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Reminder: Linear Classifiers

Inputs are feature values
Each feature has a weight
Sum is the activation

activationy(z) =) w; - fi(z) = w- f(x)

If the activation is: Wi
T —

= Positive, output +1 fl Wy z > 507 —
2 " .

= Negative, output -1 | W3 >
3




How to get probabilistic decisions?

Activation: 2z =w - f(x)
It  z=w. f(z) Vverypositive: want probability going to 1
If  2=w-f(z) Vverynegative: want probability goingto 0
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Best w?

= Maximum likelihood estimation:

w

max [[(w) = max ZlogP(y(i)\x(i);w)
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= Logistic Regression



Multiclass Logistic Regression

= Multi-class linear classification wy - f biggest
w1
= A weight vector for each class: ”wy
= Score (activation) of a class y: Wy - f(x) w3
w)
= Prediction w/highest score wins: y = arg max wy - f(x) ws - f w3 - f
4 biggest biggest
= How to make the scores into probabilities?
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Best w?

= Maximum likelihood estimation:

max [[(w) = max ZlogP(y(i)\x(i);w)

w

oWy () f(x(D)

with: P(y(i) ‘x(i)- w) — .
) Wy, * 2 (%)
Ey eWy - f(z'*))

= Multi-Class Logistic Regression



This Lecture
= Optimization
= j.e., how do we solve:

w

max [[(w) = max ZlogP(y(i)\x(i);w)



Hill Climbing Diagram
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Required Mathematics Background

Linear algebra:
Definition and properties of dot products
Composition of linear transformations is linear

Vector calculus:
How to take partial derivatives (incl. chain rule, vector derivatives)
Solving optimization problems using derivatives (e.g., deriving MLE)
Taylor expansion (used in lecture; non-examinable)

Probability: definition of a probability distribution, random variables, joint and
marginal distributions, conditional probabilities, Bayes’ rule, normalization



Hill Climbing

= Recall from CSPs lecture: simple, general idea
= Start wherever
= Repeat: move to the best neighboring state
* |f no neighbors better than current, quit

= What’s particularly tricky when hill-climbing for multiclass
logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?



1-D Optimization

glwg) f==========-- 1

UIJQ : U
= Could evaluate g(wg 4+ h) and g(wy — h)

= Then step in best direction

dg(wo) _ . g(wo + h) — g(wo — h)

= Or, evaluate derivative: 0 jum 2%

= Tells which direction to step into



2-D Optimization

Source: offconvex.org



Gradient Ascent

= Perform update in uphill direction for each coordinate
= The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

= E.g., consider:  g(wj, ws)

Updates: = Updates in vector notation:

g
wl%w1+@*a—m(wlaw2) w<—w+ ax Vyg(w)

dg
Wa <— W2 T+ & * 8—m(wla ws) with: v, g(w) = !35‘; (w)] = gradient




Gradient Ascent

= |dea:
= Start somewhere
= Repeat: Take a step in the gradient direction
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Figure source: Mathworks



What is the Steepest Direction?

max w4+ A
A:A2 1 A2<e 9 )

First-Order Taylor Expansion:

Steepest Direction:

N
Recall: max A'a
A:|Al[<Le

Vg
Vgl

Hence, solution: A — .

dg
A) ~ 2 A1+ —LA
g(w+ A) g(w)+aw1 1+ 5 oA

dg
ma w) + —A; + —A
A;A%Jri(ggs g(w) T T

~lal

Gradient direction = steepest direction!




Gradient in n dimensions




Optimization Procedure: Gradient Ascent

= 1nit

» for 1ter = 1, 2, ..

w < w+ a*x Vg(w)

= (x: learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
* Crude rule of thumb: update changes 7y, about 0.1 -1 %



Batch Gradient Ascent on the Log Likelihood Objective

max [l(w) = max ZlogP(y(i)\az(i);w)

w

\ J

g(w)

= Tnit W

» for 1ter = 1, 2, ..

W — W+ o % ZVIogP(y(i)\aﬁ(i);w)




Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [l[(w) = max ZlogP(y(i)\az(i);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

= 1nit W
= for 1ter =1, 2,

= pick random 7

w — w+ a* Vlog Py |z w)




Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)\az(i);w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

= 1nilt U
» for 1ter =1, 2,
= pick random subset of training examples J

W — W+ a* ZVIogP(y(j)\a;(j);w]
jeJ




How about computing all the derivatives?

= We'll talk about that once we covered neural networks, which
are a generalization of logistic regression



Mid-Semester Survey

. Add 2 points of extra credit to your midterm score!
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Preview: Other Optimizers

Key ideas:

. Second-order optimization methods
Momentum

. Adaptive learning rates

Example optimizers:
Newton’s method

Nesterov accelerated gradient
- Adagrad, Adam, RMSProp, etc.



Neural Networks
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Multi-class Logistic Regression

= special case of neural network

f1(x)
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Deep Neural Network = Also learn the features!

f1(x)
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!
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Importance of Nonlinear Activation Functions

. What happens if we add more layers?
- Z, = W, (Wyx + by) + by

- ZZ — Wz(Wlx T bl) T bz — W2W1X + W2b1 + bz —
Wnewx + bnew
. No gain to adding more linear layers!

. |dea: add nonlinearities to capture more complex relationships



Deep Neural Network = Also learn the features!
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