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Learning: Binary Perceptron

= Start with weights =0
" For each training instance:
= Classify with current weights

1L i we f(x) >0
YT i w fle) <0

y o f

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* is -1.

w=w-+y - f



Learning: Multiclass Perceptron

Start with all weights =0
Pick up training examples one by one
Predict with current weights

y = argmax, wy - f(x)

If correct, no change!

If wrong: lower score of wrong answer,
raise score of right answer

wy:wy—f@?)



Improving the Perceptron: Logistic Regression




Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake




Non-Separable Case: Probabilistic Decision

T 0.9 ] 0.1
0.7 ] 0.3

4t 0.5] 0.5
35} 0.3 ] 0.7
!
25}
2L
15}




How to get probabilistic decisions?

Perceptron scoring: z = w - f(x)

f  z=w-f(z) verypositive =2 want probability going to 1

f  z2=w-f(x) verynegative =2 want probability goingto 0

Sigmoid function b ‘1 R
¢@ = 1=
gb( ) 1l +e % J




Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(i);w)

. . 1
| () — 1)y

1

P(y" = =1z w) = 1 | & o—w @)

= Logistic Regression



Separable Case: Deterministic Decision — Many Options
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Separable Case: Probabilistic Decision — Clear Preference
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Multiclass Logistic Regression

w1y - f biggest
= Recall Perceptron: 0
= A weight vector for each class: UJy
= Score (activation) of a class y: Wy - f(:l?) w3
wp
" Prediction highest score wins  y = arg max wy, - f(w) ws - f w3 - f
2 H
Yy biggest biggest
" How to make the scores into probabilities? Softmax function
z z z
el e~? e~s

Z1,22,23 7 y y

€%l + €72 + €73 efl - e*2 ye*s el +e*2 + €73

\ J \ )
| |

original activations softmax activations




Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(i);w)

oWy (1) f(z)

e (4) 1-(9) . o)) —
with: P(y‘\"|x\"; w) Zyewy‘f(x(i))

= Multi-Class Logistic Regression



Maximum Likelihood Estimation
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Parameter Estimation with Maximum Likelihood

" Estimating the distribution of a random variable X red blue
= Use training data (learning!) Py (x) 0 1-9
= For each outcome x, look at the empirical rate of that value:

p o — count(x)

ML ™ total samples
= Example: probability of x=red given the training data: @ @ @

2
Py () = 3

= This estimate maximizes the likelihood of the data for the
parametric model:
L(B) =P(r,r,b | 68) =Pg(r)-Pg(r) - Py (b)
=0%-(1-10)



Parameter Estimation with Maximum Likelihood

= |ikelihood function: X

red blue
L(8) = P(r,r,b 18) =Pg(r) - Po(r) - Pg (D) Py (x) 0 1-6
=60%-(1-6)
— 92 _ 93
= MLE: find the 8 that maximizes data likelihood
5 = argmax L(6) 1010
0

= Approach: take derivatives and set to O

OLO) _ op  op2
Y = 20 — 36

= 6(2 — 36)

. . 2
" Find the maximum at 8 = 3



Parameter Estimation (General Case)

= Model: 2

red

blue

Pg(x)

0

1-6

= Data: draw N balls. N,. come up red, N, come up blue

= Dataset: D = {xq, ..., X}

= Ball draws are independent and identically distributed (i.i.d.):

OO®

Po10)=| [PCxi10) = [Poce = 0% - (1 - o)™

= Maximum likelihood estimation: find 8 that maximizes P(D | 8 )

0 = argrgax P(D|60) = argrgaxlogP(D | 6)

= Approach: take derivative and setto 0



Parameter Estimation (General Case)

= Maximum likelihood estimation: find 8 that maximizes P(D | )

0 = argmax P(D | 6 ) = argmaxlogP(D | 8)
0 0

ilogP(D 160) = i [N,-log(8) + Ny log(1 — 0)]

00 00
0 0
— NrﬁlOg(H) + Nb ﬁlOg(l — 3)
1 1
=Nrg—Np 175
=0

Multiply by 8(1 — 8): N,(1—6)—N,6 =0
N, — (N, + N,) = 0

P(D16) =06 .(1—-8)"b

" N, + N,




Example

Recall that a Geometric distribution is a defined as the number of
Bernoulli trials needed to get one success. P(X = k) = p(1 — p)*~ 1.
We observe the following samples from a Geometric distribution:

1 =0,120=8 x3=3,14=05,15=7

What is the maximum likelihood estimate for p?

I
log(L(p)) = 5log(p) + 23log(1 — p)

We must maximize the log-likelihood of p, so we will take the derivative, and set it to 0.

0 — H 23
a P 1—p

p=>5/28




Regularization
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Recall: Overfitting
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P(features, C = 2)
P(C=2)=0.1
P(on|C =2)=0.8
P(on|C =2) =0.1
P(off|C =2) =0.1

P(on|C =2) = 0.01

Example: Overfitting

2 wins!!

P(features,C = 3)

P(C=3)=0.1

P(on|C=3)=0.8
P(on|C =3)=0.9
P(off|C =3) =0.7

P(on|C =3) =0.0




Recall: Overfitting

= QObservation: polynomials that overfit tend to have large coefficients

50 -15 -1.0 -05 00 05 10 15 20

y = 0.1x°> + 0.2x* + 0.75x3 — x? — 2x + 2
y = —7.2x> + 10.4x* + 24.5x3 — 37.9x% — 3.6x + 12

= Let’s try to keep coefficients small!

Slide courtesy of Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla (U Toronto)



L1 and L2 Regularization

" Previously:
n
W = argmaxz:logP (y@ ] xD;w)
w
=1

= Now: add a penalty term to keep the weight vector small

n

n
L1 W = (D | 5@. — .
(aka lasso regression) w arg mM?X 2 lOg P ( y | X2 W ) a |Wl |
=1

1=1

n n
L2 R . |
(aka ridge regression) W = arg max 2 log P (y(l) | x@; W) —a z w?
w
i=1 i=1



L1

(aka lasso regression)

L2

(aka ridge regression)

L1 and L2 Regularization

Minima after
Regularization

Actual Minima

~FRsssasassanit .~ Actual Error
Gradient

3 L2 Norm Penalty
~ % iGradient

Minima after

Regularization Actual Minima

iy """ Actual Error
e Gradient

L1 Norm Penalty

", ™. Gradient

v

Wi

n n
W= argmaxz:logP (y@W | xD;w) — az: |w; |
w
i=1 =1

n n
W= argmaxz:logP (y@D | xD;w) — azwiz
w
i=1 i=1



