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Reminder: Linear Classifiers

▪ Inputs are feature values
▪ Each feature has a weight
▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1
▪ Negative, output -1 Σ
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How to get probabilistic decisions?

▪ Activation:
▪ If very positive: want probability going to 1
▪ If  very negative: want probability going to 0

▪ Sigmoid function



Best w? 

▪ Maximum likelihood estimation:

with:

= Logistic Regression



Multiclass Logistic Regression
▪ Multi-class linear classification

▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction w/highest score wins:

▪ How to make the scores into probabilities? 

original activations softmax activations



Best w? 

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression



This Lecture

▪ Optimization

▪ i.e., how do we solve:



Hill Climbing Diagram



Required Mathematics Background

▪ Linear algebra:
▪ Definition and properties of dot products
▪ Composition of linear transformations is linear

▪ Vector calculus:
▪ How to take partial derivatives (incl. chain rule, vector derivatives)
▪ Solving optimization problems using derivatives (e.g., deriving MLE)
▪ Taylor expansion (used in lecture; non-examinable)

▪ Probability: definition of a probability distribution, random variables, joint and 
marginal distributions, conditional probabilities, Bayes’ rule, normalization



Hill Climbing

▪ Recall from CSPs lecture: simple, general idea
▪ Start wherever
▪ Repeat: move to the best neighboring state
▪ If no neighbors better than current, quit

▪ What’s particularly tricky when hill-climbing for multiclass 
logistic regression?
• Optimization over a continuous space
• Infinitely many neighbors!
• How to do this efficiently?



1-D Optimization

▪ Could evaluate and
▪ Then step in best direction

▪ Or, evaluate derivative:

▪ Tells which direction to step into



2-D Optimization

Source: offconvex.org



Gradient Ascent

▪ Perform update in uphill direction for each coordinate
▪ The steeper the slope (i.e. the higher the derivative) the bigger the step 

for that coordinate

▪ E.g., consider: 

▪ Updates: ▪ Updates in vector notation:

with: = gradient



▪ Idea: 
▪ Start somewhere
▪ Repeat:  Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks



What is the Steepest Direction?

▪ First-Order Taylor Expansion:

▪ Steepest Direction:

▪ Recall: 

▪ Hence, solution: Gradient direction = steepest direction!



Gradient in n dimensions



Optimization Procedure: Gradient Ascent

▪ init 

▪ for iter = 1, 2, …

▪ : learning rate --- tweaking parameter that needs to be 
chosen carefully

▪ How? Try multiple choices
▪ Crude rule of thumb: update changes       about 0.1 – 1 %



Batch Gradient Ascent on the Log Likelihood Objective

▪ init 

▪ for iter = 1, 2, …



Stochastic Gradient Ascent on the Log Likelihood Objective

▪ init 

▪ for iter = 1, 2, …
▪ pick random j

Observation: once gradient on one training example has been 
computed, might as well incorporate before computing next one



Mini-Batch Gradient Ascent on the Log Likelihood Objective

▪ init 

▪ for iter = 1, 2, …
▪ pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch) 
can be computed in parallel, might as well do that instead of a single one



▪ We’ll talk about that once we covered neural networks, which 
are a generalization of logistic regression 

How about computing all the derivatives?



Mid-Semester Survey

▪ Add 2 points of extra credit to your midterm score!



▪ Key ideas:
▪ Second-order optimization methods
▪ Momentum
▪ Adaptive learning rates

▪ Example optimizers:
▪ Newton’s method
▪ Nesterov accelerated gradient 
▪ Adagrad, Adam, RMSProp, etc.

Preview: Other Optimizers



Neural Networks



Multi-class Logistic Regression

▪ = special case of neural network
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(n)

K(n)z(2)
K(2)

z(2)1

z(2)2

z(2)3 z(n)3

z(n)2

z(n)1

z(OUT )
1

z(OUT )
2

z(OUT )
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j )



Importance of Nonlinear Activation Functions

▪ What happens if we add more layers? 
▪ 𝑧2 = 𝑊2 (𝑊1𝑥 + 𝑏1) + 𝑏2
▪ 𝑧2 = 𝑊2 (𝑊1𝑥 + 𝑏1) + 𝑏2 = 𝑊2𝑊1𝑥 + 𝑊2 𝑏1 + 𝑏2 =
𝑊𝑛𝑒𝑤𝑥 + 𝑏𝑛𝑒𝑤

▪ No gain to adding more linear layers!
▪ Idea: add nonlinearities to capture more complex relationships



Deep Neural Network = Also learn the features!
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