
CS 188 Intro to Artificial Intelligence
Summer 2025 Discussion 1

Q1 Search Algorithms in Action (3 points)
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For each of the following graph search strategies, work out the order in which states are expanded, as
well as the path returned by graph search.

In all cases, assume ties resolve in such a way that states with earlier alphabetical order are expanded first.

Remember that in graph search, a state is expanded only once.

Q1.1 (1 point) Depth-first search.

States expanded:

𝑆, 𝐴, 𝐶, 𝐷, 𝐺

Path returned:

𝑆, 𝐴, 𝐶, 𝐷, 𝐺

Solution: We first expand the start node, adding A, B, and D to the stack: [A, B, D]. We then pop
A off the stack and add it’s child C, giving a stack of [C, B, D]. Next we pop C off the stack and
add it’s children D and G to the stack: so we have a stack of [D, G, B, D]. We then expand D, and
add G, giving [G, G, B, D]. Finally, we expand the goal node. Our full path taken to the goal was
first visiting A, then C, then D, and finally G.
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(Question 1 continued…)

Q1.2 (1 point) Breadth-first search.

States expanded:

𝑆, 𝐴, 𝐵, 𝐷, 𝐶, 𝐺

Path returned:

𝑆, 𝐷, 𝐺

Solution: We first expand each of the start node’s children in alphabetical order: so A and then
B and then D, giving a queue of [A, B, D]. We then expand A an add C to the queue, giving [B,
D, C]. After expanding B, we add D, leaving us with a queue of [D, C, D]. After expanding D, we
add G to the queue. The queue has [C, D, G]. We therefore next expand C and add D and G to the
queue, leaving us with [G, D, G]. Finally, we expand G, reaching the goal. Since, D was added to
the queue directly from the start node and then the goal was added after visiting D, we have a
final path of [S, D, G].

Q1.3 (1 point) Uniform-cost search.

States expanded:

𝑆, 𝐴, 𝐵, 𝐷, 𝐶, 𝐺

Path returned:

𝑆, 𝐴, 𝐶, 𝐺

Solution: We start by expanding the start node, and adding A, B, and D to the priority queue,
giving a queue of [(A, 2), (B, 3), (D, 5)], where the second item is the min distance from the start.
We expand A, since it is closest and add C to the queue, giving a queue of [(B, 3), (D, 5), (C, 6)].
We then expand B, since it is next in the queue. D is already in the queue and since the distance
to D through B (3+4=7) is longer than the distance directly to D from the start (5), the queue does
not get updated, and is [(D, 5), (C, 6)]. Next we expand D, and add G to the queue with a cost
of 5+5=10, giving a queue of [(C, 6), (G, 10)]. Then we expand C, and since the distance to G is
closer than the value in the queue (6+2=8), we update the queue to [(G, 8)]. Finally we expand
G. As a result, we took the path to G through C, giving a full path of [S, A, C, G].
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Q2 Search and Heuristics (5 points)

Imagine a car-like agent wishes to exit a maze like the one shown below:

1. The agent is directional and at all times faces some direction 𝑑 ∈ (𝑁, 𝑆, 𝐸, 𝑊).
2. With a single action, the agent can either move forward at an adjustable velocity 𝑣 or turn. The turning

actions are left and right, which change the agent’s direction by 90 degrees. Turning is only permitted
when the velocity is zero (and leaves it at zero).

3. The moving actions are fast and slow. Fast increments the velocity by 1 and slow decrements the velocity
by 1; in both cases the agent then moves a number of squares equal to its NEW adjusted velocity (see
example below).

4. A consequence of this formulation is that it is impossible for the agent to move in the same nonzero
velocity for two consecutive timesteps.

5. Any action that would result in a collision with a wall or reduce 𝑣 below 0/above a maximum speed
𝑉max is illegal.

6. The agent’s goal is to find a plan which parks it (stationary) on the exit square using as few actions
(time steps) as possible.

As an example:
• If, at timestep 𝑡, the agent’s current velocity is 2, by taking the fast action, the agent first increases the

velocity to 3 and move 3 squares forward, such that at timestep 𝑡 + 1 the agent’s current velocity will
be 3 and will be 3 squares away from where it was at timestep 𝑡.

• If instead the agent takes the slow action, it first decreases its velocity to 1 and then moves 1 square
forward, such that at timestep 𝑡 + 1 the agent’s current velocity will be 1 and will be 1 square away
from where it was at timestep 𝑡.

• If, with an instantaneous velocity of 1 at timestep 𝑡 + 1, it takes the slow action again, the agent’s
current velocity will become 0, and it will not move at timestep 𝑡 + 1. Then at timestep 𝑡 + 2, it will be
free to turn if it wishes.

• Note that the agent could not have turned at timestep 𝑡 + 1 when it had a current velocity of 1, because
it has to be stationary to turn.

Q2.1 (1 point) If the grid is 𝑀  by 𝑁  , what is the size of the state space? Justify your answer. You should
assume that all configurations are reachable from the start state.

Solution:

The size of the state space is 4𝑀𝑁(𝑉max + 1).

The state representation is (direction facing, 𝑥, 𝑦, speed).

Note that speed can take any value in {0, …, 𝑉max}.
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(Question 2 continued…)

Q2.2 (1 point) Is the Manhattan distance from the agent’s location to the exit’s location admissible? Why
or why not?

Solution:

No, Manhattan distance is not an admissible heuristic.

The agent can move at an average speed of greater than 1 (by first speeding up to 𝑉max and then
slowing down to 0 as it reaches the goal), and so can reach the goal in less time steps than there
are squares between it and the goal.

A specific example:
• A timestep 0, the agent starts stationary at square 0 and the target is 9 squares away at square 9.
• At timestep 0, the agent takes the fast action and ends up at square 1 with a velocity of 1.
• At timestep 1, the agent takes the fast action and ends up at square 3 with a velocity of 2.
• At timestep 2, the agent takes the fast action and ends up at square 6 with a velocity of 3.
• At timestep 3, the agent takes the slow action and ends up at square 8 with a velocity of 2.
• At timestep 4, the agent takes the slow action and ends up at square 9 with a velocity of 1.
• At timestep 5, the agent takes the slow action and stays at square 9 with a velocity of 0.
• Therefore, the agent can move 9 squares by taking 6 actions.

Q2.3 (1 point) State and justify a non-trivial admissible heuristic for this problem which is not the
Manhattan distance to the exit.

Solution:

There are many answers to this question. Here are a few, in order of weakest to strongest:

Heuristic 1: The number of turns required for the agent to face the goal.

Heuristic 2: Consider a relaxation of the problem where there are no walls, the agent can turn,
change speed arbitrarily, and maintain constant velocity.

In this relaxed problem, the agent would move with 𝑉max, and then suddenly stop at the goal,
thus taking 𝑑manhattan/𝑉max time.

Discussion 1 (Question 2 continues…) Page 4 of 10 CS 188 — Summer 2025



(Question 2 continued…)

Solution: (continued from above)

Heuristic 3: We can improve the above relaxation by accounting for the acceleration and deceleration
dynamics.

In this case, the agent will have to accelerate from 0 from the start state, maintain a constant velocity
of 𝑉max, and slow down to 0 when it is about to reach the goal.

Note that this heuristic will always return a greater value than the previous one, but is still not an
overestimate of the true cost to reach the goal. We can say that this heuristic dominates the previous
one.

In particular, let us assume that 𝑑manhattan is greater than or equal to the distance it takes to accelerate
to and decelerate from 𝑉max. In the case that 𝑑manhattan is smaller than this distance, we can still use
𝑑manhattan/𝑉max as a heuristic.

We can break up the 𝑑manhattan into three parts: 𝑑accel, 𝑑Vmax, ∧ 𝑑decel.
• The agent travels a distance of 𝑑accel when it accelerates from 0 to 𝑉max velocity.
• The agent travels a distance of 𝑑decel when it decelerates from 𝑉max to 0 velocity.
• In between acceleration and deceleration, the agent travels a distance of 𝑑Vmax = 𝑑manhattan −

𝑑accel − 𝑑decel.

𝑑accel = 1 + 2 + 3 + … + 𝑉max = (𝑉max)(𝑉max + 1)
2

𝑑decel = (𝑉max − 1) + (𝑉max − 2) + … + 1 + 0 = (𝑉max − 1)(𝑉max)
2

Combining the equations above:

𝑑Vmax = 𝑑manhattan − (𝑉max)(𝑉max + 1)
2

− (𝑉max − 1)(𝑉max)
2

= 𝑑manhattan − 𝑉 2
max

It takes:
• 𝑉max steps to travel the initial 𝑑accel
• (𝑑manhattan − 𝑉 2

max)/𝑉max steps to travel the middle 𝑑Vmax
• 𝑉max steps to travel the last 𝑑decel

Therefore, our heuristic is:

{{
{
{{𝑑manhattan/𝑉max    if 𝑑manhattan ≤ 𝑉 2

max

(𝑑manhattan/𝑉max) + 𝑉max    if 𝑑manhattan > 𝑉 2
max

where 𝑉 2
max is derived from 𝑑accel + 𝑑decel = 𝑉 2

max
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(Question 2 continued…)

Q2.4 (1 point) If we used an inadmissible heuristic in A* graph search, would the search be complete?
Would it be optimal?

Solution:

If the heuristic function is bounded, then A* graph search would visit all the nodes eventually,
and would find a path to the goal state if there exists one.

An inadmissible heuristic does not guarantee optimality as it can make the good optimal goal
look as though it is very far off, and take you to a suboptimal goal.

Q2.5 (1 point) Give a possible advantage that an inadmissible heuristic might have over an admissible one.

Solution:

The time to solve an A* search problem is a function of two factors: the number of nodes
expanded, and the time spent per node. An inadmissible heuristic may be faster to compute,
leading to a solution that is obtained faster due to less time spent per node.

It can also be a closer estimate to the actual cost function (even though at times it will overes-
timate!), thus expanding less nodes.

We lose the guarantee of optimality by using an inadmissible heuristic. But sometimes we may
be okay with finding a suboptimal solution to a search problem.
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Q3 Pacfriends Unite (9 points)

Pacman and his Pacfriends have decided to combine forces and go on the offensive, and are now chasing
ghosts instead! In a grid of size 𝑀  by 𝑁 , Pacman and 𝑃 − 1 of his Pacfriends are moving around to
collectively eliminate all of the ghosts in the grid by stepping on the same square as each of them. Moving
onto the same square as a ghost will eliminate it from the grid, and move the Pacman into that square.

Every turn, Pacman and his Pacfriends may choose one of the following four actions: left, right, up, down,
but may not collide with each other. In other words, any action that would result in two or more Pacmen
occupying the same square will result in no movement for either Pacman or the Pacfriends. Additionally,
Pacman and his Pacfriends are indistinguishable from each other. There are a total of 𝐺 ghosts, which
are indistinguishable from each other, and cannot move.

Treating this as a search problem, we consider each configuration of the grid to be a state, and the goal
state to be the configuration where all of the ghosts have been eliminated from the board. Below is an
example starting state, as well as an example goal state:

Possible Start State Possible Goal State

Assume each of the following subparts are independent from each other. Also assume that regardless
of how many Pacmen move in one turn, the total cost of moving is still 1.

For the next four subparts, suppose that Pacman has no Pacfriends, so 𝑃 = 1.
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(Question 3 continued…)

Q3.1 (1 point) What is the size of the minimal state space representation given this condition? Recall that
𝑃 = 1.

A 𝑀𝑁

B 𝑀𝑁𝐺

C (𝑀𝑁)𝐺

D (𝑀𝑁)𝐺+1

E 2𝑀𝑁

F 2𝑀𝑁+𝐺

G 𝐺(2)𝑀𝑁

H 𝑀𝑁(2)𝐺

Solution:

Since 𝑃 = 1, we only need to keep track of the position of Pacman, as well as whether each of
the 𝐺 ghosts has been eliminated.

We can keep track of this with 𝑀𝑁  and 2𝐺 respectively; therefore, the size of the minimal
representation is the product of the two, which is 𝑀𝑁(2)𝐺.

Note that we do not need to keep track of the ghosts’ positions since they are stationary.

For each of the following heuristics, select whether the heuristic is admissible or inadmissible. Recall that
𝑃 = 1.

Q3.2 (1 point) ℎ(𝑛) = the sum of the Manhattan distances from Pacman to every ghost.

A Admissible B Inadmissible

Solution:

In this case, we can consider a dummy example, such that all the ghosts are adjacent and lined
up horizontally, and Pacman is one square to their left. If there are three ghosts, then the sum of
their Manhattan distances from Pacman is 1 + 2 + 3 = 6, which is an overestimate of the actual
cost 3, since the Pacman only needs to move three spaces to actually eliminate all the ghosts.

Q3.3 (1 point) ℎ(𝑛) = the number of ghosts times the maximum Manhattan distance between Pacman
and any of the ghosts.

A Admissible B Inadmissible

Solution:

Considering the same example as in the previous part, this heuristic also overestimates the cost,
since the number of ghosts × Manhattan distance between Pacman and the furthest ghost is 3 ×
3 = 9 > 3.
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(Question 3 continued…)

Q3.4 (1 point) ℎ(𝑛) = the number of remaining ghosts.

A Admissible B Inadmissible

Solution:

Without his Pacfriends, Pacman can only eliminate at most one ghost each turn, and therefore
the number of ghosts will be a lower bound on the number of moves necessary to eliminate all
the ghosts, making this heuristic admissible.

Suppose that Pacman has exactly one less Pacfriend than there are number of ghosts. Therefore, 𝑃 = 𝐺.
Recall that Pacman and his Pacfriends are indistinguishable from each other.

Q3.5 (1 point) What is the size of the minimal state space representation given this condition? Recall that
𝑃 = 𝐺.

A 𝑀𝑁𝑃

B 𝑀𝑁𝐺𝑃

C (𝑀𝑁)𝐺

D (𝑀𝑁)(𝐺+𝑃)

E (𝑀𝑁)𝑃 ⋅ 2𝐺

F (𝑀𝑁)𝐺 ⋅ 𝑃

G (𝑀𝑁)𝐺+1

H (𝑀𝑁)(𝐺+1)𝑃

I (𝑀𝑁
𝑃 )

J (𝑀𝑁
𝑃 ) ⋅ 2𝐺

K (𝑀𝑁
𝑃 ) ⋅ (𝑀𝑁)𝐺

L (𝑀𝑁
𝑃 ) ⋅ (𝑀𝑁

𝐺 )

M 2𝑀𝑁

N 2𝑀𝑁+𝐺+𝑃

O 𝐺𝑃(2)𝑀𝑁

Solution:

Since 𝑃  can be any number of Pacman and Pacfriends, arbitrarily equal to 𝐺, we need to keep
track of the position of all the Pacmen, as well as whether each of the 𝐺 ghosts has been
eliminated.

However, since the Pacmen are indistinguishable from each other, we can consider states where
different Pacmen have swapped positions to be the same. Therefore, we can keep track of unique
Pacmen configurations using (𝑀𝑁

𝑃 ), which is the number of ways to select 𝑃  Pacman positions
from a grid of 𝑀  by 𝑁 .

Thus, the size of the minimal representation is the product of this and 2𝐺, which is (𝑀𝑁
𝑃 ) ⋅ 2𝐺.

For each of the following heuristics, select whether the heuristic is admissible or inadmissible. Recall that
𝑃 = 𝐺.
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(Question 3 continued…)

Q3.6 (1 point) ℎ(𝑛) = the largest of the Manhattan distances between each Pacman and its closest ghost.

A Admissible B Inadmissible

Solution:

Consider the case where we have two Pacmen and two ghosts, and one Pacman is very close to
both ghosts, while the other is very far away. This heuristic would overestimate the cost since
it would take the distance from the furthest Pacman to the ghosts as its metric, when the closer
Pacman could just eliminate both ghosts quicker.

Q3.7 (1 point) ℎ(𝑛) = the smallest of the Manhattan distances between each Pacman and its closest ghost.

A Admissible B Inadmissible

Solution:

At minimum, it will take the smallest of the distances between each Pacman and its closest ghost
for any of the ghosts to be eliminated. Therefore this heuristic will always underestimate the true
cost and is therefore admissible.

Q3.8 (1 point) ℎ(𝑛) = the number of remaining ghosts.

A Admissible B Inadmissible

Solution:

Since multiple ghosts could be eliminated in one move because there is more than one Pacman
eliminating them, this heuristic can overestimate the cost to the goal state, and is therefore
inadmissible.

Q3.9 (1 point) ℎ(𝑛) = number of remaining ghosts / 𝑃 .

A Admissible B Inadmissible

Solution:

Since we are given that 𝑃 = 𝐺, the maximum value of this heuristic is 1, since the previous
heuristic is at most 𝐺.

Therefore, this heuristic is admissible since it has a value always less than or equal to 1, the cost
of taking a turn, and when there are no remaining ghosts left, the heuristic evaluates to 0, so it
will underestimate the cost to the goal state.
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