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Reminder: Linear Classifiers

Inputs are feature values
Each feature has a weight
Sum is the activation

activationy(z) =) w; - fi(z) = w- f(x)

If the activation is: Wi
T —

= Positive, output +1 fl Wy z > 507 —
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= Negative, output -1 | W3 >
3




2-D Optimization

Source: offconvex.org



Neural Networks
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Multi-class Logistic Regression

= special case of neural network
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Deep Neural Network = Also learn the features!

f1(x)
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!
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Importance of Nonlinear Activation Functions

. What happens if we add more layers?
- Z, = W, (Wyx + by) + by

- ZZ — Wz(Wlx T bl) T bz — W2W1X + W2b1 + bz —
Wnewx + bnew
. No gain to adding more linear layers!

. |dea: add nonlinearities to capture more complex relationships



Deep Neural Network = Also learn the features!
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Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
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[source: MIT 6.5191 introtodeeplearning.com]



Deep Neural Network: Also Learn the Features!

= Training the deep neural network is just like logistic regression:

w

max [[(w) = max ZlogP(y(i)\x(i);w)

just w tends to be a much, much larger vector &

just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease



Neural Networks Properties

= Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

= Practical considerations
= Can be seen as learning the features
= Large number of neurons

= Danger for overfitting
= (hence early stopping!)



Universal Function Approximation Theorem?®

Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then,

for any finite measure yu, standard multilayer feedforward networks can approximate any
function in LP(u) (the space of all functions on R* such that [g« |f(z)[Pdp(z) < oo) arbi-

trarily well, provided that sufficiently many hidden units are available.

Hornik theorem 2: Whenever the activation function is continuous, bounded and non-
constant, then, for arbitrary compact subsets X C R*, standard multilayer feedforward
networks can approximate any continuous function on X arbitrarily well with respect to

uniform distance, provided that sufficiently many hidden units are available.

= |n words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of
weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”

Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”

Leshno and Schocken (1991) “Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”




Universal Function Approximation Theorem?®
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Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we d that finite linear inations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

1. Introduction

A number of diverse application areas are concerned with the representation of
general functions of an n-dimensional real variable, x € R", by finite linear combina-
tions of the form

N
'Zx aa(y]x + 6)), (1)
£

where y; € R" and a;, 6 € R are fixed. ( yT is the transpose of y so that yTx is the inner
product of y and x.) Here the univariate function ¢ depends heavily on the context
of the application. Our major concern is with so-called sigmoidal ¢’s:

. 1 as t— +oo,
o) 0 as t—» —oo.

Such_functions arise naturally in neural network theory as the activation function
of a neural node (or unit as is becoming the preferred term) [L1], [RHM]. The main
result of this paper is a demonstration of the fact that sums of the form (1) are dense
in the space of continuous functions on the unit cube if o is any continuous sigmoidal
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in part by NSF Grant DCR-8619103, ONR Contract N000-86-G-0202 and DOE Grant DE-FG02-
85ER25001.
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ORIGINAL CONTRIBUTION

Approximation Capabilities of Multilayer
Feedforward Networks

KuUrT HORNIK
Technische Universitiit Wien, Vienna, Austria
(Received 30 January 1990: revised and accepied 25 October 1990)

Abstract—We show that standard multilayer feedforward networks with as few as a single hidden layer and
arbitrary bounded and nonconstant activation function are universal approximators with respect o L' ) per-
formance criteria, for arbitrary finite input environment measures i, provided only that sufficiently many hidden
units are available. If the activation function is continuous. bounded and nonconstant. then continuous mappings
can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks
with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to a function and

its derivatives.

Keywords—Multilayer feedforward networks, Activation function, Universal approximation capabilities. Input

environment measure, L/(x) approximation, Uniform

1. INTRODUCTION

The approximation capabilities of neural network ar-
chitectures have recently been investigated by many
authors, including Carroll and Dickinson (1989), Cy-
benko (1989). Funahashi (1989), Gallant and White
(1988). Hecht-Nielsen (1989), Hornik, Stinchcombe,
and White (1989, 1990), Irie and Miyake (1988),
Lapedes and Farber (1988), Stinchcombe and White
(1989, 1990). (This list is by no means complete.)

If we think of the network architecture as a rule
for computing values at / output units given values
at k input units, hence implementing a class of map-
pings from R to R', we can ask how well arbitrary
mappings from R* to R’ can be approximated by the
network, in particular, if as many hidden units as
required for internal representation and computation
may be employed.

How to measure the accuracy of approximation
depends on how we measure closeness between func-
tions, which in turn varies significantly with the spe-
cific problem to be dealt with. In many applications,
it is necessary to have the network perform simul-
taneously well on all input samples taken from some
compact input set X in R*. In this case, closeness is

Requests for reprints should be sent to Kurt Hornik, Institut
fr Statistik und Wahrscheinlichkeitstheorie, Technische Uni-
versitat Wien, Wiedner HauptstraBe 8-10/107. A-1040 Wien. Aus
na

pp Sobolev spaces, Smooth approximation.
measured by the uniform distance between functions
on X. that is,

paalf. 8) = sup [f(x) = 2(x)|
3

In other applications, we think of the inputs as ran-
dom variables and are interested in the average per-
formance where the average is taken with respect to
the input environment measure u, where g(R*) < =,
In this case, closeness is measured by the L#(x) dis-
tances

m_H.n)’“ f(x) — g dulx) | .
Jx

I = p < =, the most popular choice being p = 2,
corresponding to mean square error.

Of course, there are many more ways of measur-
ing closeness of functions. In particular, in many ap-
plications, it is also necessary that the derivatives of
the app: ing function img d by the net-
work closely resemble those of the function to be
approximated, up to some order. This issue was first
taken up in Hornik et al. (1990), who discuss the
sources of need of smooth functional approximation
in more detail. Typical examples arise in robotics
(learning of smooth movements) and signal process-
ing (analysis of chaotic time series); for a recent ap-
plication to problems of nonparametric inference in
statistics and econometrics, see Gallant and White
(1989).

All papers certain approxi ca-
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Fun Neural Net Demo Site

= Demo-site:
= http://playground.tensorflow.org/



http://playground.tensorflow.org/

How about computing all the derivatives?

= Derivatives tables: 4 (=0 441 fog = 1
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[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html



How about computing all the derivatives?

But neural net f is never one of those?
= No problem: CHAIN RULE:

L f(x) = g(h(z))

Then f'(x) =g (h(x))h ()

Derivatives can be computed by following well-defined procedures



Automatic Differentiation

= Automatic differentiation software

= e.g., PyTorch, TensorFlow, Jax

Only need to program the function g(x,y,w)

Can automatically compute all derivatives w.r.t. all entries in w

This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”

Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

= Need to know this exists
= How this is done? -- outside of scope of CS188



Example: Automatic Differentiation

Build a computation graph and apply chain rule: f(x) = g(h(x)) f'(x)=h"(x) -
g'(h(x))

Example: neural network with quadratic loss: L(a,, y*) = %(az — v*)? and Rel.U activations

g(z) = max(0, z) T
_ =% (wya)=a
Ay = go(Wy * g1 (wy * x)) ow, Qw0 T
=
, X oL dL 9z
ow, 0z, 0w, =4-a,=8
oL _ N4
6_612_ a =Yy )=
2 2 6

" - )@ - >Q/ -
oL 0L Oa,
dz, 0da,dz,

- =
da, d

a_zz = Emax(zz, 0)=1 (when z, > 0)




Preventing Overfitting in Neural Networks

training
. Early stopping: 9
5
8 test
© held-out
iterations

. Weight regularization: max };; log P(y(i) | x®); W) — %Zj sz
w

. Dropout:



Dropout

“Damage” the network during training to increase redundancy

At each training step, with probability (1-p) set
an activation to zero (i.e., drop it)

When making predictions, don’t apply dropout,
but multiply weights by p (rescaling)

(a) Standard Neural Net (b) After applying dropout.



Preventing Overfitting in Neural Networks

training
Early stopping: 9
5
S test
© held-out

iterations

Weight regularization: max );; log P(y(i) | xW; W) - %Zj sz
w

(a) Standard Neural Net




Summary of Key ldeas

. Optimize probability of label given input ~ ™ax li(w) = max Zlogp(y(i)‘x(%w)

- Continuous optimization

= Gradient ascent:
= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
*= Take step in the gradient direction
=  Repeat (until held-out data accuracy starts to drop = “early stopping”)

- Deep neural nets
= Last layer = still logistic regression

=  Now also many more layers before this last layer
= =computing the features
= - the features are learned rather than hand-designed
= Universal function approximation theorem
= If neural net is large enough
* Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
=  But remember: need to avoid overfitting / memorizing the training data = early stopping!

= Automatic differentiation gives the derivatives efficiently



Inductive Learning




Inductive Learning (Science)

Simplest form: learn a function from examples
= Atarget function: g
= Examples: input-output pairs (x, g(x))
= E.g.xisan email and g(x) is spam / ham
= E.g.xisahouse and g(x) is its selling price

Problem:
= Given a hypothesis space H
= Given a training set of examples X;
= Find a hypothesis A(x) such that 1 ~ g

Includes:
= Classification (outputs = class labels)
= Regression (outputs = real numbers)

How do perceptron and naive Bayes fit in? (H, &, g, etc.)



Inductive Learning

Curve fitting (regression, function approximation):

J)
\

A/ \ O\ \/
(Z

=X

Consistency vs. simplicity
Ockham’s razor



Consistency vs. Simplicity

- Fundamental tradeoff: bias vs. variance
- Usually algorithms prefer consistency by default (why?)

- Several ways to operationalize “simplicity”

= Reduce the hypothesis space
= Assume more: e.g. independence assumptions, as in naive Bayes
= Have fewer, better features / attributes: feature selection
=  Other structural limitations (decision lists vs trees)
= Regularization
=  Smoothing: cautious use of small counts
= Many other generalization parameters (pruning cutoffs today)
= Hypothesis space stays big, but harder to get to the outskirts



Decision Trees




Features, aka attributes

Reminder: Features

Sometimes: TYPE=French

Sometimes: frype=prench(X) = 1

Example Attributes Target
Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est || WillWait
X T| F | F T | Some| $$9 F T | French| 0-10 T
X5 T| F | F T | Full ) F F | Thai | 30-60 F
X; F| T | F F | Some| $ F F | Burger| 0-10 T
X, T| F | T T | Full $ F F | Thai | 10-30 T
X; T| F | T F | Full | $3% F T | French| >60 F
X5 F| T | F T | Some| $% T T | ltalian| 0-10 T
X F| T | F F | None| $ T F | Burger| 0-10 F
X5 F| F | F T | Some| $3% T T | Thai | 0-10 T
Xy F| T | T F | Full ) T F | Burger| >60 F
Xio T| T | T | T | Full | $33 F T | Italian | 10-30 F
X1 F| F | F F | None| $ F F | Thai | 0-10 F
X9 T| T | T T | Full § F F | Burger| 30-60 T




Decision Trees

- Compact representation of a function:

= Truth table
= Conditional probability table
= Regression values

. True function "
= Realizable:in H

| WaitEstimate? |

>60 30-6
[ Alternate? |
No
| Reservation? || Fri/sat? | | Alternate? |
No No

No



Expressiveness of DTs

- Can express any function of the features

A B AxorB
F
F F F /\
F B B
. F F
F
P(CJA, B)

However, we hope for compact trees



Comparison: Perceptrons

What is the expressiveness of a perceptron over these features?

Attributes Target
Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X T| F | F T | Some| $$% F T | French| 0-10 T
X5 Tl F [ F T | Full $ F F | Thai |30-60 F

Example

For a perceptron, a feature’s contribution is either positive or negative
= |f you want one feature’s effect to depend on another, you have to add a new conjunction feature

= E.g.adding “PATRONS=full A WAIT = 60" allows a perceptron to model the interaction between the two
atomic features

DTs automatically conjoin features / attributes
= Features can have different effects in different branches of the tree!

Difference between modeling relative evidence weighting (NB) and complex evidence interaction (DTs)
= Though if the interactions are too complex, may not find the DT greedily



Hypothesis Spaces

= How many distinct decision trees with n Boolean attributes?
= number of Boolean functions over n attributes
= number of distinct truth tables with 2" rows
=27(2")
= E.g., with 6 Boolean attributes, there are
18,446,744,073,709,551,616 trees

=  How many trees of depth 1 (decision stumps)?
= number of Boolean functions over 1 attribute
= number of truth tables with 2 rows, times n
=4n
= E.g.with 6 Boolean attributes, there are 24 decision stumpsj

= More expressive hypothesis space:
* Increases chance that target function can be expressed (good)

* Increases number of hypotheses consistent with training set
(bad, why?)

* Means we can get better predictions (lower bias)
= But we may get worse predictions (higher variance)



Decision Tree Learning

= Aim: find a small tree consistent with the training examples
= |dea: (recursively) choose “most significant” attribute as root of (sub)tree

function DT L(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all cxamples have the same classification then return the classification
else if attributes is empty then return MODE(examples)
else
best «— CHOOSE- ATTRIBUTE(altributes, examples)
tree <—a new decision tree with root test best
for each value v; of best do
cxamples; < {elements of cxamples with best = wv;}
subtree «— D'T'L(examples;, attributes — best, MODE(examples))
add a branch to tree with label v; and subtree subtree
return tree




Choosing an Attribute

ldea: a good attribute splits the examples into subsets that are (ideally) “all positive”
or “all negative”

000000 000000
000000 000000
Patrons? Type?
None Some Full French ItaIian/\Thai Burger
0000 00 o © 00 oo
o0 0000 [ @ 00 o0

So: we need a measure of how “good” a split is, even if the results aren’t perfectly
separated out



Entropy and Information

- Information answers questions

= The more uncertain about the answer initially, the more
information in the answer

= Scale: bits
= Answer to Boolean question with prior <1/2, 1/2>?
= Answer to 4-way question with prior <1/4, 1/4, 1/4, 1/4>?
= Answer to 4-way question with prior <0, 0, 0, 1>7
= Answer to 3-way question with prior <1/2, 1/4, 1/4>?

- A probability p is typical of:
= A uniform distribution of size 1/p
= A code of length log 1/p



Entropy

- General answer: if prioris <py, ..., p,>:
= Information is the expected code length

1 bit

H((p1,.-.,pn)) = Eploga1/p;

T
= > —p;logop;
=1

- Also called the entropy of the distribution
= More uniform = higher entropy

0 bits

= More values = higher entropy
= More peaked = lower entropy
= Rare values almost “don’t count”

0.5 bit



Information Gain

= Back to decision trees!

= For each split, compare entropy before and after
= Difference is the information gain
= Problem: there’s more than one distribution after split!

000000 000000
000000 000000
Patrons? Type?
None Some Full French Italian Thai Burger
0000 00 o © oo oo @ R —
(=]
o0 0000 o @ 00 o0

= Solution: use expected entropy, weighted by the number of
examples




Next Step: Recurse

: , 000000
Now we need to keep growing the tree! 000000
Two branches are done (why?) Patrons?
What to do under “full”? None Some Ful
See what examples are there... 0000 00
P Y o000
Example Attributes Target
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type | Est || WillWait
X T| F | F T | Some| $3% F T | French| 0-10 T

| FL T | F| F |Some| § | F | F |Burger|0-10] T |

F| T | F T |Some| 3% T T | Italian| 0-10
F| T | F F | None| $ T F | Burger| 0-10
F| F | F T | Some| $% T T | Thai | 0-10

T
F
T

| Fl F |l F| F |Nonel $ | F | F| Thailogo| F |




Example: Learned Tree

- Decision tree learned from these 12 examples:

Patrons?

None ome Full
Hungry?

Yes No
Type?
French Italia Tha Burger
Fri/Sat?

No Yes

- Substantially simpler than “true” tree
= A more complex hypothesis isn't justified by data
- Also: it’'s reasonable, but wrong



40 Examples

Example: Miles Per Gallon

mpg |cylinders displacement horsepower weight acceleration '/modelyear maker

good 4 low low low high 75to78  asia
bad 6 medium medium medium  medium 70to74  america
bad 4 ' medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium  medium 70to74  america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78  america
bad 8 high high high low 70to74 america
good 8 high medium high high 79t083 america
bad 8 high high high low 75to78  america
good 4 low low low low 79t083 america
bad 6 medium medium medium  high 75to78 america
good 4 medium low low low 79to83  america
good 4 low low medium  high 79t083 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe

bad 5 medium medium medium  medium 75to78 europe



Find the First Split

Look at information gain for
each attribute

Note that each attribute is
correlated with the target!

What do we split on?

Information gains using the training set (40 records)

mpg values: bad good

Input

cylinders

displacement

horsepovwer

weight

acceleration

modelyear

maker

Yalue Distribution Info Gain
0.506731

3
4
5
6
g

low [ NG 0223144

medium

high

low |GG 0357605

mecium |
O

high

low | NG 0304015

medium

high
low |GGG 0.0542083

medium [
high |
7oto74 | O 257964
7st07s |

7otoss |
america ||| GGG 0.0437265

asia




Result: Decision Stump

mpg values:

—

bad good

root

22 18
pchance = 0.001

o

cylinders = 3 || cylinders = 4 || cylinders = 5 | cylinders = 6 | cylinders = 8
00 4 17 10 8 0 9 1
Predict bad Predict good Predict bad Predict bad Predict bad




Second Level

harsepower = high

mpg values: bad good
root
22 18
pchance = 0.001
cylinders = 3 | cylinders = 4 cylinders =5 || cylinders =6 || cylinders = 8
00 4 17 10 g8 0 9 1
Predict bad | pchance =0.135 | Predict bad  Predict bad | pchance = 0.085
maker = america || maker = asia | maker = europe || horsepower = low | horsepower = medium
0 10 2 5 2 2 00 0 1 9 0

Predict good

Predict good

Predict bad

Predict bad

Predict good

Predict bad




Final Tree

root
22 18

pchance = 0.001

_

T~

cylinders = 3 || cylinders = 4

0o 4 17

Predict bad | pchance =0.135

1 0 8 0

cylinders =5 | cylinders =6 | cylinders =8

21

Predict bad

— /

Predict bad

) T~

pchance = 0.085

maker = america || maker = asia

0 10 25 2 2

Predict good

maker = europe

horsepower = low

0o

horsepower = medium

01

horsepower = high

9 0

pchance = 0.317 | pchance = 0.717 | Predict bad

Predict good

el N

Predict bad

horsepower = low || horsepower = medium | horsepowver = high

0 4 21 oo

1 0

acceleration = low

01

Predict good pchance = 0.594 Predict bad

/ \

Predict bad

acceleration = low || acceleration = medium

acceleration = hj

acceleration = medium || acceleration 5~

1 0 1 1 " L]
p— I
Predict bad (unexpandable) Predict bad Predict good Predict bad Predict bad
Predict bad

Information gains using the training set (2 records)
mpg values: bad good
Distribution

Input YValue Info Gain

0

cylinders 3
4
5
6
g

displacement low || G ©
medium
high

horsepowver  low 0
medium [ NG
high

weight ow [ o
medium
high

acceleration  low 0
medium [ NN

high

7oro74 [ o

7578

modelyear

79083

maker america 0

asia [

europe




Reminder: Overfitting

. Overfitting:

- When you stop modeling the patterns in the training data (which
generalize)

. And start modeling the noise (which doesn’t)

. We had this before:

Naive Bayes: needed to smooth
Perceptron: early stopping



MPG Training

root

— - Error

pchance = 0.001

T | T

Num Errors Set Size Percent
Wrong
Training Set 1 40 2.50 —
epovver = high
Test Set 74 352 21.02
ict had

horsepower = low || horsepower = medium | horsepovver = high || acceleration = lovy || acceleration = medium || acceleration = high

0

FI

=]

The test set error is much worse than the L 0717
training set error... /.

ad F 79to83

1 ...why?

Predict bad (unexpandable) redict bad Predict good Predict bad Predict bad
redict bad




mpg values: bad good
root
22 18
pchance = 0.001
cylinders = 3 || cylinders = 4 cylinders =5 | cylinders =6 | cylinders =8
00 4 17 1 0 g 0 9 1
Predict bad |pchance = 0135 |Predict bad  Fradicbad-sichancs.s 0025
] _{ Consider this
maker = america || maker = asia maker = europe | horsepovwer 3 igh
0 10 2 5 7 00 S p I |t
Predict good pchance = 0.317 | pchance = 0.717 | Predict bad

horsepower = lowy

0 4

Predict good

/

horsepovver = medium

21

acceleration = high

1 1

pchance = 0.894

horsepovwer = hj eration = loww || acceleration = medium
1 0 01
Predict bad Predict good

pchance = 0.717

——

acceleration = low

1 0

Predict bad

acceleration = medium || acceleration = high

1 1 00

modelyear = 70to74
01

modelyear = 75to78
1 0

modelyear = 79to83
0o

(unexpandable) Predict bad

Predict bad

Predict good

Predict bad

Predict bad




Significance of a Split

Starting with:

= Three cars with 4 cylinders, from Asia, with medium HP o0

= 2 bad MPG @

= 1 good MPG m
What do we expect from a three-way split? @ O

= Maybe each example in its own subset? ®

= Maybe just what we saw in the last slide?

Probably shouldn’t split if the counts are so small they could be due to chance
A chi-squared test can tell us how likely it is that deviations from a perfect split are due to chance*

Each split will have a significance value, pcyance



Keeping it General

Pruning: y=aXOorRb
Build the full decision tree ao bo yo
Begin at the bottom of the tree o 1 1
Delete splits in which 1 ‘1) (1)

Pcrance > MaxPepance ——

Continue working upward until —

there are no more prunable 2 2

nodes pehance = 1 000

Note: some chance nodes may r: 1\

not get pruned because they 1 11

were “redeemed” later "°;"°“§'““ "°“a/"°e=”<"'
b=0| |b=1| |b=0| [b=1
10 01 01 10
Predict 0 Predict 1 Predict 1 Predict 0




Pruning example

" W'th MaXPCHANCE - 0.1:

mpg values: bad good

root

22 18
pchance = 0.001

Note the improved
cylinders = 3 | cylinders = 4 || cylinders = 5 | cylinders = 6 | cylinders = 8 test Set accuracy
00 _ L2 ° 0 - compared with the
Predict bad Predict good Predict bad Predict bad Predict bad Unpruned tree

N/
Num Errors Set Size Percent
Wrong
Training Set 5 40 12.50
Test Set 56 a5 15.91




Regularization

MaxPpyance IS @ regularization parameter
Generally, set it using held-out data (as usual)

—

Training
Held-out / Test

>~
O
(48]
| -
-
Q
&)
< -
Decreasing Increasing
< MaxPcpance >
< >
Small Trees Large Trees

D

High Bias High Variance



Two Ways of Controlling Overfitting

Limit the hypothesis space
. E.g. limit the max depth of trees
. Easier to analyze

Regularize the hypothesis selection

. E.g. chance cutoff

- Disprefer most of the hypotheses unless data is clear
- Usually done in practice



Summary of Key ldeas

= Optimize probability of label given input ~ max ll(w) = max Zlogp(y“”ﬂf(i);w)

= Continuous optimization

= Gradient ascent:
= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
= Take step in the gradient direction
= Repeat (until held-out data accuracy starts to drop = “early stopping”)

= Deep neural nets
= Last layer = still logistic regression

= Now also many more layers before this last layer
= = computing the features
= [l the features are learned rather than hand-designed
= Universal function approximation theorem
= If neural net is large enough
= Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
= But remember: need to avoid overfitting / memorizing the training data [ early stopping!

= Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)



How well does it work?



Computer Vision




Object Detection




Manual Feature Design




Features and Generalization
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Features and Generalization




Performance
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Traditional CV

79%

60%
2
1+
(v

S 40%
W

20%

7%

2010 2011 2012 2013 2014

graph credit Matt
Zeiler, Clarifai



Performance

ImageNet Error Rate 2010-2014

Traditional CV

79%

60%
e
2]
o«

S 40%
uj

20%

7%

2010 2011 2012 2013 2014

graph credit Matt
Zeiler, Clarifai



Performance

ImageNet Error Rate 2010-2014

Traditional CV & Deep Leaming
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Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leaming
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MS COCO Image Captioning Challenge

‘man in black shirt is ‘construction worker in "two young girls are "boy is doing backflip on
playing guitar." orange safety vest is playing with lego toy." wakeboard.
working on road."

‘girlin pink dress is ‘man in blue wetsuit is
jumping in air.' jumps over bar.’ swinging on swing." surfing on wave."

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more



Visual QA Challenge

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

What vegetable is on the
plate?

Neural Net:

Ground Truth: broccoli

What color are the shoes
on the person's feet ?
Neural Net: brown

Ground Truth: brown

How many school busses
are there?

Neural Net: 2

Ground “Fruth: 2

What sport is this?
Neural Net: baseball
Ground Truth: baseball

What is on top of the
refrigerator?

Neural Net: magnets
Ground Truth: cereal

What uniform is she
wearing?

Neural Net: shorts
Ground Truth: girl scout

What is the table
number?

Neural Net: 4
Ground Truth:40

What are people sitting
under in the back?
Neural Net: bench
Ground Truth: tent




Speech Recognition

TIMIT Speech Recognition

® Traditional ® Deep Learning

1998 2000 2002 2004 2006 2008 2010 2012 2014 graph credit Matt Zeiler, Clarifai



Machine Translation
- ___Google Neural Machine Transiauton (in proauccon)

Encoder € || €4 ——— . T | R R ———— TR TR R

Decoder do Ty d1 L o d SRy da



Next: More Neural Net Applications!



