
CS 188: Artificial Intelligence

Final Exam Review

Summer 2024: Eve Fleisig & Evgeny Pobachienko

University of California, Berkeley

(slides adapted from Nicholas Tomlin, Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell)

In-Scope Mathematics

o Linear algebra:

o Definition and properties of dot products

o Composition of linear transformations is linear

o Vector calculus:

o How to take partial derivatives (incl. chain rule, vector derivatives)

o Solving optimization problems using derivatives (e.g., deriving MLE)

o Probability: definition of a probability distribution, random variables, joint and marginal
distributions, conditional probabilities, Bayes’ rule, normalization

▪ Derivatives tables:

How about computing all the derivatives?

[source:
http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

■ But neural net f is never one of those?

■ No problem: CHAIN RULE:

If

Then

Derivatives can be computed by following well-defined procedures

Markov Decision Processes

Markov Decision Processes

o An MDP is defined by:
o A set of states s ∈ S
o A set of actions a ∈ A
o A transition function T(s, a, s’)

o Probability that a from s leads to s’, i.e., P(s’| s, a)
o Also called the model or the dynamics

o A reward function R(s, a, s’)
o Sometimes just R(s) or R(s’)

o A start state
o Maybe a terminal state

o We care about:
o Policy = choice of actions for each state
o Utility = sum of (discounted) rewards

Values of States: Bellman Equation

o Recursive definition of value:

a

s

s, a

s,a,s’
’s

Value Iteration

o Bellman equations characterize the optimal values:

o Value iteration computes them:

“Bellman Update”

o Value iteration is just a fixed point solution method

a

V(s)

s, a

s,a,s’

V(s’)

Policy Extraction from Values

o Let’s imagine we have the optimal values V*(s)

o How should we act?
o It’s not obvious!

o We need to do a mini-expectimax (one step)

o This is called policy extraction, since it gets the policy implied by the values

Policy Extraction from Q-Values

o Let’s imagine we have the optimal

 q-values:

o How should we act?
o Completely trivial to decide!

o Important lesson: actions are easier to select from q-values than values!

Policy Evaluation

o How do we calculate the V’s for a fixed policy π?

o Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

o Efficiency: O(S2) per iteration

o Idea 2: Without the maxes, the Bellman equations are just a linear system
o Solve the system of equations

π(s)

s

s, π(s)

s, π(s),s’
’s

Policy Iteration

o Evaluation: For fixed current policy π, find values with policy evaluation:
o Iterate until values converge:

o Improvement: For fixed values, get a better policy using policy extraction
o One-step look-ahead:

Reinforcement Learning

Map of Reinforcement Learning

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π* Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π* VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Goal Technique

Compute V*, Q*, π* Q-learning

Evaluate a fixed policy π Value Learning

Direct Evaluation

o Goal: Compute values for each state under π

o Idea: Average together observed sample values
o Act according to π
o Every time you visit a state, write down what the sum

of discounted rewards turned out to be

o Average those samples

o This is called direct evaluation

Direct Evaluation

Input Policy π

Assume: γ = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Temporal Difference Learning

o Big idea: learn from every experience!
o Update V(s) each time we experience a transition (s, a, s’, r)

o Likely outcomes s’ will contribute updates more often

o Temporal difference learning of values
o Policy still fixed, still doing evaluation!

o Move values toward value of whatever successor occurs: running average

π(s)

s

s, π(s)

’s

Sample of V(s):

Update to V(s):

Same update:

Q-Learning

o Q-Learning: sample-based Q-value iteration

o Learn Q(s,a) values as you go
o Receive a sample (s,a,s’,r)

o Consider your old estimate:

o Consider your new sample estimate:

o Incorporate the new estimate into a running average:

Why Off-Policy

Approximate Q-Learning

o Q-learning with linear Q-functions:

o Intuitive interpretation:
o Adjust weights of active features
o E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

o Formal justification: online least squares

Exact Q’s

Approximate Q’s

How to Explore?

o Several schemes for forcing exploration
o Simplest: random actions (ε-greedy)

o Every time step, flip a coin

o With (small) probability ε, act randomly

o With (large) probability 1-ε, act on current policy

o Problems with random actions?
o You do eventually explore the space, but keep

thrashing around once learning is done

o One solution: lower ε over time

o Another solution: exploration functions

Exploration Functions

o When to explore?
o Random actions: explore a fixed amount

o Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

o Exploration function
o Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

o Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

Machine Learning

Example: Digit Recognition

o Input: images / pixel grids

o Output: a digit 0-9

o Setup:
o Get a large collection of example images, each labeled with a digit
o Note: someone has to hand label all this data!
o Want to learn to predict labels of new, future digit images

o Features: The attributes used to make the digit decision
o Pixels: (6,8)=ON
o Shape Patterns: NumComponents, AspectRatio, NumLoops
o …
o Features are increasingly induced rather than crafted

0

1

2

1

??

Naïve Bayes for Digits

o Naïve Bayes: Assume all features are independent effects of the label

o Simple digit recognition version:
o One feature (variable) F

ij
 for each grid position <i,j>

o Feature values are on / off, based on whether intensity

is more or less than 0.5 in underlying image

o Each input maps to a feature vector, e.g.

o Here: lots of features, each is binary valued

o Naïve Bayes model:

o What do we need to learn?

Y

F
1

F
n

F
2

Deriving MLEs

o r r b
X red blue

Parameter Estimation with Maximum Likelihood

o

r r b

X red blue

Parameter Estimation with Maximum Likelihood

o

r r b

X red blue

Deriving MLEs

o

Regularization: Smoothing

o Laplace’s estimate:
o Pretend you saw every outcome

once more than you actually did

o This is no longer a maximum
likelihood estimate

r r b

Learning: Binary Perceptron

o Start with weights = 0

o For each training instance:

o Classify with current weights

o If correct (i.e., y=y*), no change!

o If wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* is -1.

Learning: Multiclass Perceptron

o Start with all weights = 0

o Pick up training examples one by one

o Predict with current weights

o If correct, no change!

o If wrong: lower score of wrong answer,
raise score of right answer

Problems with the Perceptron

o Noise: if the data isn’t separable,
weights might thrash
o Averaging weight vectors over time can

help (averaged perceptron)

o Mediocre generalization: finds a
“barely” separating solution

o Overtraining: test / held-out
accuracy usually rises, then falls
o Overtraining is a kind of overfitting

Reminder: Linear Classifiers

▪ Inputs are feature values
▪ Each feature has a weight
▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1

▪ Negative, output -1 Σ
f

1

f
2

f
3

w
1

w
2

w
3

>0?

How to get probabilistic decisions?

▪ Activation:

▪ If very positive: want probability going to 1

▪ If very negative: want probability going to 0

▪ Sigmoid function

Best w?

▪ Maximum likelihood estimation:

with:

= Logistic Regression

Multiclass Logistic Regression

▪ Multi-class linear classification

▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction w/highest score wins:

▪ How to make the scores into probabilities?

original
activations

softmax
activations

Best w?

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

Batch Gradient Ascent

o init

o for iter = 1, 2, …

Stochastic Gradient Ascent

o init

o for iter = 1, 2, …
o pick random j

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-batch Gradient Ascent

o init

o for iter = 1, 2, …
o pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

Beyond SGD: Second-Order Derivatives

Beyond SGD: Momentum

o Potential issues with vanilla SGD:
o Can take a long time to converge if the learning rate is too low
o Can bounce around in “ravines” without making much progress toward a

local optimum

Beyond SGD: Adaptive Learning Rates

o

Summary: Key Ideas in Optimization

o Gradient descent
o Batch: update based on the whole dataset
o SGD: update based on a single randomly chosen training example
o Minibatch: update based on k randomly chosen training examples

o More advanced approaches:
o Second order optimization (e.g., Newton’s method)
o Momentum (Nesterov’s accelerated gradient, Adam)
o Adaptive learning rates (Adagrad, RMSProp, Adam, etc.)

Multi-class Logistic Regression

o = special case of neural network

z
1

z
2

z
3

f
1
(x)

f
2
(x)

f
3
(x)

f
K
(x)

s
o
f
t
m
a
x…

Deep Neural Network = Also learn the features!

z
1

z
2

z
3

f
1
(x)

f
2
(x)

f
3
(x)

f
K
(x)

s
o
f
t
m
a
x…

Deep Neural Network = Also learn the features!

f
1
(x)

f
2
(x)

f
3
(x)

f
K
(x)

s
o
f
t
m
a
x…

x
1

x
2

x
3

x
L

… … … …

…

Deep Neural Network = Also learn the features!

s
o
f
t
m
a
x…

x
1

x
2

x
3

x
L

… … … …

…

Importance of Nonlinear Activation Functions

o

Deep Neural Network = Also learn the features!

s
o
f
t
m
a
x…

x
1

x
2

x
3

x
L

… … … …

…

g = nonlinear activation
function

Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

▪ Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector ☺

Just run gradient ascent

 + stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

▪ Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

▪ Practical considerations
▪ Can be seen as learning the features

▪ Large number of neurons
▪ Danger for overfitting

▪ (hence early stopping!)

▪ Derivatives tables:

How about computing all the derivatives?

[source:
http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

■ But neural net f is never one of those?

■ No problem: CHAIN RULE:

If

Then

Derivatives can be computed by following well-defined procedures

o

Example: Automatic Differentiation

2

1

3

2

2 2 6 6 8

Important Concepts

o Data: labeled instances (e.g. emails marked spam/ham)
o Training set
o Held out set (“development” or “validation” set)
o Test set

o Features: attribute-value pairs which characterize each x

o Experimentation cycle
o Learn parameters (e.g. model probabilities) on training set
o (Tune hyperparameters on held-out set)
o Compute accuracy of test set
o Very important: never “peek” at the test set!

o Evaluation (many metrics possible, e.g. accuracy)
o Accuracy: fraction of instances predicted correctly

o Overfitting and generalization
o Want a classifier which does well on test data
o Overfitting: fitting the training data very closely, but not

generalizing well
o We’ll investigate overfitting and generalization formally in a few

lectures

Training
Data

Held-Out
Data

Test
Data

Overfitting & Underfitting

Overfitting Underfitting

Preventing Overfitting in Neural Networks

o

Controlling Underfitting & Overfitting

o Underfitting
o Increase model capacity
o Improve quantity and quality of input features

o Overfitting
o Limit the hypothesis space

o E.g. limit the max depth of trees

o Easier to analyze

o Regularize the hypothesis selection
o E.g. chance cutoff

o Disprefer most of the hypotheses unless data is clear

o Usually done in practice

Summary of Key Ideas

o Optimize probability of label given input

o Continuous optimization
o Gradient ascent:

o Compute steepest uphill direction = gradient (= just vector of partial derivatives)
o Take step in the gradient direction
o Repeat (until held-out data accuracy starts to drop = “early stopping”)

o Deep neural nets
o Last layer = still logistic regression
o Now also many more layers before this last layer

o = computing the features
o 🡪 the features are learned rather than hand-designed

o Universal function approximation theorem
o If neural net is large enough
o Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
o But remember: need to avoid overfitting / memorizing the training data 🡪 early stopping!

o Automatic differentiation gives the derivatives efficiently

Inductive Learning (Science)

o Simplest form: learn a function from examples
o A target function: g
o Examples: input-output pairs (x, g(x))
o E.g. x is an email and g(x) is spam / ham
o E.g. x is a house and g(x) is its selling price

o Problem:
o Given a hypothesis space H
o Given a training set of examples xi
o Find a hypothesis h(x) such that h ~ g

o Includes:
o Classification (outputs = class labels)
o Regression (outputs = real numbers)

o How do perceptron and naïve Bayes fit in? (H, h, g, etc.)

Inductive Learning

o Curve fitting (regression, function approximation):

o Consistency vs. simplicity
o Ockham’s razor

Consistency vs. Simplicity

o Fundamental tradeoff: bias vs. variance

o Usually algorithms prefer consistency by default (why?)

o Several ways to operationalize “simplicity”
o Reduce the hypothesis space

o Assume more: e.g. independence assumptions, as in naïve Bayes
o Have fewer, better features / attributes: feature selection
o Other structural limitations (decision lists vs trees)

o Regularization
o Smoothing: cautious use of small counts
o Many other generalization parameters (pruning cutoffs today)
o Hypothesis space stays big, but harder to get to the outskirts

Decision Trees: Choosing an Attribute

o Idea: a good attribute splits the examples into subsets that are (ideally) “all positive” or
“all negative”

o So: we need a measure of how “good” a split is, even if the results aren’t perfectly
separated out

Information Gain

o Back to decision trees!
o For each split, compare entropy before and after

o Difference is the information gain
o Problem: there’s more than one distribution after split!

o Solution: use expected entropy, weighted by the number of
examples

Advanced Topics: NLP

o N-gram models
o Regularization techniques (smoothing, backoff)

o RNNs -> LSTMs -> Attention, Transformers
o Address long-term memory issues

o Causal (autoregressive) vs. masked LMs
o Predict tokens in order vs. mask some out

randomly and predict

o Pretraining & fine-tuning

Advanced Topics: RL

Advanced Topics: RL

Advanced Topics: Ethics, Fairness, Safety

o Allocational & representational harms

o Dataset bias + bias amplification + automation bias

o Training data extraction

o Data poisoning

o Model stealing

o Safety in physical environments

o Jailbreaking & adversarial attacks

Questions

Search

A* Search

o Expand nodes based on sum:
backward cost + forward cost
o f(n) = g(n) + h(n)
o g(n): cost to get to node
o h(n): heuristic of future costs

o We ideally want heuristic functions
that satisfy:
o Admissibility: underestimate true

cost to the goal
o Consistency: “triangle inequality”

o Consistency => admissibility

A* Search

A

GS

1 3

5

A* Search

A

GS

1 3

5

A* Search

A

GS

1 3

5

h = ??

h = ??h = ??

g: backward cost (S -> current node)
h: forward cost (heuristic for current node ->
goal)

Q: Where do heuristics come from?

A: We have to create them!

Not the best heuristic…

A* Search

A

GS

1 3

h = 6

h = 0

5

h = 7

f = g + h
 = 1 + 6
 = 7

f = g + h
 = 5 + 0
 = 5

g: backward cost (S -> current node)
h: forward cost (heuristic for current node ->
goal)

A* Search

A

GS

1 3

h = 6

h = 0

5

h = 7

Q: Where do heuristics come from?

A: We have to create them!

Not the best heuristic…

f = g + h
 = 1 + 6
 = 7

f = g + h
 = 5 + 0
 = 5

g: backward cost (S -> current node)
h: forward cost (heuristic for current node ->
goal)

Q: Where do heuristics come from?

A: We have to create them!

What’s a better heuristic?

A* Search: Admissibility

A

GS

1 3

h = 3

h = 0

5

h = 1

f = g + h
 = 1 + 3
 = 4

f = g + h
 = 5 + 0
 = 5

g: backward cost (S -> current node)
h: forward cost (heuristic for current node ->
goal)

Q: Where do heuristics come from?

A: We have to create them!

What’s a better heuristic?

A* Search: Admissibility

A

GS

1 3

h = 3

h = 0

5

h = 1

f = g + h
 = 1 + 3
 = 4

f = g + h
 = 5 + 0
 = 5

Admissible = Underestimates cost from any node to the goal

g: backward cost (S -> current node)
h: forward cost (heuristic for current node ->
goal)

A* Search

S

A

B

C

G

1

1

1

2
3

A* Search: Consistency

S

A

B

C

G

1

1

1

2
3

A* Search: Consistency

S

A

B

C

G

1

1

1

2
3

h = 4

h = 0

h = 1

h = 1

f = g + h
 = 1 + 1
 = 2

f = g + h
 = 1 + 4
 = 5

f = g + h
 = 3 + 1
 = 4

h = 2

A* Search: Consistency

S

A

B

C

G

1

1

1

2
3

h = 4

h = 0

h = 1

h = 1

f = g + h
 = 1 + 1
 = 2

f = g + h
 = 1 + 4
 = 5

f = g + h
 = 3 + 1
 = 4

h = 2

This heuristic isn’t consistent

“Triangle inequality”

h(u) ≤ d(u,v) + h(v)

A* Search: Consistency

S

A

B

C

G

1

1

1

2
3

h = 4

h = 0

h = 1

h = 1

f = g + h
 = 1 + 1
 = 2

f = g + h
 = 1 + 4
 = 5

f = g + h
 = 3 + 1
 = 4

h = 2

This heuristic isn’t consistent

“Triangle inequality”

h(u) ≤ d(u,v) + h(v)

Q: Is h(A) ≤ d(A,C) + h(C)?

A* Search: Consistency

S

A

B

C

G

1

1

1

2
3

h = 4

h = 0

h = 1

h = 1

f = g + h
 = 1 + 1
 = 2

f = g + h
 = 1 + 4
 = 5

f = g + h
 = 3 + 1
 = 4

h = 2

This heuristic isn’t consistent

Consistency: “Triangle inequality”

h(u) ≤ d(u,v) + h(v)

Q: Is h(A) ≤ d(A,C) + h(C)?

A: No: 4 ≰ 1 + 1

Summary of A*

o Tree search:
o A* is optimal if heuristic is admissible
o UCS is a special case (h = 0)

o Graph search:
o A* optimal if heuristic is consistent
o UCS optimal (h = 0 is consistent)

o Consistency implies admissibility

o In general, most natural admissible heuristics
tend to be consistent, especially if it comes
from a relaxed problem

Hidden Markov Models

o Hidden Markov models (HMMs)
o Underlying Markov chain over states X

i

o You observe outputs (effects) at each time step

o An HMM is defined by:
o Initial distribution:
o Transitions:
o Emissions:

X

5

X

2

E

1

X

1

X

3

X

4

E

2

E

3

E

4

E

5

Conditional Independence

o HMMs have two important independence properties:

o Markovian assumption of hidden process

o Current observation independent of all else given current state

o Does this mean that evidence variables are guaranteed to be independent?

o [No, they tend to correlated by the hidden state]

X

5

X

2

E

1

X

1

X

3

X

4

E

2

E

3

E

4

E

5

Inference: Base Cases

E

1

X

1
X

2

X

1

Passage of Time
o Assume we have current belief P(X | evidence to date)

o Then, after one time step passes:

o Basic idea: beliefs get “pushed” through the transitions

X
2

X
1

Observation

o Assume we have current belief P(X | previous evidence):

o Then, after evidence comes in: E

1

X

1

▪ Basic idea: beliefs “reweighted” by likelihood of evidence

▪ Unlike passage of time, we have to renormalize

Online Belief Updates

o Every time step, we start with current P(X | evidence)

o We update for time:

o We update for evidence:

o The forward algorithm does both at once (and doesn't normalize)

X
2

X
1

X
2

E
2

The Forward Algorithm

o We are given evidence at each time and want to know

o We can derive the following updates
We can normalize as we go if we
want to have P(x|e) at each time
step, or just once at the end…t

Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum)
For each state at time t, keep track of the
total probability of all paths to it

Viterbi Algorithm (Max)
For each state at time t, keep track of the
maximum probability of any path to it

Constraint Satisfaction Problems

Example: Map Coloring

o Variables:

o Domains:

o Constraints: adjacent regions must have different
colors

o Solutions are assignments satisfying all
constraints, e.g.:

Implicit:

Explicit:

General Approach #1: Backtracking Search

o Backtracking search is the basic uninformed algorithm for solving CSPs

o Idea 1: One variable at a time
o Variable assignments are commutative, so fix ordering -> better branching factor!
o I.e., [WA = red then NT = green] same as [NT = green then WA = red]
o Only need to consider assignments to a single variable at each step

o Idea 2: Check constraints as you go
o I.e. consider only values which do not conflict previous assignments
o Might have to do some computation to check the constraints
o “Incremental goal test”

o Depth-first search with these two improvements
is called backtracking search (not the best name)

o Can solve n-queens for n ≈ 25

Improving Backtracking

General-purpose ideas give huge gains in speed

1. Ordering:
o Which variable should be assigned next?

o In what order should its values be tried?

2. Filtering: Can we detect inevitable failure early?

3. Leveraging the structure of the constraint graph

Ordering: Minimum Remaining Values

o Variable Ordering: Minimum remaining values (MRV):
o Choose the variable with the fewest legal values left in its domain

o Why min rather than max?

o Also called “most constrained variable”

o “Fail-fast” ordering

Ordering: Least Constraining Value

o Value Ordering: Least Constraining Value
o Given a choice of variable, choose the least

constraining value

o I.e., the one that rules out the fewest values in
the remaining variables

o Note that it may take some computation to
determine this! (E.g., rerunning filtering)

o Why least rather than most?

o Combining these ordering ideas makes
1000 queens feasible

Filtering: Arc Consistency

o An arc X → Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

Forward checking?
Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA
SA

NT Q

NSW

V

Filtering: Arc Consistency

o A simple form of propagation makes sure all arcs are consistent:

o Important: If X loses a value, neighbors of X need to be rechecked!
o Arc consistency detects failure earlier than forward checking
o Can be run as a preprocessor or after each assignment
o What’s the downside of enforcing arc consistency?

Remember:
Delete from the

tail!

WA SA

NT Q

NSW

V

Leveraging Structure: Cutsets

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual
CSPs (tree structured)

Choose a cutset

General Approach #2: Iterative Improvement

o Local search methods typically work with “complete” states, i.e., all variables assigned

o To apply to CSPs:
o Take an assignment with unsatisfied constraints
o Operators reassign variable values
o No fringe! Live on the edge.

o Algorithm: While not solved,
o Variable selection: randomly select any conflicted variable
o Value selection: min-conflicts heuristic:

o Choose a value that violates the fewest constraints
o I.e., hill climb with h(x) = total number of violated constraints

Hill Climbing Diagram

Simulated Annealing

o Idea: Escape local maxima by allowing downhill moves
o But make them rarer as time goes on

108

Game Trees

Adversarial Search (Minimax)

o Deterministic, zero-sum games:

o Tic-tac-toe, chess, checkers

o One player maximizes result

o The other minimizes result

o Minimax search:

o A state-space search tree

o Players alternate turns

o Compute each node’s minimax value:
the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Minimax Example

12 8 5 23 2 144 6

3 2 2

3

Minimax Example: Pruning

12 8 5 23 2 14

3 <=2 2

3

Alpha-Beta Pruning Properties

o This pruning has no effect on minimax value computed for the root!

o Values of intermediate nodes might be wrong
o Important: children of the root may have the wrong value
o So the most naïve version won’t let you do action selection

o Good child ordering improves effectiveness of pruning

o With “perfect ordering”:
o Time complexity drops to O(bm/2)
o Doubles solvable depth!
o Full search of, e.g. chess, is still hopeless…

o This is a simple example of metareasoning (computing about what to compute)

1
0

1
0 0

max

min

Alpha-Beta Quiz 2

2

Alpha-Beta Quiz 2

10

10

>=100 2

<=2

Expectimax Search

o Why wouldn’t we know what the result of an action will be?
o Explicit randomness: rolling dice
o Unpredictable opponents: the ghosts respond randomly
o Unpredictable humans: humans are not perfect
o Actions can fail: when moving a robot, wheels might slip

o Values should now reflect average-case (expectimax) outcomes,
not worst-case (minimax) outcomes

o Expectimax search: compute the average score under optimal
play
o Max nodes as in minimax search
o Chance nodes are like min nodes but the outcome is uncertain
o Calculate their expected utilities
o I.e. take weighted average (expectation) of children

1
0

4 5 7

max

chance

1
0

1
0

9
1
0
0

Remaining Topics

Bayes Nets:
o Inference by enumeration
o Variable elimination
o D-separation
o Sampling approaches

HMMs:
o Forward algorithm
o Viterbi algorithm
o Particle filtering

Decision networks and VPIs

Out of scope: learning theory, decision tree classifiers, details of non-SGD
optimizers (e.g., NAG, Adagrad, Adam), NLP/CV/RL

