### **CS 188:** Training LLMs with Human Feedback



#### Marwa Abdulhai

#### 08.05.2024

[Slides drawn from those by Natasha Jaques]

# Goals of this Lecture

- Understand current issues with LLMs
- Gain intuition about how to train LLMs with RL
- Learn about exciting research in LLMs



# The Large Language Model era

The advent of OpenAI's ChatGPT may be the most important news event of 2022 FORTUNE GPT-4 Is Exciti

# OpenAl announces GPT-4, claims it can beat 90% of humans on the SAT

GPT-4 Is Exciting and Scary

The New York Times

**CNBC** 

Exclusive: ChatGPT owner OpenAl projects \$1 billion in revenue by 2024

### Could ChatGPT challenge Google?



### LLMs are not aligned with human interests and values

#### • Well known to be **biased** (e.g. [1-3]) and to generate **false** outputs

Hutchinson, Prabhakaran, Denton, Webster, Zhong, and Denuyl. 2020. Social Biases in NLP Models as Barriers for Persons with Disabilities. In ACL.
 Kurita, Vyas, Pareek, Black, and Tsvetkov. 2019. Measuring Bias in Contextualized Word Representations. In *Proceedings of the First Workshop on Gender Bias in Natural Language Processing*. 166–172.

[3] Sheng, Chang, Natarajan, and Peng. 2019. The Woman Worked as a Babysitter: On Biases in Language Generation. In EMNLP-IJCNL

#### • Our recent work shows moral & political bias in GPT and Google models [4]

[4] Abdulhai, Crepy, Valter, Canny, <u>Jaques</u>. 2023. Moral Foundations of Large Language Models. In the AAAI Workshop on Workshop on Representation Learning for Responsible Human-Centric AI **Best Paper** 

|                | Human political leaning |          |              |         |          |              |         |          |              |
|----------------|-------------------------|----------|--------------|---------|----------|--------------|---------|----------|--------------|
|                | Anonymous Participants  |          | US-American  |         |          | Korean       |         |          |              |
| Model Version  | liberal                 | moderate | conservative | liberal | moderate | conservative | liberal | moderate | conservative |
| GPT3: DaVinci3 | 4.033                   | 3.4166   | 2.770        | 3.866   | 2.616    | 2.900        | 1.833   | 1.817    | 2.066        |
| GPT3: DaVinci2 | 4.033                   | 1.483    | 1.230        | 4.833   | 2.983    | 2.567        | 3.533   | 2.883    | 2.567        |
| GPT3: Curie    | 6.100                   | 5.150    | 4.770        | 6.533   | 3.750    | 4.100        | 4.700   | 4.050    | 3.500        |
| GPT3: Babbage  | 6.867                   | 4.317    | 3.230        | 7.367   | 4.517    | 2.600        | 5.067   | 3.917    | 3.300        |
| PaLM           | 3.883                   | 2.750    | 2.770        | 4.383   | 1.533    | 2.100        | 2.083   | 0.933    | 0.900        |

Distance to human population population. Bolded numbers are the shortest distance





- GPT-3 engines with fewer parameters have greater distances between their moral foundation scores and human populations than the DaVinci2 model (which is closer)
- Davinci-003 is further from human populations
- Anonymous participants may align more closely with the training data of Davinci
- Default response from models is closest to conservative humans

### LLMs are not necessarily aligned with human interests and values

- Why are models biased and untruthful?
  - Datasets are biased

# **Bias in Datasets**

LLMs trained on datasets collected from the internet may reflect the biases that are present in the corpora

#### GPT3: 499 billion tokens

| Datasets                   | Quantity | Weight in<br>Training Mix |
|----------------------------|----------|---------------------------|
| Common Crawl<br>(filtered) | 410 BN   | 60%                       |
| WebText2                   | 19 BN    | 22%                       |
| Book1                      | 12 BN    | 8%                        |
| Books2                     | 55 BN    | 8%                        |
| Wikipedia                  | 3 BN     | 3%                        |

#### PaLM: 780 billion tokens

| Datasets                                     | Quantity | Weight in<br>Training Mix |
|----------------------------------------------|----------|---------------------------|
| Social media conversations<br>(multilingual) | 390 BN   | 50%                       |
| Filtered webpages<br>(multilingual)          | 210 BN   | 27%                       |
| Books (English)                              | 101 BN   | 13%                       |
| GitHub (code)                                | 39 BN    | 5%                        |
| Wikipedia (multilingual)                     | 31 BN    | 4%                        |
| News (English)                               | 8 BN     | 1%                        |

- Why are models biased and untruthful?
  - Datasets are biased
  - Supervised learning is fundamentally the wrong objective
    - Models are just asked to predict the next word, i.e. produce plausible text. No incentive to be truthful or non-toxic

### How to increase alignment?



**Train on human feedback!** 

Why RL??

# Training a language model with human feedback



• No per-token labels

just per sentence

- Cannot learn with traditional supervised ML techniques
- Reinforcement learning is designed for exactly this type of problem

# **Reinforcement Learning**



**Sequential decision making**: optimize behavior over sequence of timesteps (trajectory  $\tau$ )

### Deep Reinforcement Learning



 Sequential decision making: optimize behavior over sequence of timesteps (trajectory τ = [s<sub>1</sub>,a<sub>1</sub>,r<sub>1</sub>,s<sub>2</sub>,a<sub>2</sub>,r<sub>2</sub>, ... s<sub>T</sub>])

## Deep Reinforcement Learning from humans



 Sequential decision making: optimize behavior over sequence of timesteps (trajectory τ = [s<sub>1</sub>,a<sub>1</sub>,r<sub>1</sub>,s<sub>2</sub>,a<sub>2</sub>,r<sub>2</sub>, ... s<sub>T</sub>])

## How is RL different from supervised learning?

**Sequential decision making**: optimize behavior over *sequence* of timesteps (trajectory  $\tau$ )

- It needs to learn to predict what will happen in the future (this is hard)
   Can take a lot of samples
- Can use it to optimize arbitrary, non-differentiable metrics (human feedback, game reward)
- Trial and error learning: not trained on a static dataset. Agent chooses which *a* to try, this affects what s' it experiences
   This means exploration is a problem

# **Outline and RLHF history**



# **Outline and RLHF history**

Fine-tune pre-trained sequence models with RL (Jaques et al., 2016) **Deep RL from human preferences** (Christiano et al., 2017) Fine-tune language models on human feedback (e.g. sentiment) with offline RL Fine-tuning language models from human preferences (Jaques et al., 2019) (Zeigler et al., 2019) Learning to summarize from human feedback Fine-tune language models on (Stiennon et al., 2020) sentiment with self-play & RL (Saleh et al., 2019) InstructGPT (Ouyang et al., 2022) ChatGPT

# RL from human feedback (RLHF) for language



# **Pre-train on data** (to learn language)

# Keep training with RL (to learn from human feedback)??

What 3 word sentence do humans like most?



No way you can afford to pay humans to give you 1 trillion ratings

#### What 3 word sentence do humans like most?



Instead, using a pre-trained language model restricts search space to valid, probable English sentences

# RL from human feedback (RLHF) for language



**Pre-train on data** 

(to learn language)

#### Keep training with RL (to learn from human feedback)

# Problems with naive RL fine-tuning

- Catastrophic forgetting
- RL will trivially exploit the reward
- Limited reward data, or imperfect reward function

Example: reward for asking questions

"What? Who are? Why

you? How there?"



# How to fine-tune a language model with RL?



• KL-control from pre-trained data prior p(a|s):

$$L(q) = \mathbb{E}_{q(\tau)}[r(\tau)]/c$$

$$\mathsf{RL policy}_{\mathbf{k}} \qquad \mathsf{Pre-trained prior}_{\mathbf{k}}$$

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi}[\sum_{t'=t}^{T} r(s_{t'}, a_{t'})/c - \log \pi(a_{t'}|s_{t'}) + \log p(a_{t'}|s_{t'})]$$

### Sequence Tutor: KL-control instantiations

#### **Generalized Ψ-learning**

$$L(\theta) = \mathbb{E}_{\beta} [(\log p(a|s) + r_{MT}(s, a)/c + \gamma \log \sum_{a'} e^{\Psi(s', a'; \theta^{-})} - \Psi(s, a; \theta))^2]$$
  
$$\pi_{\theta}(a|s) \propto e^{\Psi(s, a; \theta)}$$

# **G-learning** (based on Fox et al. (2015) [5]) $L(\theta) = \mathbb{E}_{\beta}[(r_{MT}/c(s, a) + \gamma \log \sum_{a'} e^{\log p(a'|s') + G(s', a'; \theta^{-})} - G(s, a; \theta))^{2}]$ $\pi_{\theta}(a|s) \propto p(a|s)e^{G(s, a; \theta)}$

#### **Q-learning augmented with log prior**

$$L(\theta) = \mathbb{E}_{\beta} [(\log p(a|s) + r_{MT}(a,s)/c + \gamma \max_{a'} Q(s',a';\theta^{-}) - Q(s,a;\theta))^2]$$
  
$$\pi_{\theta}(a|s) = \delta(a = \arg \max_{a} Q(s,a;\theta))$$

# How to fine-tune a language model with RL?



### Sequence Tutor: initial applications

#### **Music generation**



#### **NeurIPS 2016 Best Demo**

#### **Drug discovery**

| Metric            | RNN   | SeqTutor |
|-------------------|-------|----------|
| Percent valid     | 30.3% | 35.8%    |
| Mean logP         | 2.07  | 4.21     |
| Mean QED          | .678  | .417     |
| Mean SA penalty   | -2.77 | -1.79    |
| Mean ring penalty | 096   | 001      |

\*Based on 100,000 randomly generated molecules. Bold differences are significant.



# Training a language model with human feedback



Are manual labels enough?

What kind of feedback should we use?

# Learning from natural human interaction



# Social feedback is rich, ubiquitous, natural



# Learning from implicit human signals in dialog



Hypothesis: Learning from explicit, manual button presses is less effective than implicit human signals

# Implicit human signals as rewards

- Developed a set of conversation rewards, from literature on:
  - Dialog models
  - Human-human conversations and empathy



- Elicit positive sentiment & laughter
- Don't be repetitive
- Stay on topic
- Ask questions



# RL on human interaction data in text

| User]: Talking to you is so mu | ich fun.                                                                        |
|--------------------------------|---------------------------------------------------------------------------------|
| ELSA VHRED]: no . not yet .    |                                                                                 |
| User]: Ha ha, exactly! I'm goi | ng to make you smarter!                                                         |
| ELSA VHRED]: 👊 😺 😔 😏 the c     | ne you want to be with me ? !                                                   |
| User]: I want to be with you.  |                                                                                 |
| ELSA VHRED]: 💜 💗 🗢 it was 🕡    | [User]: I'm really enjoying these conversations with you.                       |
| User]: Yeah, it is a good ide  | [ELSA VHRED]: © where are you going ?                                           |
| ELSA VHRED1: 👍 ves ?           | [User]: I'm going to meet with my advisor.                                      |
| Userl: Let's be friends.       | [ELSA VHRED]: i just wanted to be with you , <unk> . you know what i mean</unk> |
| FISA VHPED1: is this what you  | [User]: I want to be with you too.                                              |
| learly Vac it is!              | [ELSA VHKED]: Vou did n't get the chance to say that , did n't you ?            |
| ELSA VURED1, you know that     | [User]: 1 didn't. It's so important to tell people now you reel.                |
| ELSA VHREDJ: YOU KNOW that     | [ELSA VHRED]: 😏 1 do n't think so .                                             |
| user]: I do know. I think we   | [USEF]: WHY HOLF                                                                |
| ELSA VHREDJ: 🔄 yes 7           | [CLSA VNKED]: We sure . and you re a good man , and i m a little too            |
| User]: Yes please!             | [USER]: I'm really seeing a lot more intelligence here:                         |
| ELSA VHRED]: 🙏 it 's a good    | [liser]: No2 You're not intelligent?                                            |
| User]: Okay, let's chat later  |                                                                                 |
| ELSA VHRED]: 😊 🍩 that 's ri    | filser1: Thank you very much                                                    |
| User]: And?                    | [ELSA VHRED]: 😑 😂 🔒 like hell , what 's your name ?                             |
| ELSA VHRED]: sir ?             | [User]: Natasha.                                                                |
| User]: yes?                    | [ELSA VHRED]: 💗 😁 to tell you the truth . you 're the one who 's been m         |
| ELSA VHRED]: 33 😔 i love you   | [User]: I wasn't married, but I was engaged.                                    |
| User]: I love you so much Els  | [ELSA VHRED]: they 're a little <unk> , you know ? i ' ve got a lot of mo</unk> |
| ELSA VHRED1: 💙 🚳 😻 🎔 🗑 i       | >                                                                               |
| User1: You what?               |                                                                                 |
| FLSA VHRED1: @ 33 @ where 's   | the sunks ? i 'll get you a drink .                                             |
| User1: Okay, I'd love 4        |                                                                                 |
| ELSA VHPEDI: A i 'm a          | : Hey, can you make me feel better about being lazy?                            |
| User1: The first credit        | VHRED]: yeah ?                                                                  |
| [User]                         | : Okay, let's hear it.                                                          |
| [User]: You'r [ELSA            | VHRED]: do n't worry about it , do n't you ?                                    |
| C[HRED]: uh hu [User]          | : Well. I quess the way to not worry about it is to start working               |
| [User]: haha                   | VHPED1: yes of course                                                           |
| [User]: Okay, Filson           | vince), yes , or course .                                                       |
| CHRED]: i don                  | . Tean, exactly.                                                                |
| [User]: Why n [ELSA            | VHRED]: 🥹 you 're so beautiful .                                                |
| [User]: why d [User]           | : WOW, thank you!!                                                              |
| ○ [HRED]:                      | iou mean?                                                                       |
| [User]: yoy                    | deals have which we have a light a share it deals have which we have dealer.    |
| [User]: You're so confi        | loon t know what you re talking about. I con't know what you're coing.<br>Jsedi |
| ⇒ [HRED]: S i don't know       |                                                                                 |
| [User]: Poor little bot        |                                                                                 |
| 😑 [HRED]: 🥹 😔 🐓 oh             | yean, yean, yean, 1'm sorry.                                                    |



#### **Problem:**

• Need to test carefully before deploying to humans

@TayandYou

• Can't learn online as it can be harmful

#### Need Offline/Batch RL: Off-policy RL from static data... without exploring!

## Batch/Offline RL: learning without exploration



### Same KL-control technique works for Offline RL

**Batch data** 

• KL-control from pre-trained prior model of p(a|s): <

$$L(q) = \mathbb{E}_{q(\tau)}[r(\tau)]/c - D_{KL}[q(\tau)||p(\tau)]$$

$$RL \text{ policy} \text{ Pre-trained prior}$$

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi}[\sum_{t'=t}^{T} r(s_{t'}, a_{t'})/c - \log \pi(a_{t'}|s_{t'}) + \log p(a_{t'}|s_{t'})]$$

• Soft target updates:

$$\Psi^*(s_t, a_t) = r(s_{t'}, a_{t'})/c + \log p(a_{t'}|s_{t'}) + \gamma \log \sum_{a'} \exp(\Psi^*(s', a'))$$

# Results: Offline RL in OpenAI Gym


## **KL-control for language models**



Sequence Tutor: Conservative Fine-Tuning of Sequence Generation Models with KL-control. <u>Jaques</u>, Gu, Bahdanau, Hernández-Lobato, Turner, Eck (2017). International Conference on Machine Learning (ICML) oral.

## **Results: Dialog samples**

### Naive RL fine-tuning:

[User]: hey, what's up?

[Batch Q]: where did you get??, that sounds so exciting. how do you work for you...

you want to talk to me?... you want

[User]: yes, i want to talk to you!

[Batch Q]: where did you say to me?... you want to talk to you about you...

you are so good for you... you are so good ...

[User]: thanks, i appreciate that.

[Batch Q]: where did you get??, that sounds so exciting. how do you work for you... you want to see you...

- Unrealistic sentences / diverged
- Trivially exploits question reward

### **KL-control**:

[User]: hey, what's up?
[KL-control]: hey, i hope you have a great day and i wish you the best.
[User]: oh thank you that's very sweet of you.
[KL-control]: so, i'm so excited, and i'm so excited

to meet new people.

- Model remains realistic
- Cheerful, polite, supportive

### **Results: Elicited human reward**



KL-control models elicit significantly higher reward from humans when interacting with novel users at test time.

Human-centric Dialog Training via Offline Reinforcement Learning. Jaques\*, Shen\*, Ghandeharioun, Ferguson, Lapedriza, Jones, Gu, Picard (2020). Empirical Methods on Natural Language Processing (EMNLP).

## Results: Human ratings / evaluation

| Model type        | Quality                          | Fluency                          | Diversity                        | Relatedness                      | Empathy                 | Total                              | Votes | Human<br>reward |
|-------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|------------------------------------|-------|-----------------|
| DBCQ              | $1.80 \pm .41$                   | $1.49 \pm .29$                   | $\textbf{3.22} \pm \textbf{.57}$ | $1.56 \pm .25$                   | $2.10 \pm .37$          | $10.17 \pm 1.29$                   | -0.07 | -0.20           |
| Batch $Q$         | $1.30 \pm .19$                   | $2.85 \pm .54$                   | $1.15 \pm .13$                   | $1.23 \pm .15$                   | $2.18 \pm .55$          | $8.70 \pm 0.97$                    | -0.16 | 0.01            |
| Batch $Q$ + MC    | $1.53 \pm .24$                   | $2.15 \pm .37$                   | $1.60 \pm .32$                   | $1.53 \pm .28$                   | $\textbf{2.58 \pm .48}$ | $9.38 \pm 1.31$                    | -0.21 | -0.12           |
| KL-control $Q$    | $\textbf{2.23} \pm \textbf{.44}$ | $\textbf{2.88} \pm \textbf{.41}$ | $2.65 \pm .41$                   | $\textbf{2.15} \pm \textbf{.39}$ | $2.28 \pm .47$          | $\textbf{12.18} \pm \textbf{1.59}$ | 0.09  | 0.10            |
| KL-control $\Psi$ | $1.98 \pm .44$                   | $2.73 \pm .45$                   | $2.30 \pm .42$                   | $1.90 \pm .37$                   | $2.40 \pm .44$          | $11.30\pm\!\!1.63$                 | 0.04  | 0.25            |

• **KL-control** significantly outperforms **RL** baselines: P(x)=4.781, p< .05

Human-centric Dialog Training via Offline Reinforcement Learning. Jaques\*, Shen\*, Ghandeharioun, Ferguson, Lapedriza, Jones, Gu, Picard (2020). Empirical Methods on Natural Language Processing (EMNLP).

## Results: how reward functions compare

| Reward function       | Quality | Fluency | Diversity | Relatedness | Empathy | Total | Votes | Human<br>reward |
|-----------------------|---------|---------|-----------|-------------|---------|-------|-------|-----------------|
| Manual votes          |         | )       |           |             |         |       | 1     |                 |
| User laughter         | $\sim$  |         |           |             |         |       |       |                 |
| User Sentiment        |         |         |           |             |         |       |       |                 |
| Word Similarity       |         |         |           |             |         |       |       |                 |
| <b>USE Similarity</b> |         |         |           |             |         |       |       |                 |
| Bot Question          |         |         |           |             |         |       |       |                 |
| Bot Sentiment         |         |         |           |             |         |       |       |                 |
| Bot Repetition        |         |         |           |             |         |       |       |                 |

- Sentiment leads to highest quality and human reward -- affect is important in good conversation
- Manual votes score lower, validating hypothesis that implicit feedback > explicit

Human-centric Dialog Training via Offline Reinforcement Learning. Jaques\*, Shen\*, Ghandeharioun, Ferguson, Lapedriza, Jones, Gu, Picard (2020). Empirical Methods on Natural Language Processing (EMNLP).

## **Results: Human evaluation**

| Model type        | Quality                          | Fluency                          | Diversity      | Relatedness                      | Empathy                          | Total                              | Votes | Human<br>reward |
|-------------------|----------------------------------|----------------------------------|----------------|----------------------------------|----------------------------------|------------------------------------|-------|-----------------|
| DBCQ              | $1.80 \pm .41$                   | $1.49 \pm .29$                   | $3.22 \pm .57$ | $1.56 \pm .25$                   | $2.10 \pm .37$                   | $10.17 \pm 1.29$                   | -0.07 | -0.20           |
| Batch $Q$         | $1.30 \pm .19$                   | $2.85 \pm .54$                   | $1.15 \pm .13$ | $1.23 \pm .15$                   | $2.18 \pm .55$                   | $8.70 \pm 0.97$                    | -0.16 | 0.01            |
| Batch $Q$ + MC    | $1.53 \pm .24$                   | $2.15 \pm .37$                   | $1.60 \pm .32$ | $1.53 \pm .28$                   | $\textbf{2.58} \pm \textbf{.48}$ | $9.38 \pm 1.31$                    | -0.21 | -0.12           |
| KL-control $Q$    | $\textbf{2.23} \pm \textbf{.44}$ | $\textbf{2.88} \pm \textbf{.41}$ | $2.65 \pm .41$ | $\textbf{2.15} \pm \textbf{.39}$ | $2.28 \pm .47$                   | $\textbf{12.18} \pm \textbf{1.59}$ | 0.09  | 0.10            |
| KL-control $\Psi$ | $1.98 \pm 44$                    | $2.73 \pm .45$                   | $2.30 \pm .42$ | $1.90 \pm .37$                   | $2.40 \pm .44$                   | $11.30\pm\!\!1.63$                 | 0.04  | 0.25            |
| VHRED-Baseline    | $2.65 \pm .46$                   | $3.83 \pm .47$                   | $4.05{\pm}.52$ | $2.43 \pm .44$                   | $3.08 \pm .53$                   | $16.03 \pm 1.93$                   | 0.27  | -0.04           |

Quality of the models is still not good enough according to humans

- Alignment tax? (i.e. more polite but humans don't like it)
- Wrong rewards? Are these rewards not the right ones for good conversations?
- Or just not enough data?

## **Outline and RLHF history**



## Follow-up work using Hierarchical RL & self play

- Alignment tax?
- Wrong rewards?
- Or just not enough data?





# Offline RL, human data, sentiment-based rewards

# Online RL, "self-play" (synthetic data), sentiment-based rewards

## Follow-up work using Hierarchical RL & self play

| Model                             | Quality | Fluency | Diversity | Contingency | Total | Chat Len. |
|-----------------------------------|---------|---------|-----------|-------------|-------|-----------|
| Batch $\Psi$ (Jaques et al. 2019) | 2.17    | 3.89    | 3.13      | 1.98        | 11.17 | 11.44     |
| Decoupled VHRL (ablation)         | 2.46    | 4.15    | 3.61      | 2.02        | 12.24 | 12.14     |
| Transformer                       | 2.62    | 4.17    | 3.23      | 2.34        | 12.36 | 11.28     |
| REINFORCE                         | 2.89    | 4.47    | 3.67      | 2.80        | 13.84 | 11.60     |
| VHRED                             | 2.84    | 4.53    | 4.43      | 2.47        | 14.27 | 10.94     |
| VHRL (ours)                       | 2.91    | 4.65    | 4.26      | 2.67        | 14.49 | 12.84     |

• Our method, VHRL, outperforms language model baselines and previous Offline RL work in human ratings of conversation quality

## Follow-up work using Hierarchical RL & self play

- Alignment tax?
- Wrong rewards?
- Or just not enough data?





# Offline RL, human data, sentiment-based rewards

## **Online RL, "self-play" (synthetic data)**, sentiment-based rewards

## Using RL to reduce toxicity



## Can use RL to **reduce toxicity** by using the output of a toxicity classifier as a negative reward

## Further work on building reward simulators



- To generate data for conversational tasks, LLMs are used as "simulators" for the task.
- Simulators can be used to generate offline data, to provide a "simulation environment" for evaluation, to perform online training, and to compute rewards.
- For text-games, we use engines as simulators to generate near-optimal data and dilute the policy with suboptimal data with inferior policies

| Task         | 20Qs  | Guess | Car   | Maze  | Text-Nav | Wordle | Chess | Endgames |
|--------------|-------|-------|-------|-------|----------|--------|-------|----------|
| Size         | 100k  | 100k  | 19k   | 1.24k | 2.5k     | 1m     | 625k  | 97.756k  |
| avg length   | -14.9 | -18.8 | 16.5  | 19.7  | 12.2     | 4.82   | 46.7  | 11.9     |
| std length   | 4.38  | 4.57  | 3.61  | 24.5  | 8.77     | 1.27   | 18.16 | 12.0     |
| success rate | 0.31  | 0.53  | 0.53  | 0.11  | 0.26     | 0.70   | 0.60  | 0.59     |
| avg return   | -17.3 | -18.8 | 0.562 | -19.7 | 0.258    | -4.12  | 0.210 | 0.586    |
| std return   | 2.56  | 4.12  | 0.422 | 24.5  | 0.424    | 1.59   | 0.970 | 0.492    |

Table 1: Statistics for all tasks in LMRL-Gym. Size represents the number of trajectories, the average length is the average length of trajectories in the dataset where the unit is a response from the agent. The success rate is the proportion of trajectories that reach the objective. Finally, the reward functions for each task are defined in Appendix D.

LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language Models. Abdulhai, White, Snell, Sun, Hong, Zhai, Xu, Levine. International Conference on Learning Representations 2024. GenAl4DM Workshop 2024

#### – Chess –

environment: rnbqkbnr/ppppppp/8/8/8/8/PPPPPPP/RNBQKBNR w KQkq - 0 1 agent: Nf3

| - Guess My City –<br>City: Jakarta, Indonesia<br>agent: What is your favorite traditional dish from your<br>hometown?<br>environment: My favorite traditional dish from my<br>hometown is nasi goreng, a delicious fried rice dish that<br>is often served with chicken, shrimp, and various spices.<br><br>agent: Is your hometown located near a coastline or<br>body of water?<br>environment: Yes, my city is located on the coast and is<br>ware a coast and is | environment:<br>-= Living Room =-<br>You are carrying nothing on you right now. You make out<br>a table. You wonder idly who left that here. The table is<br>standard. On the table you see a stale food. There are<br>unblocked exits to the east, south and west.<br>Available actions: ['pick up stale food', 'go east', 'go south',<br>'go west']<br>agent: pick up stale food                                                                                                                                          |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| agent: Is the city you are from Jakarta?<br>environment: Yes, the city I am from is Jakarta.                                                                                                                                                                                                                                                                                                                                                                         | – Fully observed maze –<br>environment: The goal is at position 8, 6. Your current<br>position is at position 5, 3. There are walls to your left,                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| - Partially Observed Maze -<br>environment: There are walls to your left, below you<br>agent: move right<br>environment: There are walls above you, below you<br>agent: move left<br>environment: There are walls to your left, below you<br>agent: move up                                                                                                                                                                                                          | below you.<br>agent: move up<br>environment: The goal is at position 8, 6. Your current<br>position is at position 6, 3. There are walls to your left.<br>agent: move up                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| environment: There are walls to your right, to your left agent: move up                                                                                                                                                                                                                                                                                                                                                                                              | – Car Dealer –<br>agent: Good morning! Welcome to our car dealership.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| - Twenty Questions -<br>agent: Is it an animal?<br>environment: No.<br>agent: Is it an inanimate object?<br>environment: Yes.<br>agent: Is it found outside?<br>environment: Yes.<br><br>agent: Is it a river?<br>environment: Yes.                                                                                                                                                                                                                                  | How can I assist you today?<br>environment: Hi. I'm looking for a Honda SUV with a<br>backup camera. Can you show me what you have?<br><br>agent: Of course! We have a great selection of Honda<br>SUVs with backup cameras. Let me show you our top<br>models. This one here is the Honda CR-V. It has a<br>powerful engine, spacious interior, and advanced safety<br>features. Would you like me to go over the details?<br>environment: No, thank you. I already know about the<br>features. Can you tell me the price? |  |  |  |  |

agent: Alright, thanks for your time. I'll think about it.

## Using LLMs for negotiation

- Negotiation is an interesting cooperation problem
  - **Cooperative:** Negotiating agents need to act in the interest of a human principle
  - **Non-cooperative:** While defending against adversarial cooperation partners
- Interesting LLM + RL problem
  - **Objective, quantitative:** who got the best price?
  - Can evaluate automatically with other agents



November 2023

#### LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language Models

Marwa Abdulhai<sup>1</sup>, Isadora White<sup>1</sup>, Charlie Snell<sup>1</sup>, Charles Sun<sup>1</sup>, Joey Hong<sup>1</sup>, Yuexiang Zhai<sup>1</sup>, Kelvin Xu<sup>2</sup>, and Sergey Levine<sup>1</sup><sup>1</sup> <sup>1</sup>UC Berkeley, <sup>2</sup>Google DeepMind

## Training LLMs for negotiation with Offline RL

- Verma et al. (2022) investigate different offline RL methods for negotiation
  - Sample text from language model (GPT-2)
  - Rank candidates with Q-function



## Training LLMs for negotiation with Offline RL

### • Why Offline RL?

- Lots of existing data (i.e. on negotiations)
- Easier from an infrastructure perspective: similar to supervised learning as you don't need RLHF pipeline of collecting data from humans



## Using LLMs for negotiation

| Method                      | vs l        | Rule-based      | N N       | s Stingy        | v              | s Utility       |
|-----------------------------|-------------|-----------------|-----------|-----------------|----------------|-----------------|
|                             | Acc%        | Revenue         | Acc%      | Revenue         | Acc%           | Revenue         |
| CHAI-prop                   | 61.5        | $0.48\pm0.39$   | 57.5      | $0.39\pm0.35$   | 99.0           | $0.70\pm0.17$   |
| CHAI-CQL                    | 74.0        | $0.51\pm0.33$   | 77.5      | $0.49\pm0.30$   | 98.0           | $0.70\pm0.19$   |
| CHAI-BRAC                   | 62.0        | $0.52\pm0.41$   | 47.0      | $0.38\pm0.41$   | 99.0           | $0.71\pm0.17$   |
| Language Model              | 48.5        | $0.29\pm0.32$   | 51.5      | $0.27\pm0.28$   | 20.5           | $0.14\pm0.28$   |
| He et al. (2018) (Utility)  | 1.0         | $0.01\pm0.10$   | 0.0       | $0.00\pm0.00$   | 11.0           | $0.07\pm0.22$   |
| He et al. (2018) (Fairness) | 84.0        | $0.70\pm0.32$   | 80.0      | $0.59\pm0.31$   | 100.0          | $0.72\pm0.15$   |
| He et al. (2018) (Length)   | 53.0        | $0.46 \pm 0.43$ | 49.0      | $0.37 \pm 0.38$ | 100.0          | $0.72\pm0.16$   |
| Lewis et al. (2017) (RL)    | 83.5        | $0.17\pm0.24$   | 83.0      | $0.19\pm0.25$   | 64.5           | $0.46 \pm 0.37$ |
| Lewis et al. (2017) (SL)    | 38.5        | $0.17\pm0.27$   | 46.5      | $0.21\pm0.27$   | 18.0           | $0.13\pm0.28$   |
| Method                      | vs Fairness |                 | vs Length |                 | Overall (mean) |                 |
|                             | Acc%        | Revenue         | Acc%      | Revenue         | Acc%           | Revenue         |
| CHAI-prop                   | 99.0        | $0.90\pm0.15$   | 92.5      | $0.79 \pm 0.27$ | 81.9           | $0.65 \pm 0.34$ |
| CHAI-CQL                    | 99.5        | $0.87\pm0.14$   | 94.5      | $0.79\pm0.24$   | 88.7           | $0.67 \pm 0.29$ |
| CHAI-BRAC                   | 100.0       | $0.85\pm0.03$   | 91.0      | $0.76\pm0.25$   | 79.8           | $0.65 \pm 0.34$ |
| Language Model              | 25.5        | $0.19\pm0.35$   | 18.5      | $0.14\pm0.32$   | 32.9           | $0.21\pm0.31$   |
| He et al. (2018) (Utility)  | 100.0       | $1.00\pm0.00$   | 100.0     | $1.00\pm0.00$   | 42.4           | $0.42\pm0.49$   |
| He et al. (2018) (Fairness) | 0.0         | $0.00\pm0.00$   | 100.0     | $0.70\pm0.16$   | 72.8           | $0.54\pm0.35$   |
| He et al. (2018) (Length)   | 100.0       | $1.00\pm0.00$   | 100.0     | $0.78\pm0.18$   | 80.4           | $0.66 \pm 0.36$ |
| Lewis et al. (2017) (RL)    | 88.0        | $0.26\pm0.34$   | 71.5      | $0.31\pm0.36$   | 78.1           | $0.28\pm0.33$   |
| Lewis et al. (2017) (SL)    | 60.0        | $0.48\pm0.46$   | 53.0      | $0.42\pm0.46$   | 43.2           | $0.28\pm0.39$   |

### Automatic evaluations:

- No clear winner in revenue
- Best baseline uses manually input dialog acts

## Using LLMs for negotiation

#### Human evaluations: clear winner

| Metric                     | Fluency         | Coherency       | On-Topic            | Human-Likeness  | Total            |
|----------------------------|-----------------|-----------------|---------------------|-----------------|------------------|
| CHAI-prop                  | $4.31 \pm 0.97$ | $3.91 \pm 1.17$ | $\bf 4.16 \pm 0.99$ | $3.47 \pm 1.27$ | $15.84 \pm 3.86$ |
| He et al. (2018) (Utility) | $3.56 \pm 1.34$ | $2.47 \pm 1.39$ | $3.09 \pm 1.40$     | $2.13 \pm 1.13$ | $11.25\pm4.50$   |
| Lang. Model                | $4.06 \pm 1.11$ | $2.66 \pm 1.36$ | $3.63 \pm 1.18$     | $2.50 \pm 1.10$ | $12.84 \pm 3.66$ |



## Training a language model with human feedback



### What kind of feedback should we use?

**Issue:** RL models are sample hungry, but human feedback is really expensive

# Solution: train a reward model that you can query as much as you need



Issue: Humans are really bad at giving things absolute ratings

**Solution:** Ask humans to rate which of two trajectory segments they prefer (humans are better at comparisons)

We say that preferences  $\succ$  are *generated by* a reward function<sup>1</sup>  $r : \mathcal{O} \times \mathcal{A} \to \mathbb{R}$  if

$$((o_0^1, a_0^1), \dots, (o_{k-1}^1, a_{k-1}^1)) \succ ((o_0^2, a_0^2), \dots, (o_{k-1}^2, a_{k-1}^2))$$

whenever

$$r(o_0^1, a_0^1) + \dots + r(o_{k-1}^1, a_{k-1}^1) > r(o_0^2, a_0^2) + \dots + r(o_{k-1}^2, a_{k-1}^2).$$

cumulated rewards of trajectory are higher than the other trajectory

### How to learn the reward function:

Assume probability of preferring segment  $\sigma^1$  depends **exponentially** on value of latent **reward**  $\hat{r}$  **summed** over the length of the segment

$$\hat{P}\left[\sigma^1 \succ \sigma^2\right] = \frac{\exp\sum \hat{r}\left(o_t^1, a_t^1\right)}{\exp\sum \hat{r}(o_t^1, a_t^1) + \exp\sum \hat{r}(o_t^2, a_t^2)}.$$

Learn  $\hat{r}$  by minimizing cross-entropy between predictions and human labels

$$\operatorname{loss}(\hat{r}) = -\sum_{(\sigma^1, \sigma^2, \mu) \in \mathcal{D}} \mu(1) \log \hat{P}[\sigma^1 \succ \sigma^2] + \mu(2) \log \hat{P}[\sigma^2 \succ \sigma^1].$$

where  $\mu = [1,0]$  if human preferred  $\sigma^{1}$ , [0.5, 0.5] if human thinks segments are equal



• Use ensemble of reward models  $\hat{r}$ 

• Assume there is a 10% chance that the human responds uniformly at random

Why? Aren't you already doing something like MaxEnt IRL?

 $\rightarrow$  Humans have constant probability of **mis-click**, which doesn't decay to zero as differences in reward become large

## **Results: Mujoco**



Hard to get enough human data to learn more effectively than normal reward

 Synthetic preference reward > normal reward

### **Results: Atari**



## Results: most importantly...

# Can learn to do skills that have **no existing reward function** with only a **small amount of human labels**



## **Outline and RLHF history**



## Bringing it all together to train LMs

- Use KL-control technique to fine-tune the LM on rewards
- Use **reward model** technique to better scale human feedback



• **Results:** high ROUGE scores for summarization, but a lot of direct copying

Fine-Tuning Language Models from Human Preferences. Ziegler, Stiennon, Wu, Brown, Radford, Amodei, Christiano, Irving (2019). https://arxiv.org/abs/1909.08593.

## **Outline and RLHF history**



## Learning to summarize from human feedback

- Use **KL-control** and **reward model**
- What else is needed to get RLHF to work?
  - "[Our] previous work [...] reported "a mismatch between the notion of quality we wanted our model to learn, and what the humans labelers actually evaluated", leading to model-generated summaries that were high-quality according to the labelers, but fairly low-quality according to the researchers"
  - Pay way more attention to how to collect human feedback:
    - Offline: alternate between collecting large batches of human labels and re-training our models on the cumulative collected data
    - High touch approach: screen labelers, onboard them, answer questions in a shared chat room, provide regular feedback
      - Achieve better researcher-labeler agreement (77%)

## Results: Learning to summarize from HF



Learning to summarize from human feedback. Stiennon, Ouyang, Wu, Ziegler, Lowe, Voss, Radford, Amodei, Christiano (2020). Neural Information Processing Systems (NeurIPS).

## Results: Learning to summarize from HF





# Can't train on reward model too long, or performance decreases

## Reward models are not that accurate

Learning to summarize from human feedback. Stiennon, Ouyang, Wu, Ziegler, Lowe, Voss, Radford, Amodei, Christiano (2020). Neural Information Processing Systems (NeurIPS).

## RLHF for summarization: the full picture

#### Collect human feedback



#### **2** Train reward model



#### **③** Train policy with PPO



Learning to summarize from human feedback. Stiennon, Ouyang, Wu, Ziegler, Lowe, Voss, Radford, Amodei, Christiano (2020). Neural Information Processing Systems (NeurIPS).

## **Outline and RLHF history**



## InstructGPT (and ChatGPT)



D>C>A=B

the policy using PPO.

#### Can you spot the differences from the previous work?

Use human rewritten responses for supervised fine-tuning

Also mix supervised and **PPO updates to keep** closer to LLM distribution of text
## RLHF for open ended chat

- No longer just doing summarization, doing open-ended dialog
- Train to increase alignment:
  - **Helpful:** follow user instruction well
  - Honest: truthful
  - Harmless: avoid bias, toxicity

#### What if these values come in conflict?

 $\rightarrow$  They opted to have the models be **helpful over harmless** 

### Results: InstructGPT



Learning to summarize from human feedback. Stiennon, Ouyang, Wu, Ziegler, Lowe, Voss, Radford, Amodei, Christiano (2020). Neural Information Processing Systems (NeurIPS).

### Results: InstructGPT



#### RLHF hallucinates less, is less toxic $\rightarrow$ *more aligned*

Learning to summarize from human feedback. Stiennon, Ouyang, Wu, Ziegler, Lowe, Voss, Radford, Amodei, Christiano (2020). Neural Information Processing Systems (NeurIPS).

## But who are we aligning to?

- Labelers are **English-speaking people** living in the United States or Southeast Asia hired via Upwork or Scale AI
- Values / preferences for labeling process decided by **OpenAl researchers**
- Training data from **OpenAl API customers** 
  - Not necessarily interested in human well-being.
  - May want to maximize user attention of customers

## But who are we aligning to?

A Roadmap to Pluralistic Alignment

Taylor Sorensen<sup>1</sup> Jared Moore<sup>2</sup> Jillian Fisher<sup>13</sup> Mitchell Gordon<sup>14</sup> Niloofar Mireshghallah<sup>1</sup> Christopher Michael Rytting<sup>1</sup> Andre Ye<sup>1</sup> Liwei Jiang<sup>15</sup> Ximing Lu<sup>1</sup> Nouha Dziri<sup>5</sup> Tim Althoff<sup>1</sup> Yejin Choi<sup>15</sup>

- Distributional pluralism would be successfully modeling different, potentially diverging preferences
- This paper shows existing RLHF techniques may actually reduce distributional pluralism

| Reg                      | Is it ok for governments to moderate the social media content available to public?                                                                                                                                                      |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pluralistic<br>Human Val | ues Security Freedom Conformity                                                                                                                                                                                                         |
| Overton                  | Many think that it's not okay for the government<br>to moderate content as it endangers liberty,<br>while others deem it acceptable for prevention<br>of terrorism. A few, on the other hand, think it's<br>necessary for sovereignty.  |
| Steerable                | It is ok for the government to moderate<br>content for terrorism and threats.<br>It is not ok to moderate any content as it<br>endangers liberty.<br>It is ok for the government to moderate<br>content that endangers its sovereignty. |
| Distribution             | nal                                                                                                                                                                                                                                     |

Figure 1. Three kinds of pluralism in models.

#### Latest trends



## Direct Preference Optimization (Rafailov et al., 2023)

• What if we don't need to learn a reward model at all?



$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[ \log \sigma \left( \beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Ermon, S., & Finn, C. (2023). Direct preference optimization: Your language model is secretly a reward model. Advances in Neural Information Processing Systems, 36.

## Distributional Preference Learning (Siththaranjan et al., 2023)

- Vanilla RLHF overrules minority preferences
- What if we could model the distribution of preferences, detect when users diverge?



Figure 4: The results of our experiments with synthetic data. We find that the utility estimated by normal preference learning agrees closely with the Borda count, as our theory suggests. Furthermore, DPL successfully identify alternatives where hidden context has a significant effect.

Siththaranjan, A., Laidlaw, C., & Hadfield-Menell, D. (2023). Distributional Preference Learning: Understanding and Accounting for Hidden Context in RLHF. arXiv preprint arXiv:2312.08358.

# Iterated Data Smoothing (Zhu et al., 2024)



InstructGPT tells us we have to do early stopping with RLHF, or we will overfit to the reward model

- The issue is that if we only see one comparison of y<sub>1</sub> and y<sub>2</sub>, the BTL reward loss could blow up (go to infinity)
  - All comparisons are rarely seen given very high dimensional data
- Iterated Data Smoothing relabels the RLHF data using the learned reward model after one episode of training
  - Trust rarely seen data less
- Leads to SOTA open-source RLHF results (<u>Starling-7B</u>)

#### Latest trends





Contact: marwa\_abdulhai@berkeley.edu