CS 188: Artificial Intelligence

Final Exam Review

Summer 2024: Eve Fleisig & Evgeny Pobachienko

University of California, Berkeley

(slides adapted from Nicholas Tomlin, Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell)

In-Scope Mathematics

o Linear algebra:
o Definition and properties of dot products
o Composition of linear transformations is linear

o Vector calculus:
o How to take partial derivatives (incl. chain rule, vector derivatives)
o Solving optimization problems using derivatives (e.g., deriving MLE)

o Probability: definition of a probability distribution, random variables, joint and marginal
distributions, conditional probabilities, Bayes’ rule, normalization

How about computing all the derivatives?

= Derivatives tables: ¢ =0)= % tog.u] =14

a o u dx
d . d | du
—(x)=1 ne =loc ¢

dx (!A\‘[IU':“ u] IUC"’(i dx
i((11:) — a@ ieﬂ =" du

dx dx dx dx
i(lH-\’—W):dlw“ﬂ—ﬂ ia“=a“lnu@

dx dx dx dx dx dx

d dv du ¢ .
— (V) =u—+v— i(u‘)zvu‘“'ﬁﬂnu u‘~d—\
dx dx dx dx" dx dx
f_f(ﬁ) _ldu_udv

dx\ v vdx v dx

»i(u")= nu""! e

dx dx

d 1 du

—“(‘w‘U)= e

dx 2-Ju dx

d(l ~ ldu
HT\;)__FX
d(1Y_n du
d\'(u")_—u"“ dx

d, . d. . .
K[ﬂ“’]'ﬁl"(“’]

du
dx

[source:

How about computing all the derivatives?

But neural net f is never one of those?
= No problem: CHAIN RULE:

hen f'(2) = ¢ (h(a)) ()

Derivatives can be computed by following well-defined procedures

Markov Decision Processes

Markov Decision Processes

o An MDP is defined by:

o Asetofstatess €S

o Asetofactionsa € A

o A transition function T(s, a, s’)
o Probability that a from s leads to s, i.e., P(s| s, a)
o Also called the model or the dynamics

o Areward function R(s, a, s’)
o Sometimes just R(s) or R(s’)

o A start state

o Maybe a terminal state

o We care about:
o Policy = choice of actions for each state
o Utility = sum of (discounted) rewards

Values of States: Bellman Equation

o Recursive definition of value:

V*(s) = max Q(s,a)

Q*(s,a) =1 T(5,2,5)[R(s,a,8")+ 7 V*(s')| -\
g/ L

V*(s) = maaxZT(s, a,s')[R(s,a,s") +yV*(s')]

Value lteration

o Bellman equations characterize the optimal values:

V*(s) = maaXZT(s,a,, s") [R(s,a,s/) + 'yV*(s/)}

S

o Value iteration computes them:

Vig1(s) < max>_T(s,a,) [R(s,a,s") + 7 Vi(s)]

“Bellman Update”

o Value iteration is just a fixed point solution method

Policy Extraction from Values

o Let’simagine we have the optimal values V*(s)

o How should we act?
o It's not obvious!

o We need to do a mini-expectimax (one step)

7*(s) = arg CanaXZT(S, a,s)[R(s,a,s) +~V*(s)]

S

o This is called policy extraction, since it gets the policy implied by the values

Policy Extraction from Q-Values

o Let’s imagine we have the optimal
g-values:

o How should we act?
o Completely trivial to decide!

7*(s) = argmaxQ*(s,a)

o Important lesson: actions are easier to select from g-values than values!

Policy Evaluation

How do we calculate the V’s for a fixed policy 117?

S
Idea 1: Turn recursive Bellman equations into updates m(s)
(like value iteration) s, Ti(s)
Vg (s) =0 5;7(s),8”
A s

Vi 1(s) < Y T(s,7(s),)R (s, w(s),) + Vi ()]

S
Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
o Solve the system of equations

Policy Iteration

o Evaluation: For fixed current policy 1, find values with policy evaluation:

o Iterate until values converge:

Vi1 (s) ZT(S mi(s),8') |R(s,mi(s),8) + v V()]

o Improvement: For fixed values, get a better policy using policy extraction
o One-step look-ahead:

mi+1(s) = arg CanaXZT(S, a,s) [R(s, a,s’) + nyWi(s/)}

S/

Reinforcement Learning

Known MDP: Offline Solution

Map of Reinforcement Learning

a ,)
Goal Technique
Compute V*, Q*, Tr* Value / policy iteration
Evaluate a fixed policy 1T Policy evaluation
\ J
Unknown MDP: Model-Based Unknown MDP: Model-Free
4 .) 4 _)
Goal Technique Goal Technique
Compute V*, Q*, mr* VI/Pl on approx. MDP Compute V*, Q*, r* Q-learning
Evaluate a fixed policy T1 PE on approx. MDP Evaluate a fixed policy T Value Learning
g J \§ J

Direct Evaluation

o Goal: Compute values for each state under 11

o ldea: Average together observed sample values
o Act accordingto Tm

o Every time you visit a state, write down what the sum
of discounted rewards turned out to be

o Average those samples

o This is called direct evaluation

Input Policy 1T

2o o]

H

Assume:y =1

Direct Evaluation

Observed Episodes (Training)

Episode 1

Episode 2

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 3

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 4

E, north, C, -1

C, east,
D, exit,

D, -1
X, +10

E, north, C, -1
C, east, A, -1

A, exit,

X, -10

Output Values

Temporal Difference Learning

o Bigidea: learn from every experience!
o Update V(s) each time we experience a transition (s, a, s, r)
o Likely outcomes s’ will contribute updates more often

o Temporal difference learning of values
o Policy still fixed, still doing evaluation!
o Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s") +~vV™(s)
Update to V(s): VT(s) + (1 —a)V"(s) 4+ (a)sample

Same update: VT(s) + V™(s) + a(sample — V™ (s))

Q-Learning

o Q-Learning: sample-based Q-value iteration
Qr1(s:0) « LT (s,a,8) |R(s,a,5) +7 maxQu(s',)]
s/ a

o Learn Q(s,a) values as you go
o Receive a sample (s,a,s’,r)
o Consider your old estimate: Q(s, a)
o Consider your new sample estimate:
sample = R(s,a,s) + v max Q(s',a")
a

o Incorporate the new estimate into a running average:

Q(s,a) — (1 — a)Q(s,a) + () [sample]

Why Off-Policy

standard real-world RL process

*-
"
L

ffline RL process
e
<

-*=

Approximate Q-Learning

| QUs,0) = wifi(s,)Fuafols,)+ Aunfals,a) |

o Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + v max Q(s, a/)} —Q(s,a)
Q(s,a) «— Q(s,a) + «[difference] Exact Q's

w; — w; + « [difference] f;(s,a) Approximate Q’s

o Intuitive interpretation:
o Adjust weights of active features

o E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

o Formal justification: online least squares

How to Explore?

o Several schemes for forcing exploration

o Simplest: random actions (€-greedy)
o Every time step, flip a coin
o With (small) probability €, act randomly
o With (large) probability 1-€, act on current policy

o Problems with random actions?

o You do eventually explore the space, but keep
thrashing around once learning is done

o One solution: lower € over time
o Another solution: exploration functions

Exploration Functions

o When to explore?
o Random actions: explore a fixed amount

o Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

o Exploration function

o Takes a value estimate u and a visit count n, and -
returns an optimistic utility, e.g8. f(u,n) = v+ k/n

Regular Q-Update: Q(s,a) <+ R(s,a,s") 4+~ max Q(s',a)
Modified Q-Update: Q(s,a) < R(s,a,s") +ymax f(Q(s',a"), N(s',d"))

o Note: this propagates the “bonus” back to states that lead to unknown states as well!

Machine Learning

©)

©)

Example: Digit Recognition

Input: images / pixel grids
Output: a digit 0-9

Setup:

©)
@)

Get a large collection of example images, each labeled with a digit
Note: someone has to hand label all this data!

o Want to learn to predict labels of new, future digit images

Features: The attributes used to make the digit decision

©)

©)
©)
©)

Pixels: (6,8)=0ON
Shape Patterns: NumComponents, AspectRatio, NumLoops

Features are increasingly induced rather than crafted

o
(1
o
/o
Q ??

Naive Bayes for Digits

o Naive Bayes: Assume all features are independent effects of the label

o Simple digit recognition version: “

O

©)

O

One feature (variable) Fij for each grid position <i,j>
Feature values are on / off, based on whether intensity
is more or less than 0.5 in underlying image

Each input maps to a feature vector, e.g. e G e e

‘1 — (Fo,0=0 Fp1 =0 Fppo=1 Fg3=1 Fga=0 ...F1515 =0)

Here: lots of features, each is binary valued

o Naive Bayes model: P(Y|Fpo...I1515) o< P(Y) H P(F; ;1Y)

o What do we need to learn?

i,J

Onm

Deriving MLEs

Model: X red blue @ @ @

Data: draw N balls. N,. come up red, N, come up blue
= Dataset: D = {xq, ..., X}
= Ball draws are independent and identically distributed (i.i.d.):

Pp16)=] [PCxi16) =] [Poc = 6™ 1 -6y

Maximum likelihood estimation: find 8 that maximizes P(D | 0)
6 = argrgaxP(D 10) = argrgaxlogP(D |1 0)

= Approach: take derivative and set to 0

Parameter Estimation with Maximum Likelihood

& Estimating the distribution of a random variable X red blue
= Use training data (learning!)

= For each outcome x, look at the empirical rate of that value:
count(x)

PuL = fotal samples
= Example: probability of x=red given the training data: @ @ @

2
Py () = 3

= This estimate maximizes the likelihood of the data for the
parametric model:
L(B) =P(r,r,b|0)=Py(r) Py(r) Py (b)
=62-(1-6)

Parameter Estimation with Maximum Likelihood

& Likelihood function: X red blue
L(6) =P(r,r,b16) =Pg(r)-Py(r) - Pg (b)
=02.(1-6)
— 02 _ 93

= MLE: find the @ that maximizes data likelihood
6 = argmax L(0) @ @ @
0

= Approach: take derivatives and setto 0
oL(B) . 2
0 = 20 — 360
= 60(2 —30)

. . 2
" Find the maximum at @ = 3

Deriving MLEs

& Maximum likelihood estimation: find 6 that maximizes P(D | 6)

6@ = argmax P(D |) = argmaxlogP(D | 8)
0 0

d d

30 —logP(D |1 60) = [N log(@) + Nb log(1 —0)]

= N,. Elog(e) + Nb log(l 0)
1 1

Multiply by 8(1 — 0): N,(1-0)—N,6 =0
Nr—H(Nr'i'Nb):O N, + Ny

D
Il

Regularization: Smoothing

o Laplace’s estimate:

o Pretend you saw every outcome @ @ @
once more than you actually did

_c(x)+1
PLart®) = & 1@ + 1 Pyrr(X) = <§ %>
_ c(z)+1 5 5
N+ | X] Prap(X) = <g,g>

o This is no longer a maximum
likelihood estimate

Learning: Binary Perceptron

o Start with weights =0
o For each training instance:
o Classify with current weights

y - f

1 i we f(z) >0
7Y 6w f(z) <0
o If correct (i.e., y=y*), no change!

o If wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* is -1.

w=w+y* f

Learning: Multiclass Perceptron

Start with all weights =0
Pick up training examples one by one
Predict with current weights

y = argmax, wy - f(x)

If correct, no change!

If wrong: lower score of wrong answer,
raise score of right answer

wy = wy — f(x)

Problems with the Perceptron

o Noise: if the data isn’t separable,
weights might thrash

o Averaging weight vectors over time can
help (averaged perceptron)

o Mediocre generalization: finds a
“barely” separating solution

training
o Overtraining: test / held-out >,
accuracy usually rises, then falls §
o Overtraining is a kind of overfitting 0 test
& held-out

iterations

Reminder: Linear Classifiers

= |nputs are feature values x
= Each feature has a weight
= Sum is the activation

activationy(z) =) w; - fi(z) = w- f(x)

= |f the activation is: W
= Positive, output +1]: W.2 R Z
= Negative, output -1 :_l" E .
f

How to get probabilistic decisions?

Activation: 2z =w - f(x)

If z=w- f(z) very positive: want probability going to 1
If »=w. f(z) very negative: want probability going to 0

Sigmoid function

¢(2)

B 1
14 e

; 05}

= 1+e?

-

-6 -4 -2 0
z

Best w?

= Maximum likelihood estimation:

w

max (l(w) = max ZlogP(y(i)\x(i);w)

. . 1
-~ (i) _ (1) 0y} —
with: P(y —|—1\az 7w) 1 4+ e—w-f(z®)

1

P(y(i) — _1‘x(i)3w) =1- 1+ e—w f(z®)

= Logistic Regression

Multiclass Logistic Regression

= Multi-class linear classification wy - J blggest
w1
= A weight vector for each class: wy
= Score (activation) of a class y: Wy - f(:I?) w3
w2
= Prediction w/highest score wins: ¢y = arg max Wy - f(;p) wo - f w3 - f
Yy biggest biggest
= How to make the scores into probabilities?
e*1 e~2 e~3
\
“1y 22,73 =7 z z z3) 5z z z3 ' pZ1 Z9 Z3
e*l + e~*2 4+ e*3 e*l + e*2 4 e*3 e~”l 4 e*2 + ¢
|) 1 J
Y Y
original softmax

activatione activatione

Best w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\x(i);w)

w

oWy () f(z(D)

with: P(?J(i)n(i);w) — (o (3)
Zy eWy f(z*))

= Multi-Class Logistic Regression

Batch Gradient Ascent

w

max [l(w) = max ZlogP(y(i)\z(i);w)

g(w)

O init U

o for iter = 1, 2, ..

W — W+ o * Z V log P(y'9 |z w)

Stochastic Gradient Ascent

max [l(w) = max ZlogP(y(i)\z(i);w)

w

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

O init
o for iter = 1, 2,

o pick random j

w4 w+ ax Viog P(yY |2\ w)

Mini-batch Gradient Ascent

w

max [l(w) = max ZlogP(y(i)\z(i);w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

O 1nit
o for iter = 1, 2,
o pick random subset of training examples J

W W+ a* ZVlogP(y(j>\:E(j);w]
j€d

Beyond SGD: Second-Order Derivatives

Newton’s Method (in 1D):
= Want to optimize: meaxf(H)
= Apply Taylor expansion:
fO+h)=f(O)+f'(O)h+5f"(O)h?
= Find value of t that maximizes this:
0= 5[F@+F ©Oh+37"O)n?]
=f'(0)+ f""(6)h

= Rearrange terms to get update:

'@
h=—% Opi1 =0, +h=0,—

f'(6) X
£''(0) 0

These update equations out of scope for final exam; but high-level concepts are in scope

Beyond SGD: Momentum

o Potential issues with vanilla SGD:
o Can take a long time to converge if the learning rate is too low

o Can bounce around in “ravines” without making much progress toward a
local optimum

= &

Image 2: SGD without momentum Image 3: SGD with momentum

Beyond SGD: Adaptive Learning Rates

@ Recall: learning rates
= Determines how much we update weights in the direction of the gradient
= Often: want to set this in terms of how much it updates the weights
= Often: want to lower learning rate over time (learning rate scheduling)

Or41 = 6 _Qf(et)

= Key idea: different learning rates for each parameter
= We can make larger or smaller updates depending on how important a feature is
= Small updates for frequent features; big updates for rare features
= This idea underlies: Adagrad, RMSProp, Adam, etc.

Summary: Key Ideas in Optimization

o Gradient descent
o Batch: update based on the whole dataset
o SGD: update based on a single randomly chosen training example
o Minibatch: update based on k randomly chosen training examples

o More advanced approaches:
o Second order optimization (e.g., Newton’s method)
o Momentum (Nesterov’s accelerated gradient, Adam)
o Adaptive learning rates (Adagrad, RMSProp, Adam, etc.)

Multi-class Logistic Regression

o = special case of neural network

f,(x)

el

7 = sl Plylnw) =

1 e*l + e*2 4 e*3
f,(x) O
f

e*?

z, "t — Pplrnw)=——F—r

f(x) 2 e*l + e*2 4 e*3
m
a

e*3

fdx)

Deep Neural Network = Also learn the features!

f,(x)

et
Zl — S — P(y1|$;w): %1 + e%2 + %3
f,(x) ©
f
e*2
7 > L, P(y2|l‘aw): 2 z z
f,(x) 2 el + e*2 + e*
m
a

Deep Neural Network = Also learn the features!

1 \
) %
Z](OUT]—> S —» P(y1|x,w)
Zél) 252) Zén—l] f,(x) le)
f
ouT .
(1) 2(2) =1) zé — L — Pplnw)
zZ3 3 3 3 m
a
Aot x L Pyl w)
L) (2) .
K(1] zK(? 2! <n£)1) fd

Zwk 1,k) (k 1))

Deep Neural Network = Also learn the features!

1 2 e
(n) AV s b— P(yilz;w)
1 2 \ n
Zé) Zé) A") ©
f
o o t . P(’xw)
1 2 n—1) (n) Z Y2|x;
Z;(g) ng) Z% 23 2 o
a
ZéOUT)—» X > P(y3|x,w)
(1) (2) . (n)
2% 2 (2 20 2740

Zwk 1,k) (k 1))

Importance of Nonlinear Activation Functions

What happens if we add more layers?

.z, = W,Wx + by + b,

ez, =W, (Wx + by) + b, =W, Wx + W,by + b, =
Wnewx + bnew

. No gain to adding more linear layers!

. |dea: add nonlinearities to capture more complex relationships

Deep Neural Network = Also learn the features!

1 2 e
(n) AV s b— P(yilz;w)
1 2 \ n
Zé) Zé) A") ©
f
o o t . P(’xw)
1 2 n—1) (n) Z Y2|x;
Z;(g) ng) Z% 23 2 o
a
ZéOUT)—» X > P(y3|x,w)
(1) (2) . (n)
2% 2 (2 20 2740

E W k 1 k (k 1)) g = nonlinear activation

function

Common Activation Functions

Sigmoid Function

a2 |

0.8 | 9'@) |
06}
0.4}
02}
"5 0
1
9= 1=

g9'(z)= g(z)(1-g(2))

[source: MIT 6.5191 introtodeeplearning.com]

05}

-05¢

Hyperbolic Tangent

0
e? —e" %
¥4 Lo e—
A e*+ e—=

g'(z)=1-g(2)?

o) |

9@ | |

Rectified Linear Unit (RelLU)

" g(z)"
9(2)

3

2

1

ol -

5 0 5
g(z)=max (0, z)
"(2) = 3 [>
9 1o, otherwise

Deep Neural Network: Also Learn the Features!

= Training the deep neural network is just like logistic regression:

w

max [l(w) = max ZlogP(y@\a:(i);w)

just w tends to be a much, much larger vector &

Just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

= Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

= Practical considerations
= Can be seen as learning the features
= Large number of neurons

= Danger for overfitting
= (hence early stopping!)

[source:

How about computing all the derivatives?

= Derivatives tables:

4 @)=0

dx

d

—(x)=1

dx()

d du
—(au)=a—

a’x((Ve dx

d . du dv
—(U+tv-w)=—+—-—
dx dx dx
i(u\-') = uﬂ - rd—”

dx dx dx

i(ﬁ)_lfﬂ_iﬁ
vdx vdx

dx\ v

i(u") =y .
dx dx
i(Ju) = L—ﬂ
dx 2-Ju dx
A1) de

dx\u u® dx

d(1 ')__ n du
dx\u" u"™ dx

d d. . .
E[f(u)]—m[j(u)]

du
dx

dw

dx

1 1
i[Inu] = (—[l()gru] = 1du
dx dx u dx
d | du

log ul=log e
¢ ~\'[oo] S0y dx
d , ,du
L= Y
dx dx
ia“ =a"In u@
dx dx

d -1 du !
(") =" =+ I ¥ =
} N

dx " ! dx

d . du
—sinu = cosu—
dx dx

. du
—cosu = —sinu—
dx dx

d > du
—tanu = sec” u—

dx dx
) 2 du
cotu=—cscu
dx dx
du
secu =secutanuy—
dx dx
d

dx

)) du
cscu = —cscucotu

dx

How about computing all the derivatives?

But neural net f is never one of those?
= No problem: CHAIN RULE:

hen f'(2) = ¢ (h(a)) ()

Derivatives can be computed by following well-defined procedures

Example: Automatic Differentiation

Build a computation graph and apply chain rule: f(x) = g(h(x)) f'(x) =h'(x)-g'(h(x))

Example: neural network with quadratic loss: L(a,,y*) = %(az — y*)? and RelU activations

g(z) = max(0, z)

az; = g2(Wz * g1 (wq * x)) 02,]
a—wz=a—W2(W2'a1) =4
L 2
oL dL 0z
2 3 = 2 —4.q,=8
0W2 aZZ aWZ oL
9a, - (a —y*) =4
2
21 — 29 —
1 0L 0L Oa,
aZZ aaz a’ZZ -
da, d

3z, = Emax(zz, 0) = 1 (when z; > 0)

Important Concepts

Data: labeled instances (e.g. emails marked spam/ham)
o Training set
o Held out set (“development” or “validation” set)
o Testset

Features: attribute-value pairs which characterize each x

Experimentation cycle
o Learn parameters (e.g. model probabilities) on training set
o (Tune hyperparameters on held-out set)
o Compute accuracy of test set
o Very important: never “peek” at the test set!

Evaluation (many metrics possible, e.g. accuracy)
o Accuracy: fraction of instances predicted correctly

Overfitting and generalization
o Want a classifier which does well on test data
o Overfitting: fitting the training data very closely, but not
generalizing well
o We’ll investigate overfitting and generalization formally in a few
lectures

Training
Data

Held-Out
Data

Test
Data

Loss

Overfitting

Overfitting & Underfitting

training

Epochs

Underfitting

Loss

Epochs

training

Preventing Overfitting in Neural Networks

training
@ Early stopping: 3
5
. test
© held-out
iterations

» Weight regularization: max,,);; log P(y(i) | xW; W) — %Zj sz

= Dropout:

(a) Standard Neural Net (b) After applying dropout.

Controlling Underfitting & Overfitting

o Underfitting
o Increase model capacity
o Improve quantity and quality of input features

o Overfitting

o Limit the hypothesis space
o E.g. limit the max depth of trees
o Easier to analyze
o Regularize the hypothesis selection
o E.g. chance cutoff
o Disprefer most of the hypotheses unless data is clear
o Usually done in practice

Summary of Key ldeas

o Optimize probability of label given input ~ max l/(w) = max > log P(yW]z®; w)

o Continuous optimization

o Gradient ascent:
o Compute steepest uphill direction = gradient (= just vector of partial derivatives)
o Take step in the gradient direction
o Repeat (until held-out data accuracy starts to drop = “early stopping”)

o Deep neural nets
o Last layer = still logistic regression

o Now also many more layers before this last layer
o =computing the features
o [1the features are learned rather than hand-designed
o Universal function approximation theorem
o If neural net is large enough
o Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
o But remember: need to avoid overfitting / memorizing the training data [] early stopping!

o Automatic differentiation gives the derivatives efficiently

Inductive Learning (Science)

Simplest form: learn a function from examples
o Atarget function: g
o Examples: input-output pairs (x, g(x))
o E.g.xisanemail and g(x) is spam / ham g
o E.g.xisahouse and g(x) is its selling price

Problem:
o Given a hypothesis space A
o Given a training set of examples xl.
o Find a hypothesis A(x) such that 4 ~ g

Includes:
o Classification (outputs = class labels)
o Regression (outputs = real numbers)

How do perceptron and naive Bayes fit in? (H, &, g, etc.)

Inductive Learning

o Curve fitting (regression, function approximation):

J)
\

[—

o Consistency vs. simplicity
o Ockham’s razor

Consistency vs. Simplicity

o Fundamental tradeoff: bias vs. variance
o Usually algorithms prefer consistency by default (why?)

o Several ways to operationalize “simplicity”

o Reduce the hypothesis space
o Assume more: e.g. independence assumptions, as in naive Bayes
o Have fewer, better features / attributes: feature selection
o Other structural limitations (decision lists vs trees)

o Regularization
o Smoothing: cautious use of small counts
o Many other generalization parameters (pruning cutoffs today)
o Hypothesis space stays big, but harder to get to the outskirts

Decision Trees: Choosing an Attribute

o ldea: a good attribute splits the examples into subsets that are (ideally) “all positive” or
“all negative”

000000 000000
000000 000000
Patrons?
None Some Full French Italian Thai Burger
000 00 O © 00 o0
o0 0000 @ O OO o0

o So: we need a measure of how “good” a split is, even if the results aren’t perfectly
separated out

Information Gain

o Back to decision trees!
o For each split, compare entropy before and after

O
O

None

Difference is the information gain
Problem: there’s more than one distribution after split!

000000 000000
000000 00000
Patrons?
Some Full French Italian Thai Burger
000 00 o 00 o0
0000 o @ 00 0

Solution: use expected entropy, weighted by the number of
examples

. Ye Olde

Info

rmation

Advanced Topics: NLP

o N-gram models
o Regularization techniques (smoothing, bz

o RNNs -> LSTMs -> Attention, Transformr
o Address long-term memory issues

o Causal (autoregressive) vs. masked LMs

o Predict tokens in order vs. mask some out
randomly and predict

o Pretraining & fine-tuning

Training Counts

198015222 the first
194623024 the same
168504105 the following
158562063 the world

14112454 the door

23135851162 the *

R 14112454
P(door|the) = oot e

= 0.0006

Advanced Topics: RL

fine-tuning

&
%_]] m) OQ s Naive

Pre-train on data Keep training with RL

% KL-control

Keep a fixed copy onstrain RL
Data prior p(als) updates

Step 1

Advanced Topics: RL

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

|
\/

)

2

Some people went
to the moon...

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

o o

Explain gravity. Explain war.

Moon is natural People went to
satellite of. the moon.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

Advanced Topics: Ethics, Fairness, Safety

o Allocational & representational harms

o Dataset bias + bias amplification + automation bias
o Training data extraction

o Data poisoning

o Model stealing

o Safety in physical environments

o Jailbreaking & adversarial attacks

Questions

Search

A* Search

o Expand nodes based on sum:
backward cost + forward cost
o f(n)=g(n)+h(n)
o g(n): cost to get to node
o h(n): heuristic of future costs

o We ideally want heuristic functions
that satisfy:

o Admissibility: underestimate true
cost to the goal

o Consistency: “triangle inequality”

o Consistency => admissibility

A* Search

A* Search

P

A* Search

g: backward cost (S -> current node)
h: forward cost (heuristic for current node ->
goal)

A* Search

g: backward cost (S -> current node)
h: forward cost (heuristic for current node ->
goal)

Q: Where do heuristics come from?
A: We have to create them!

Not the best heuristic...

A* Search

g: backward cost (S -> current node)
h: forward cost (heuristic for current node ->
goal)

Q: Where do heuristics come from?
A: We have to create them!

Not the best heuristic...

A* Search: Admissibility

g: backward cost (S -> current node)
h: forward cost (heuristic for current node ->
goal)

Q: Where do heuristics come from?
A: We have to create them!

What’s a better heuristic?

A* Search: Admissibility

g: backward cost (S -> current node)

Q: Where do heuristics come from? e
h: forward cost (heuristic for current node ->

A: We have to create them!

goal)
h=3
f=g9g+h
=1+3
h=1) h=0
f=g+h
5 =540
=5

What’s a better heuristic? Admissible = Underestimates cost from any node to the goal

A* Search

A* Search: Consistency

A* Search: Consistency

~ =
T

N _0qQ
_

+ +

A* Search: Consistency

This heuristic isn’t consistent

“Triangle inequality”
h(u) < d(u,v) + h(v)

~ =
nn I
I~

N _0qQ
_

+ +

A* Search: Consistency

This heuristic isn’t consistent

“Triangle inequality”
h(u) < d(u,v) + h(v)

~ =
nn I
I~

N _L0qQ

Q: Is h(A) < d(A,C) + h(C)?

+ +
_

A* Search: Consistency

This heuristic isn’t consistent

Consistency: “Triangle inequality”

h(u) £ d(u,v) + h(v)

Q: Is h(A) < d(A,C) + h(C)? g+h

A:No:4<1+1 =1+1
2

Summary of A*

Tree search:
o A*is optimal if heuristic is admissible
o UCS is a special case (h =0)

Graph search:
o A* optimal if heuristic is consistent
o UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if it comes
from a relaxed problem

Hidden Markov Models

o Hidden Markov models (HMMs)

o Underlying Markov chain over states X.

o You observe outputs (effects) at each time step
o An HMM is defined by:

o Initial distribution: P(Xx7)

o Transitions: P(X; | Xi—y

o Emissions: P(E; | X;)

Conditional Independence

o HMMs have two important independence properties:
o Markovian assumption of hidden process

o Current observation independent of all else given current state

- >

o Does this mean that evidence variables are guaranteed to be independent?

o [No, they tend to correlated by the hidden state]

Inference: Base Cases

@
A OO0

P(X5)

P(X;) =) P(x1,X)

P(e1|X7)P(X
N le(ljl(‘ffj?)fl)(P(lx)O P(Xa) =) P(Xa|x1)P(x1)

P(Xiler)

Passage of Time

o Assume we have current belief P(X | evidence to date)

P(Xile1:1)

o Then, after one time step passes:

P(Xt+1‘€1:t> = ZP(Xt-|-1,flft|€1:t)

= Z P(Xii1|ze, 1) Plailers)

— Z P(Xt+1|xt)P(th’€1:t)

o Basic idea: beliefs get “pushed” through the transitions

Observation

o Assume we have current belief P(X | previous evidence):

P(Xii1ler

o Then, after evidence comes in:
P(Xialeri1) = P(Xeyr,eppaler)/Plegyilers)
oxx,,, P(Xtt1,err1]e1:t)
= P(ett1]er:t, Xey1) P(Xey1lert)
= P(et41]| Xt41) P(Xtt1ler)

= Basic idea: beliefs “reweighted” by likelihood of evidence
= Unlike passage of time, we have to renormalize

O

O

O

O

Online Belief Updates

Every time step, we start with current P(X | evidence)
We update for time:

P(ztle1:—1) = Y P(zi—1le14—1) - P(xt|ze—1)

Tr—1

We update for evidence:

P(ztle1s) xx P(x¢lert—1) - P(et|zt)

The forward algorithm does both at once (and doesn't normalize)

The Forward Algorithm

o We are given evidence at each time and want to know

P(Xtle1:)

o We can derive the following updates

P(xtle1:t) ocx P(xt,e1:t)
= > P(xi_1,7¢e1:)

Lt—1

= Y P(zi_1,e1:4—1)P(xt|zi—1) P(et|zt)

Tp—1

We can normalize as we go if we
want to have P(x|e) at each time
step, or just once at the end...

= P(et|xt) Y P(atlei—1)P(xi—1,e1:4—1)

Lt—1

Forward / Viterbi Algorithms

sun sun
rain rain
Xq X5

Forward Algorithm (Sum)

For each state at time t, keep track of the
total probability of all paths to it

ftlzt] = P(x¢t,e1:¢)

= P(etlzt) Y Plxtlee—1)fr—1lzi—1]

Tt—1

>

sun X sun
rain rain

XN
Viterbi Algorithm (Max)
For each state at time t, keep track of the
maximum probability of any path to it

mylxy] = max P(x1:4—1,%t,€1:¢)

= P(et|ze) max P(zi|ze—1)me—1lzr-1]

Constraint Satisfaction Problems

’ !

Example: Map Coloring

Variables: WA, NT, Q, NSW, V, SA, T
Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

Implicit: WA #= NT
Explicit: (WA,NT) € {(red,green), (red, blue), ...}

Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}

General Approach #1: Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time

o Variable assignments are commutative, so fix ordering -> better branching factor!
o l.e., [WA =red then NT = green] same as [NT = green then WA = red]

o Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
o l.e. consider only values which do not conflict previous assignments
o Might have to do some computation to check the constraints
o “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Improving Backtracking

General-purpose ideas give huge gains in speed

1. Ordering:
o Which variable should be assigned next?
o In what order should its values be tried?

2. Filtering: Can we detect inevitable failure early?

3. Leveraging the structure of the constraint graph

Ordering: Minimum Remaining Values

o Variable Ordering: Minimum remaining values (MRV):
o Choose the variable with the fewest legal values left in its domain

NS

o Why min rather than max?

o Also called “most constrained variable”
o “Fail-fast” ordering

Ordering: Least Constraining Value

o Value Ordering: Least Constraining Value ‘
o Given a choice of variable, choose the least l“

constraining value
o l.e., the one that rules out the fewest values in ‘_Lt

the remaining variables

o Note that it may take some computation to
determine this! (E.g., rerunning filtering)

o Why least rather than most?

o Combining these ordering ideas makes
1000 queens feasible

Filtering: Arc Consistency

o Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

]NT 3 WA NT Q NSW \' SA
{ |y 1y I e I I
N v

Forward checking? Delete from the tail!

Enforcing consistency of arcs pointing to each new assignment

Filtering: Arc Consistency

o A simple form of propagation makes sure all arcs are consistent:

L

WA NT Q NSW \' SA

Important: If X loses a value, neighbors of X need to be rechecked!

Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment Remember:
Delete from the

What’s the downside of enforcing arc consistency? =

Leveraging Structure: Cutsets

Choose a cutset

Instantiate the cutset

. (all possible ways))

Compute residual CSP
\ for each assignment)

Solve the residual
CSPs (tree structured))

@":

%

X
A
[2o

9‘}@

.

-— @
]
3 -—

B

":

]

General Approach #2: Iterative Improvement

o Local search methods typically work with “complete” states, i.e., all variables assigned

o To apply to CSPs:
o Take an assignment with unsatisfied constraints

o Operators reassign variable values ‘i‘ — > ‘i‘

o No fringe! Live on the edge.

o Algorithm: While not solved,
o Variable selection: randomly select any conflicted variable

o Value selection: min-conflicts heuristic:
o Choose a value that violates the fewest constraints
o le., hill climb with h(x) = total number of violated constraints

Hill Climbing Diagram

objecti\‘e function lobal maximum

shoulder

\ local maximum

"flat" local maximum

»state space

current
state

Simulated Annealing

o ldea: Escape local maxima by allowing downhill moves

o But make them rarer as time goes on

function SIMULATED- ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a "temperature” controlling prob. of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])
for t< 1 to oo do

T'— schedule[{]

if 7'= 0 then return current

next < a randomly selected successor of current

AFE«— VALUE[next] — VALUE[current]

if AE > 0 then current < next

else current < next only with probability e

A E/T

Game Trees

Adversarial Search (Minimax)

o Deterministic, zero-sum games: Minimax values:
o Tic-tac-toe, chess, checkers computed recursively
o One player maximizes result 4 max)
o The other minimizes result

o Minimax search: _ ml;
o A state-space search tree / \ / \
o Players alternate turns 7\ 7 "
o Compute each node’s minimax value: [8 2 5 6]

the best achievable utility against a

rational (optimal) adversary Terminal values:

part of the game

Minimax Example

Minimax Example: Pruning

O

O

O

O

O

Alpha-Beta Pruning Properties

This pruning has no effect on minimax value computed for the root!

Values of intermediate nodes might be wrong
o Important: children of the root may have the wrong value max
o So the most naive version won’t let you do action selection

Good child ordering improves effectiveness of pruning

With “perfect ordering”:

min

o Time complexity drops to O(b™?)

D
D

o Doubles solvable depth!
o Full search of, e.g. chess, is still hopeless...

This is a simple example of metareasoning (computing about what to compute)

Alpha-Beta Quiz 2

Alpha-Beta Quiz 2

Expectimax Search

Why wouldn’t we know what the result of an action will be?
o Explicit randomness: rolling dice

o Unpredictable opponents: the ghosts respond randomly

o Unpredictable humans: humans are not perfect

o Actions can fail: when moving a robot, wheels might slip

max

chance
Values should now reflect average-case (expectimax) outcomes,
not worst-case (minimax) outcomes

Expectimax search: compute the average score under optimal
play

o Max nodes as in minimax search 0
o Chance nodes are like min nodes but the outcome is uncertain

o Calculate their expected utilities

o l.e. take weighted average (expectation) of children

D
D

Remaining Topics

Bayes Nets:

o Inference by enumeration
o Variable elimination

o D-separation

o Sampling approaches

HMMs:

o Forward algorithm
o Viterbi algorithm
o Particle filtering

Decision networks and VPIs

Out of scope: learning theory, decision tree classifiers, details of non-SGD
optimizers (e.g., NAG, Adagrad, Adam), NLP/CV/RL

