
CS 188: Artificial Intelligence

Neural Networks

Summer 2024: Eve Fleisig & Evgeny Pobachienko
[Slides drawn from Nicholas Tomlin, Dan Klein, and Pieter Abbeel for CS188 at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reminder: Linear Classifiers

▪ Inputs are feature values
▪ Each feature has a weight
▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1
▪ Negative, output -1 Σ

f1

f2

f3

w1

w2

w3
>0?

2-D Optimization

Source: offconvex.org

Neural Networks

Multi-class Logistic Regression

▪ = special case of neural network

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

Deep Neural Network = Also learn the features!

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

Deep Neural Network = Also learn the features!

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(2)

K(2)

z(2)1

z(2)2

z(2)3

z(OUT)
1

z(OUT)
2

z(OUT)
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j)

Deep Neural Network = Also learn the features!

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(n)

K(n)z(2)
K(2)

z(2)1

z(2)2

z(2)3 z(n)3

z(n)2

z(n)1

z(OUT)
1

z(OUT)
2

z(OUT)
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j)

Importance of Nonlinear Activation Functions

▪ What happens if we add more layers?
▪ 𝑧2 = 𝑊2 (𝑊1𝑥 + 𝑏1) + 𝑏2
▪ 𝑧2 = 𝑊2 (𝑊1𝑥 + 𝑏1) + 𝑏2 = 𝑊2𝑊1𝑥 + 𝑊2 𝑏1 + 𝑏2 =
𝑊𝑛𝑒𝑤𝑥 + 𝑏𝑛𝑒𝑤

▪ No gain to adding more linear layers!
▪ Idea: add nonlinearities to capture more complex relationships

Deep Neural Network = Also learn the features!

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(n)

K(n)z(2)
K(2)

z(2)1

z(2)2

z(2)3 z(n)3

z(n)2

z(n)1

z(OUT)
1

z(OUT)
2

z(OUT)
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j) g = nonlinear activation function

Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

▪ Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector ☺

� just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

▪ Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

▪ Practical considerations
▪ Can be seen as learning the features

▪ Large number of neurons
▪ Danger for overfitting
▪ (hence early stopping!)

Universal Function Approximation Theorem*

▪ In words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of
weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Universal Function Approximation Theorem*

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Fun Neural Net Demo Site

▪ Demo-site:
▪ http://playground.tensorflow.org/

http://playground.tensorflow.org/

▪ Derivatives tables:

How about computing all the derivatives?

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

■ But neural net f is never one of those?
■ No problem: CHAIN RULE:

If

Then

� Derivatives can be computed by following well-defined procedures

▪ Automatic differentiation software
▪ e.g., PyTorch, TensorFlow, Jax
▪ Only need to program the function g(x,y,w)
▪ Can automatically compute all derivatives w.r.t. all entries in w
▪ This is typically done by caching info during forward computation pass

of f, and then doing a backward pass = “backpropagation”
▪ Autodiff / Backpropagation can often be done at computational cost

comparable to the forward pass
▪ Need to know this exists
▪ How this is done? -- outside of scope of CS188

Automatic Differentiation

▪ Build a computation graph and apply chain rule: 𝑓 𝑥 = 𝑔 ℎ 𝑥 𝑓! 𝑥 = ℎ! 𝑥 ⋅
𝑔′(ℎ 𝑥)

▪ Example: neural network with quadratic loss: 𝐿 𝑎", 𝑦∗ = $
"
𝑎" − 𝑦∗ " and ReLU activations

𝑔 𝑧 = max(0, 𝑧)
▪ 𝑎" = 𝑔"(𝑤" ∗ 𝑔$ 𝑤$ ∗ 𝑥)

Example: Automatic Differentiation

2

1

3

2

2 2 6 6 8

𝜕𝐿
𝜕𝑦∗

= − 𝑎" − 𝑦∗ = −4

𝜕𝐿
𝜕𝑎"

= 𝑎" − 𝑦∗ = 4

𝜕𝐿
𝜕𝑧"

=
𝜕𝐿
𝜕𝑎"

𝜕𝑎"
𝜕𝑧"

𝜕𝑎"
𝜕𝑧"

=
𝜕
𝜕𝑧"

max 𝑧", 0 = 1 (when 𝑧" > 0)

= 4 ⋅ 1

𝜕𝐿
𝜕𝑤"

=
𝜕𝐿
𝜕𝑧"

𝜕𝑧"
𝜕𝑤"

𝜕𝑧"
𝜕𝑤"

=
𝜕
𝜕𝑤"

𝑤" ⋅ 𝑎# = 𝑎#

= 4 ⋅ 𝑎# = 8

Preventing Overfitting in Neural Networks

▪ Early stopping:

▪ Weight regularization: max
!

∑" log 𝑃 𝑦 " 𝑥 " ; 𝑤 − #
$
∑%𝑤%$

▪ Dropout:

Dropout

“Damage” the network during training to increase redundancy

At each training step, with probability (1-p) set
an activation to zero (i.e., drop it)

When making predictions, don’t apply dropout,
but multiply weights by p (rescaling)

Preventing Overfitting in Neural Networks

▪ Early stopping:

▪ Weight regularization: max
!

∑" log 𝑃 𝑦 " 𝑥 " ; 𝑤 − #
$
∑%𝑤%$

▪ Dropout:

Summary of Key Ideas
▪ Optimize probability of label given input

▪ Continuous optimization
▪ Gradient ascent:

▪ Compute steepest uphill direction = gradient (= just vector of partial derivatives)
▪ Take step in the gradient direction
▪ Repeat (until held-out data accuracy starts to drop = “early stopping”)

▪ Deep neural nets
▪ Last layer = still logistic regression
▪ Now also many more layers before this last layer

▪ = computing the features
▪ à the features are learned rather than hand-designed

▪ Universal function approximation theorem
▪ If neural net is large enough
▪ Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
▪ But remember: need to avoid overfitting / memorizing the training data à early stopping!

▪ Automatic differentiation gives the derivatives efficiently

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

Inductive Learning

Inductive Learning (Science)

▪ Simplest form: learn a function from examples
▪ A target function: g
▪ Examples: input-output pairs (x, g(x))
▪ E.g. x is an email and g(x) is spam / ham
▪ E.g. x is a house and g(x) is its selling price

▪ Problem:
▪ Given a hypothesis space H
▪ Given a training set of examples xi
▪ Find a hypothesis h(x) such that h ~ g

▪ Includes:
▪ Classification (outputs = class labels)
▪ Regression (outputs = real numbers)

▪ How do perceptron and naïve Bayes fit in? (H, h, g, etc.)

Inductive Learning

▪ Curve fitting (regression, function approximation):

▪ Consistency vs. simplicity
▪ Ockham’s razor

Consistency vs. Simplicity

▪ Fundamental tradeoff: bias vs. variance

▪ Usually algorithms prefer consistency by default (why?)

▪ Several ways to operationalize “simplicity”
▪ Reduce the hypothesis space

▪ Assume more: e.g. independence assumptions, as in naïve Bayes
▪ Have fewer, better features / attributes: feature selection
▪ Other structural limitations (decision lists vs trees)

▪ Regularization
▪ Smoothing: cautious use of small counts
▪ Many other generalization parameters (pruning cutoffs today)
▪ Hypothesis space stays big, but harder to get to the outskirts

Decision Trees

Reminder: Features

▪ Features, aka attributes
▪ Sometimes: TYPE=French

▪ Sometimes: fTYPE=French(x) = 1

Decision Trees

▪ Compact representation of a function:
▪ Truth table
▪ Conditional probability table
▪ Regression values

▪ True function
▪ Realizable: in H

Expressiveness of DTs

▪ Can express any function of the features

▪ However, we hope for compact trees

Comparison: Perceptrons

▪ What is the expressiveness of a perceptron over these features?

▪ For a perceptron, a feature’s contribution is either positive or negative
▪ If you want one feature’s effect to depend on another, you have to add a new conjunction feature
▪ E.g. adding “PATRONS=full Ù WAIT = 60” allows a perceptron to model the interaction between the two

atomic features

▪ DTs automatically conjoin features / attributes
▪ Features can have different effects in different branches of the tree!

▪ Difference between modeling relative evidence weighting (NB) and complex evidence interaction (DTs)
▪ Though if the interactions are too complex, may not find the DT greedily

Hypothesis Spaces

▪ How many distinct decision trees with n Boolean attributes?
= number of Boolean functions over n attributes
= number of distinct truth tables with 2n rows
= 2^(2n)
▪ E.g., with 6 Boolean attributes, there are

18,446,744,073,709,551,616 trees

▪ How many trees of depth 1 (decision stumps)?
= number of Boolean functions over 1 attribute
= number of truth tables with 2 rows, times n
= 4n
▪ E.g. with 6 Boolean attributes, there are 24 decision stumps

▪ More expressive hypothesis space:
▪ Increases chance that target function can be expressed (good)
▪ Increases number of hypotheses consistent with training set

(bad, why?)
▪ Means we can get better predictions (lower bias)
▪ But we may get worse predictions (higher variance)

Decision Tree Learning

▪ Aim: find a small tree consistent with the training examples
▪ Idea: (recursively) choose “most significant” attribute as root of (sub)tree

Choosing an Attribute

▪ Idea: a good attribute splits the examples into subsets that are (ideally) “all positive”
or “all negative”

▪ So: we need a measure of how “good” a split is, even if the results aren’t perfectly
separated out

Entropy and Information

▪ Information answers questions
▪ The more uncertain about the answer initially, the more

information in the answer
▪ Scale: bits

▪ Answer to Boolean question with prior <1/2, 1/2>?
▪ Answer to 4-way question with prior <1/4, 1/4, 1/4, 1/4>?
▪ Answer to 4-way question with prior <0, 0, 0, 1>?
▪ Answer to 3-way question with prior <1/2, 1/4, 1/4>?

▪ A probability p is typical of:
▪ A uniform distribution of size 1/p
▪ A code of length log 1/p

Entropy

▪ General answer: if prior is <p1,…,pn>:
▪ Information is the expected code length

▪ Also called the entropy of the distribution
▪ More uniform = higher entropy
▪ More values = higher entropy
▪ More peaked = lower entropy
▪ Rare values almost “don’t count”

1 bit

0 bits

0.5 bit

Information Gain

▪ Back to decision trees!
▪ For each split, compare entropy before and after

▪ Difference is the information gain
▪ Problem: there’s more than one distribution after split!

▪ Solution: use expected entropy, weighted by the number of
examples

Next Step: Recurse

▪ Now we need to keep growing the tree!
▪ Two branches are done (why?)
▪ What to do under “full”?

▪ See what examples are there…

Example: Learned Tree

▪ Decision tree learned from these 12 examples:

▪ Substantially simpler than “true” tree
▪ A more complex hypothesis isn't justified by data

▪ Also: it’s reasonable, but wrong

Example: Miles Per Gallon

40
 E

xa
m

pl
es

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe

Find the First Split

▪ Look at information gain for
each attribute

▪ Note that each attribute is
correlated with the target!

▪ What do we split on?

Result: Decision Stump

Second Level

Final Tree

Reminder: Overfitting

▪ Overfitting:
▪ When you stop modeling the patterns in the training data (which

generalize)
▪ And start modeling the noise (which doesn’t)

▪ We had this before:
▪ Naïve Bayes: needed to smooth
▪ Perceptron: early stopping

MPG Training
Error

The test set error is much worse than the
training set error…

…why?

Consider this
split

Significance of a Split

▪ Starting with:
▪ Three cars with 4 cylinders, from Asia, with medium HP
▪ 2 bad MPG
▪ 1 good MPG

▪ What do we expect from a three-way split?
▪ Maybe each example in its own subset?
▪ Maybe just what we saw in the last slide?

▪ Probably shouldn’t split if the counts are so small they could be due to chance

▪ A chi-squared test can tell us how likely it is that deviations from a perfect split are due to chance*

▪ Each split will have a significance value, pCHANCE

Keeping it General

▪ Pruning:
▪ Build the full decision tree
▪ Begin at the bottom of the tree
▪ Delete splits in which

pCHANCE > MaxPCHANCE
▪ Continue working upward until

there are no more prunable
nodes

▪ Note: some chance nodes may
not get pruned because they
were “redeemed” later

a b y
0 0 0
0 1 1
1 0 1
1 1 0

y = a XOR b

Pruning example

▪ With MaxPCHANCE = 0.1:

Note the improved
test set accuracy

compared with the
unpruned tree

Regularization

▪ MaxPCHANCE is a regularization parameter
▪ Generally, set it using held-out data (as usual)

Small Trees Large Trees

MaxPCHANCE
IncreasingDecreasing

Ac
cu

ra
cy

High Bias High Variance

Held-out / Test
Training

Two Ways of Controlling Overfitting

▪ Limit the hypothesis space
▪ E.g. limit the max depth of trees
▪ Easier to analyze

▪ Regularize the hypothesis selection
▪ E.g. chance cutoff
▪ Disprefer most of the hypotheses unless data is clear
▪ Usually done in practice

Summary of Key Ideas
▪ Optimize probability of label given input

▪ Continuous optimization
▪ Gradient ascent:

▪ Compute steepest uphill direction = gradient (= just vector of partial derivatives)
▪ Take step in the gradient direction
▪ Repeat (until held-out data accuracy starts to drop = “early stopping”)

▪ Deep neural nets
▪ Last layer = still logistic regression
▪ Now also many more layers before this last layer

▪ = computing the features
▪ � the features are learned rather than hand-designed

▪ Universal function approximation theorem
▪ If neural net is large enough
▪ Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
▪ But remember: need to avoid overfitting / memorizing the training data � early stopping!

▪ Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)

How well does it work?

Computer Vision

Object Detection

Manual Feature Design

Features and Generalization

[HoG: Dalal and Triggs,
2005]

Features and Generalization

Imag
e

HoG

Performance

graph credit Matt
Zeiler, Clarifai

Performance

graph credit Matt
Zeiler, Clarifai

Performance

graph credit Matt
Zeiler, Clarifai

AlexNet

Performance

graph credit Matt
Zeiler, Clarifai

AlexNet

Performance

graph credit Matt
Zeiler, Clarifai

AlexNet

MS COCO Image Captioning Challenge

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more

Visual QA Challenge
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

Speech Recognition

graph credit Matt Zeiler, Clarifai

Machine Translation
Google Neural Machine Translation (in production)

Next: More Neural Net Applications!

