CS 188: Artificial Intelligence
Logistic Regression & Regularization

Agent Testing Today!

Summer 2024: Eve Fleisig & Evgeny Pobachienko

[Slides based on those by Nicholas Tomlin, Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. CS188 materials are available at http://ai.berkeley.edu]
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights
 \[y = \begin{cases}
 +1 & \text{if } w \cdot f(x) \geq 0 \\
 -1 & \text{if } w \cdot f(x) < 0
 \end{cases} \]
 - If correct (i.e., \(y = y^* \)), no change!
 - If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if \(y^* \) is -1.
 \[w = w + y^* \cdot f \]
Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights
 \[y = \arg \max_y w_y \cdot f(x) \]
- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer
 \[w_y = w_y - f(x) \]
 \[w_{y^*} = w_{y^*} + f(x) \]
Improving the Perceptron: Logistic Regression
Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake.
Non-Separable Case: Probabilistic Decision
How to get probabilistic decisions?

- **Perceptron scoring:** $z = w \cdot f(x)$
- **If** $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1
- **If** $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0

- **Sigmoid function**

$$\phi(z) = \frac{1}{1 + e^{-z}}$$
Best w?

- Maximum likelihood estimation:

$$\max_w \ ll(w) = \max_w \ \sum_i \ log P(y^{(i)}|x^{(i)}; w)$$

with:

$$P(y^{(i)} = +1|x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

$$P(y^{(i)} = -1|x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

= Logistic Regression
Separable Case: Deterministic Decision – Many Options
Separable Case: Probabilistic Decision – Clear Preference
Multiclass Logistic Regression

- **Recall Perceptron:**
 - A weight vector for each class: \(w_y \)
 - Score (activation) of a class \(y \): \(w_y \cdot f(x) \)
 - Prediction highest score wins: \(y = \arg \max_y w_y \cdot f(x) \)

- **How to make the scores into probabilities? Softmax function**

\[
\begin{align*}
\bar{z}_1, \bar{z}_2, \bar{z}_3 & \rightarrow \frac{e^{\bar{z}_1}}{e^{\bar{z}_1} + e^{\bar{z}_2} + e^{\bar{z}_3}}, \quad \frac{e^{\bar{z}_2}}{e^{\bar{z}_1} + e^{\bar{z}_2} + e^{\bar{z}_3}}, \quad \frac{e^{\bar{z}_3}}{e^{\bar{z}_1} + e^{\bar{z}_2} + e^{\bar{z}_3}}
\end{align*}
\]

original activations \[\rightarrow\] softmax activations
Best w?

- **Maximum likelihood estimation:**

\[
\max_w \ ll(w) = \max_w \sum_i \log P(y^{(i)} \mid x^{(i)}; w)
\]

with:

\[
P(y^{(i)} \mid x^{(i)}; w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_y e^{w_y \cdot f(x^{(i)})}}
\]

= *Multi-Class Logistic Regression*
Maximum Likelihood Estimation
Parameter Estimation with Maximum Likelihood

- Estimating the distribution of a random variable
- Use training data (learning!)
 - For each outcome x, look at the empirical rate of that value:
 \[
 P_{ML} = \frac{\text{count}(x)}{\text{total samples}}
 \]
- Example: probability of $x=\text{red}$ given the training data:
 \[
P_{ML}(r) = \frac{2}{3}
\]
- This estimate maximizes the likelihood of the data for the parametric model:
 \[
 L(\theta) = P(r, r, b \mid \theta) = P_\theta(r) \cdot P_\theta(r) \cdot P_\theta(b)
 = \theta^2 \cdot (1 - \theta)
 \]
Parameter Estimation with Maximum Likelihood

- Likelihood function:
 \[L(\theta) = P(r, r, b \mid \theta) = P_\theta(r) \cdot P_\theta(r) \cdot P_\theta(b) \]
 \[= \theta^2 \cdot (1 - \theta) \]
 \[= \theta^2 - \theta^3 \]

- MLE: find the \(\theta \) that maximizes data likelihood
 \[\hat{\theta} = \arg\max_\theta L(\theta) \]

- Approach: take derivatives and set to 0
 \[\frac{\partial L(\theta)}{\partial \theta} = 2\theta - 3\theta^2 \]
 \[= \theta(2 - 3\theta) \]

- Find the maximum at \(\theta = \frac{2}{3} \)
Parameter Estimation (General Case)

- **Model:**

<table>
<thead>
<tr>
<th>X</th>
<th>red</th>
<th>blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_\theta(x)$</td>
<td>θ</td>
<td>$1 - \theta$</td>
</tr>
</tbody>
</table>

- **Data:** draw N balls. N_r come up red, N_b come up blue

 - Dataset: $D = \{x_1, ..., x_n\}$
 - Ball draws are independent and identically distributed (i.i.d.):

 $$
 P(D \mid \theta) = \prod_i P(x_i \mid \theta) = \prod_i P_\theta(x_i) = \theta^{N_r} \cdot (1 - \theta)^{N_b}
 $$

- **Maximum likelihood estimation:** find θ that maximizes $P(D \mid \theta)$

 $$
 \theta = \arg\max_{\theta} P(D \mid \theta) = \arg\max_{\theta} \log P(D \mid \theta)
 $$

 - Approach: take derivative and set to 0

Parameter Estimation (General Case)

- **Maximum likelihood estimation**: find θ that maximizes $P(D | \theta)$

\[
\theta = \arg\max_{\theta} P(D | \theta) = \arg\max_{\theta} \log P(D | \theta)
\]

\[
\frac{\partial}{\partial \theta} \log P(D | \theta) = \frac{\partial}{\partial \theta} [N_r \log(\theta) + N_b \log(1 - \theta)]
\]

\[
= N_r \frac{\partial}{\partial \theta} \log(\theta) + N_b \frac{\partial}{\partial \theta} \log(1 - \theta)
\]

\[
= N_r \frac{1}{\theta} - N_b \frac{1}{1 - \theta}
\]

\[
= 0
\]

Multiply by $\theta(1 - \theta)$:

\[
N_r (1 - \theta) - N_b \theta = 0
\]

\[
N_r - \theta(N_r + N_b) = 0
\]

\[
\hat{\theta} = \frac{N_r}{N_r + N_b}
\]
Example

Recall that a Geometric distribution is defined as the number of Bernoulli trials needed to get one success. \(P(X = k) = p(1 - p)^{k-1} \).

We observe the following samples from a Geometric distribution:

\[x_1 = 5, \ x_2 = 8, \ x_3 = 3, \ x_4 = 5, \ x_5 = 7 \]

What is the maximum likelihood estimate for \(p \)?

\[
L(p) = P(X = x_1)P(X = x_2)P(X = x_3)P(X = x_4)P(X = x_5) = P(X = 5)P(X = 8)P(X = 3)P(X = 5)P(X = 7) = p^5(1 - p)^{23} \\
\log(L(p)) = 5 \log(p) + 23 \log(1 - p)
\]

We must maximize the log-likelihood of \(p \), so we will take the derivative, and set it to 0.

\[
0 = \frac{5}{p} - \frac{23}{1 - p} \\
p = \frac{5}{28}
\]
Regularization
Recall: Overfitting
Example: Overfitting

\[P(\text{features}, C = 2) \]

\[P(C = 2) = 0.1 \]

\[P(\text{on}|C = 2) = 0.8 \]

\[P(\text{on}|C = 2) = 0.1 \]

\[P(\text{off}|C = 2) = 0.1 \]

\[P(\text{on}|C = 2) = 0.01 \]

\[P(\text{features}, C = 3) \]

\[P(C = 3) = 0.1 \]

\[P(\text{on}|C = 3) = 0.8 \]

\[P(\text{on}|C = 3) = 0.9 \]

\[P(\text{off}|C = 3) = 0.7 \]

\[P(\text{on}|C = 3) = 0.0 \]

2 wins!!
Recall: Overfitting

- Observation: polynomials that overfit tend to have large coefficients

\[
y = 0.1x^5 + 0.2x^4 + 0.75x^3 - x^2 - 2x + 2
\]

\[
y = -7.2x^5 + 10.4x^4 + 24.5x^3 - 37.9x^2 - 3.6x + 12
\]

- Let’s try to keep coefficients small!

Slide courtesy of Roger Grosse, Amir-massoud Farahmand, and Juan Carraquilla (U Toronto)
L1 and L2 Regularization

- Previously:

\[
\hat{w} = \arg \max_w \sum_{i=1}^{n} \log P \left(y^{(i)} \mid x^{(i)}; w \right)
\]

- Now: add a penalty term to keep the weight vector small

\[
\text{L1 (aka lasso regression)}
\]

\[
\hat{w} = \arg \max_w \sum_{i=1}^{n} \log P \left(y^{(i)} \mid x^{(i)}; w \right) - \alpha \sum_{i=1}^{n} |w_i|
\]

\[
\text{L2 (aka ridge regression)}
\]

\[
\hat{w} = \arg \max_w \sum_{i=1}^{n} \log P \left(y^{(i)} \mid x^{(i)}; w \right) - \alpha \sum_{i=1}^{n} w_i^2
\]
L1 and L2 Regularization

\[\hat{w} = \arg \max_w \sum_{i=1}^{n} \log P \left(y^{(i)} \mid x^{(i)}; w \right) - \alpha \sum_{i=1}^{n} |w_i| \]

L1 (aka lasso regression)

\[\hat{w} = \arg \max_w \sum_{i=1}^{n} \log P \left(y^{(i)} \mid x^{(i)}; w \right) - \alpha \sum_{i=1}^{n} w_i^2 \]

L2 (aka ridge regression)