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Learning: Binary Perceptron

§ Start with weights = 0
§ For each training instance:

§ Classify with current weights

§ If correct (i.e., y=y*), no change!
§ If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.



Learning: Multiclass Perceptron

§ Start with all weights = 0
§ Pick up training examples one by one
§ Predict with current weights

§ If correct, no change!
§ If wrong: lower score of wrong answer, 

raise score of right answer



Improving the Perceptron: Logistic Regression



Non-Separable Case: Deterministic Decision
Even the best linear boundary makes at least one mistake



Non-Separable Case: Probabilistic Decision
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How to get probabilistic decisions?

§ Perceptron scoring:
§ If very positive à want probability going to 1
§ If  very negative à want probability going to 0

§ Sigmoid function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z



Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i) = +1|x(i);w) =
1

1 + e�w·f(x(i))

P (y(i) = �1|x(i);w) = 1� 1

1 + e�w·f(x(i))

= Logistic Regression



Separable Case: Deterministic Decision – Many Options



Separable Case: Probabilistic Decision – Clear Preference
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Multiclass Logistic Regression

§ Recall Perceptron:
§ A weight vector for each class:

§ Score (activation) of a class y:

§ Prediction highest score wins

§ How to make the scores into probabilities? Softmax function

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations



Best w? 

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression



Maximum Likelihood Estimation



Parameter Estimation with Maximum Likelihood

§ Estimating the distribution of a random variable
§ Use training data (learning!)

§ For each outcome 𝑥, look at the empirical rate of that value:

P!" =
count($)

total samples
§ Example: probability of x=red given the training data:

P!"(𝑟) =
&
'

§ This estimate maximizes the likelihood of the data for the 
parametric model:

𝐿 𝜃 = P r, r, b 𝜃 = P( 𝑟 ⋅ P( 𝑟 ⋅ P( 𝑏
= 𝜃& ⋅ 1 − 𝜃

r r b

X red blue
𝑃!(𝑥) 𝜃 1 − 𝜃



Parameter Estimation with Maximum Likelihood

§ Likelihood function:
𝐿 𝜃 = P r, r, b 𝜃 = P( 𝑟 ⋅ P( 𝑟 ⋅ P( 𝑏

= 𝜃& ⋅ 1 − 𝜃
= 𝜃& − 𝜃'

§ MLE: find the 𝜃 that maximizes data likelihood
"𝜃 = argmax 𝐿 𝜃

§ Approach: take derivatives and set to 0
!" #
!# = 2𝜃 − 3𝜃$

= 𝜃(2 − 3𝜃)

§ Find the maximum at 𝜃 = $
%

r r b

X red blue
𝑃!(𝑥) 𝜃 1 − 𝜃

𝜃



Parameter Estimation (General Case)

§ Model:

§ Data: draw 𝑁 balls. 𝑁' come up red, 𝑁( come up blue
§ Dataset: 𝐷 = {𝑥), … , 𝑥*}
§ Ball draws are independent and identically distributed (i.i.d.):

𝑃 𝐷 𝜃 =@
+

𝑃 𝑥+ 𝜃 =@
+

𝑃( 𝑥+ = 𝜃,! ⋅ 1 − 𝜃 ,"

§ Maximum likelihood estimation: find 𝜃 that maximizes 𝑃 𝐷 𝜃

𝜃 = argmax 𝑃 𝐷 𝜃 = argmax log 𝑃 𝐷 𝜃

§ Approach: take derivative and set to 0

r r b
X red blue

𝑃!(𝑥) 𝜃 1 − 𝜃

𝜃 𝜃



Parameter Estimation (General Case)

§ Maximum likelihood estimation: find 𝜃 that maximizes 𝑃 𝐷 𝜃

𝜃 = argmax 𝑃 𝐷 𝜃 = argmax log 𝑃 𝐷 𝜃

𝜕
𝜕𝜃
log 𝑃 𝐷 𝜃 =

𝜕
𝜕𝜃
[𝑁' log 𝜃 + 𝑁( log 1 − 𝜃 ]

= 𝑁'
!
!#
log 𝜃 + 𝑁(

!
!#
log 1 − 𝜃

= 𝑁'
)
# −𝑁(

)
)*#

= 0

Multiply by 𝜃 1 − 𝜃 : 𝑁' 1 − 𝜃 − 𝑁(𝜃 = 0
𝑁' − 𝜃 𝑁' +𝑁( = 0

𝜃 𝜃

+𝜃 =
𝑁!

𝑁! + 𝑁"

𝑃 𝐷 𝜃 = 𝜃#! ⋅ 1 − 𝜃 #"



Example



Regularization
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Recall: Overfitting



Example: Overfitting

2 wins!!



Recall: Overfitting

§ Observation: polynomials that overfit tend to have large coefficients

𝑦 = 0.1𝑥$ + 0.2𝑥% + 0.75𝑥& − 𝑥' − 2𝑥 + 2
𝑦 = −7.2𝑥$ + 10.4𝑥% + 24.5𝑥& − 37.9𝑥' − 3.6𝑥 + 12

§ Let’s try to keep coefficients small!
Slide courtesy of Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla (U Toronto)



L1 and L2 Regularization

§ Previously: 

!𝑤 = argmax
?

)
@A)

B

log 𝑃 𝑦 @ 𝑥 @ ; 𝑤

§ Now: add a penalty term to keep the weight vector small

!𝑤 = argmax
?

)
@A)

B

log 𝑃 𝑦 @ 𝑥 @ ; 𝑤 − 𝛼)
@A)

B

|𝑤@|

!𝑤 = argmax
?

)
@A)

B

log 𝑃 𝑦 @ 𝑥 @ ; 𝑤 − 𝛼)
@A)

B

𝑤@$

L1
(aka lasso regression)

L2
(aka ridge regression)



L1 and L2 Regularization

!𝑤 = argmax
?

)
@A)

B

log 𝑃 𝑦 @ 𝑥 @ ; 𝑤 − 𝛼)
@A)

B

|𝑤@|

!𝑤 = argmax
?

)
@A)

B

log 𝑃 𝑦 @ 𝑥 @ ; 𝑤 − 𝛼)
@A)

B

𝑤@$

L1
(aka lasso regression)

L2
(aka ridge regression)


