§ Noise: if the data isn’t separable,
weights might thrash
§ Averaging weight vectors over time

can help (averaged perceptron)

§ Mediocre generalization: finds a
“barely” separating solution

§ Overtraining: test / held-out
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting

